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Preface

In 1968, I taught a course in homological algebra at Urbana; those
lectures were published in 1970 as my ‘*Notes on Homological Algebra’’.
Since much of the basic material there has now drifted into earlier
courses, | have rewritten the notes, incorporating new items to take
advantage of the present times. As it is convenient that a book be essen-
tially self-contained, the old material remains, though redone. Therefore,
students at different levels should find something of interest here.

Learning homological algebra is a two-stage affair. First, one must
learn the language of Ext and Tor and what it describes. Second, one must
be able to compute these things, and, often, this involves yet another
language: spectral sequences. The following exercise appears on page 105
of Lang’s book, ‘“Algebra’": ‘““Take any book on homological algebra and
prove all the theorems without looking at the proofs given in that book.”
My guess is that Lang was trying to foster the healthy attitude that, in
spite of its cumbersome, perhaps forbidding, appearance, homological
algebra is actually accessible to those who wish to learn it. If nothing else,
this book is my attempt to make the subject lovable.

The origins of our subject are the origins of algebraic topology. At first
glance, our opening sentence, ‘*We begin with a brief discussion of line
integrals in the plane’, must appear strange; upon reflection, how could
we begin any other way? A simple definition may mystify a reader if it
seems to have been offered up by some oracle. There are no oracles here.
Indeed, one role of the introductory first chapter is to give the etymology,
both linguistic and mathematical, of the word komology.

ix




With Chapter 1, the next three chapters form a short course in module
theory. The main subject of homological algebra is the pair of bifunctors
Hom and tensor. Thus, Chapter 2 studies their behavior on all modules,
whereas Chapter 3 studies how they act on certain special modules:
projectives, injectives, and flats. These special modules are used at once
to characterize Hom and tensor (Watts’ theorems, which gave rise to
adjoint functor theorems in category theory). We also introduce localiza-
tion for later applications to polynomial rings and to regular local rings. To
make all more concrete, to see why certain earlier hypotheses are needed,
and to make contact with ‘*honest’” mathematics, Chapter 4 examines the
interplay between the ring of scalars and the special modules. In particu-
lar, we prove the Quillen—Suslin theorem that projective Rlx,, . . . , Xa}
modules are free when R is a field.

Chapter 5 is important etymology: group extensions are considered so
that one can see the familiar formulas being born, crying for a projective
resolution. At last, Chapter 6 defines homology and derived functors. The
next two chapters treat Ext”, the derived functors of Hom, and Tor,, the
derived functors of tensor. We show that Ext was named for its relation to
extensions, and that Tor was named for its relation to torsion.

Chapters 9 and 10 apply Ext and Tor to rings and to groups. An
introduction must show why its subject is valuable, and we have chosen
these two areas as the most familiar ones in algebra. Dimension theory of
rings organizes much of the material in Chapter 4 and also yields new
results (we describe Serre’s characterization of regular local rings, and the
theorem of Auslander-Buchsbaum—Nagata that these rings have unique
factorization). Applications to groups include a discussion of the Schur
multiplier, Maschke’s theorem, the Schur—Zassenhaus theorem, and a
description of the theorem of Stallings—Swan characterizing free groups
as those groups of cohomological dimension one.

We have tried to keep the needs of algebraic topologists in mind,
partly because one ought, and partly because the algebra is better under-
stood when one sees its topological sources. A short discussion of
Eilenberg—MacLane spaces does point out the intimate connection be-
tween topology and homological algebra; indeed, we even prove the
universal coefficient theorem for group cohomology by looking at its
counterpart for singular cohomology.

The final chapter, spectral sequences, is almost a text by itself. This is
not unexpected, for we have already mentioned that it is a second lan-
guage. (Here I have not given etymology, although Lyndon [1948] is
recommended for an algebraic viewpoint.) I think this exposition differs
from others in its emphasis on illustrating how spectral sequences are
used. Also, exact couples seem to eliminate most of the horrors of many
indices. If I have succeeded, the reader will know when a spectral se-
quence is likely to arise, and he will know what to do with it if it does.




Preface xi

And now the pleasant paragraph in which [ can thank people from
whom [ have learned. I. Kaplansky, S. MacLane, J. Gray, and S. Gersten
gave lectures that taught me much. L. McCulloh has made many valuable
suggestions. E. Davis allowed me to use his account of Quillen’s solution
of Serre’s problem. R. Treger told me of Vaserstein's proof of Suslin’s
solution of Serre’s problem, and was kind enough to translate it for me
from the Russian. An incomplete list of others who helped: P. M. Cohn,
A. Fauntleroy, E. Green, P. Griffith, the late A. Learner, A. Mann, D.
Robinson, M. Schacher, and A. Zaks. Of course, I am indebted to the fine
books on homological algebra, especially those of Cartan—Eilenberg
[1956] and MacLane [1963].

I am grateful to the Lady Davis Foundation; most of this book was
written while [ was a Lady Davis Fellow and Visiting Professor at the
Technion, Israel Institute of Technology, Haifa, and at the Hebrew Uni-
versity of Jerusalem. My warm thanks to both of these institutions for
their hospitality.

Finally, I thank Mrs. Esther Tuval for a superb job of typing my
manuscript.
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1 Introduction

LINE INTEGRALS AND INDEPENDENCE OF PATH

We begin with a brief discussion of line integrals in the plane. Assume X
is an open disc in the plane with a finite number of points z,, .. ., z, deleted.
Fix points a and b in X. Given a curve § in X from a to b, and given a pair
of real-valued functions P and Q on X, one wants to evaluate {; Pdx + Q dy.
It is wise to regard f as a finite union of curves, for 8 may only be piecewise
smooth, e.g., it may be a polygonal path. For the rest of this discussion, we
ignore (needed) differentiability hypotheses. An important question is when
the line integral above is independent of the path 8; if 8 is a second path in
X fromatob,is {5 Pdx + Qdy = [y Pdx + Qdy?

B
b
D

BI

Plainly, if y is the closed curve  — f’ (i.e., go from a to b via f and then go
backward along f’ to q), then the integral is independent of path if and only
if {, Pdx + Qdy = 0. Thus, we are led to consideration of closed curves in
X. Now this last line integral is affected by whether any of the “bad” points
Zy, ..., Z, lie inside y (one of the functions P or Q may have a singularity
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at some z;). Consider

Each y; is a (simple) closed curve in X with the point z; inside (and the other
Z’s outside); y is a (simple) closed curve in X having all the y; inside. If y is
oriented counterclockwise and each of the vy; is oriented clockwise, then
Green’s theorem states that

fdex—f—Qdy—f—fnde+Qdy+---+J;"de+Qdy

where R is the shaded 2-dimensional region in the picture. Of course, one is
tempted to, and does, write the sum of line integrals more concisely as

J;+71+'__+h Pdx+ Qdy;

indeed, instead of mentioning the orientations explicitly, one often writes a
formal linear combination of curves (negative coefficients being a convenient
way to indicate how the orientations are aligned). Observe that for simple
curves the notion of “inside” always makes sense. However, we may allow
curves to wind about some z; several times, assuming these curves are not
so pathological as to fail to have an inside, and this introduces integer coef-
ficients other than + 1 in the formal linear combinations. Let us now restrict
attention to those pairs of functions P and Q satisfying 0Q/dx = dP/dy. For
these function pairs, the double integral in Green’s theorem vanishes, and
we have [,.y 4...45, Pdx + Qdy = 0. An equivalence relation on formal
linear combinations (or, “oriented unions”) of closed curves in X suggests
itself: call two such combinations « and o equivalent if the values of

J;de—f-Qdy and ‘L,de—f-Qdy

agree for all pairs P and @ as restricted above. In particular, note that com-
binations « whose curves comprise the boundary of a 2-dimensional region
in X are trivial (the integrals have value 0). The equivalence classes of formal
linear combinations of closed curves in X are called “homology classes”,
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from the Greek “homologos” = “homo” + “logos” meaning “agreeing”. In
short, integration is always independent of paths lying in the same homology
class. Visibly, these homology classes reflect the complexity of the ambient
space X.

Our discussion mentioned three sorts of finite unions of oriented curves
in X: arbitrary such (usually called “chains”); closed unions (usually called
“cycles”); boundaries of 2-dimensional regions in X. We have just witnessed
the origin of homology as an abelian group of classes of formal linear com-
binations of closed curves in X in which boundaries of 2-dimensional regions
are trivial. The step from considering closed curves in a planar region X
to generalized chains, cycles, and boundaries in any euclidean space, indeed,
in any topological space, does not seem an awesome leap today; nevertheless,
this leap was the birth of algebraic topology. We shall return to the picture
of Green’s theorem, for homological algebra was born when analogies
between topological homology theory and algebra were recognized.

CATEGORIES AND FUNCTORS

Let us introduce some terms to facilitate our discussion. Recall a
set-theoretical distinction: our primitive vocabulary contains the words
“element” and “class”; the word “set” is reserved for those classes that are
small enough to have a cardinal number. Thus, we may correctly say “the
class of all rationals” or “the set of all rationals”, but we may only say “the
class of all groups” (this latter class cannot be a set, for there exist groups
of any nonzero cardinal).

Definition: A category € consists of a class of objects, obj €, pairwise
disjoint sets of morphisms, Homg(A, B), for every ordered pair of objects,
and compositions Homg(4, B) x Hom¢(B, C) - Homg(A4, C), denoted
(f, g) — gf, satisfying the following axioms:

. (i) foreachobject 4, there exists an identity morphism 1, € Homg(4, A)
such that f1, = f for all f e Homg(4, B)and 1,49 = g for all g € Homg(C, A);

(i) associativity of composition holds whenever possible: if fe
Homg(A, B), g ¢ Hom(B, C) and h € Hom(C, D), then

hlgf) = (rg)f.

Several remarks are in order. First, the only requirement on Hom(4, B)
is that it be a set; it is allowed to be empty. Second, we usually write f: 4 — B
instead of f € Hom(4, B); this explains our notation for composition. Finally,
for each object 4, the identity morphism 1, is unique: if 2, € Hom(A4, A4) is
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a second morphism satisfying (i), then 2, = 2,41, =1,. There is thus a
one—one correspondence A — 1, between obj € and the class of identity
morphisms in €, so that one could describe € solely in terms of morphisms
and compositions. This is sometimes convenient for category-theorists, but
we shall never forget objects.

Examples: 1. € = Sets. Here objects are sets, morphisms are functions,
and composition is the usual composition of functions.

2. & = Top. Here objects are topological spaces, morphisms are con-
tinuous functions, and composition is the usual composition.

3. @ = Y Here R is a ring (associative with 1), objects are left R-
modules, morphisms are R-maps (ie., R-homomorphisms), and usual
composition.

Recall that a left R-module is an additive abelian group M equipped with
an action of R making it a “vector space over R”: thereis a function R x M —
M, denoted (r,m)+— rm, satisfying:

() rm+m)=rm+rm’;
W (r+rym=rm+rm;
(1)) (rr)m = r{r'm);
(iv) lm=m;

A function f:M — N between left R-modules M and N is an R-map if

fim+m)=fm+ fim) and  f(rm) = rf(m).

We will often write ;M to mean M ¢ obj z.

4. If R = Z, the ring of integers, then R-module = Z-module = abelian
group, while Z-map = homomorphism. We usually denote the category of
abelian groups by Ab rather than ,9R.

5. € =Yi,;. Here R is a ring, objects are right R-modules, morphisms
are R-maps, and composition is the usual composition.

where m,m'eM and 1,r,¥ eR.

Recall that an abelian group M is a right R-module if there is a function
R x M — M, denoted (r, m) — rm, satisfying all the axioms of a left R-module
save (ii). The third axiom is replaced by

(iiiy (r¥)m=r(rm).
If the value of R x M — M on (r,m) is denoted mr, then (iii) has the more
appealing form

(1)’ m(rr') = (mr)r'.

We shall consistently use the latter notation (having r on the right) when
discussing right R-modules. A function f: M — N between right R-modules
M and N is an R-map if f(m + m') = f(m) + f(m') and f(mr) = f(m)r.
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If R is commutative, we may regard every right R-module M as a left
R-module by defining rm =mr forallre Rand me M.

6. Let S be a semigroup with (two-sided) unit, i.e., 2 monoid. We may
construe S as a category € by defining obj € = {*} (i.e., € has only one object,
), Hom(*, ¥) = S, and composition as the given multiplication in S.

There are two features of this last example worth noting. First, obj €
is a set, indeed, a rather small set. Second, morphisms are not functions
between objects, for the object  is not comprised of elements.

7. Let X be a quasi-ordered set (this means X has a reflexive and transi-
tive binary relation <). To say it another way, X would be partially ordered
if, in addition, < were antisymmetric. We may construe X as a category
@ by defining obj € = X,

{5} ifx <y (we have invented a new symbol)
Hom(x, y) = { %) otherwise,

and composition i = i} whenever x < y < z.

This last example has the feature that some Hom sets may be empty.

The list of examples can be continued, and other categories will appear
when necessary. There is a rough analogy between one’s first meeting with
point-set topology and one’s first meeting with category theory. The defini-
tions of topological space and of category are simple, abstract, and admit
many examples, both natural and artificial. The raison d’etre of topological
spaces is that continuous functions live on them, and it is continuity that
is really interesting. Similarly, the raison d’etre of categories is that “functors”
live on them; let us define these at once. If one views a category as a gener-
alized monoid (forget the objects, so one is dealing with morphisms that
can sometimes be multiplied), then a functor is just a homomorphism.

Definition: Let € and D be categories. A functor F: € — D is a function
satisfying:

(i) If Aeobj@, then FA cobjD;
(i) If f:A— Bis a morphism in €, then Ff:FA — FB is a morphism
in®;
(i) if 45 B S C are morphisms in G, then

F(gf) = Fg Ff;
(iv) for every A € obj €, we have F(1,) = 15,.

Examples: 8. The identity functorF:€ — € definedby FA = A and Ff = f.
9. The Hom functors € — Sets. Fix an object A in € and define
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FC = Hom(4,C); if f:C — C’ is a morphism in €, define Ff:Hom(4, C) —»
Hom(4, C') by g = fg. One usually denotes Ff by f,.

10. If € = M, then the Hom functor F = Homg(4, ) actually takes
values in Ab:Hompg(4, C) = {all R-maps A — C} is an abelian group if we
define g + h by ar>g(a) + h(a); moreover, one easily checks that every f,
is a homomorphism of abelian groups.

11. A statement similar to that in Example 10 is true for € = 9.

12. If D is a fixed object in D, define the constant functor| |:€ — D by
|C| = D for every C € obj € and |f| = 1, for every morphism f in €.

Our description of the Hom functors is incomplete—what if we fix the
second variable?

Definition: Let € and D be categories. A contravariant functor F:€ — D is
a function satisfying:

() If AeobjC,then FA cobj D;
iy if f:A— Bis a morphism in €, then Ff:FB— FA is a morphism
in D (thus F reverses arrows);
(iiiy if A5 B % C are morphisms in €, then

F(gf) = Ff Fyg;
(iv) forevery A € obj €, we have F(1,) = 1g4.

Examples: 13. Fix an object B in € and define F:€ — Sets by F4 =
Hom(A4, B); if f:A — A’ is a morphism in &, define Ff:Hom(A4’,B) —
Hom(A, B) by g — gf. One usually denotes Ffby f*.

14. K € =z, then F = Homg( , B) actually takes its values in Ab. A
similar statement is true for € = 9.

A functor is often called a covariant functor to emphasize it preserves
the direction of arrows.

Exercises: 1.1. A morphism f:4 — B in a category € is called an equiv-
alence if there is a morphism g:B — A4 in € such that gf = 1, and fg = 1.
What are the equivalences in the categories described above?

1.2. IfF:€—- D is a functor (either variance) and f is an equivalence
in €, then Ff is an equivalence in D.

Definition: A category € is pre-additive if each Hom(4, B) is an (additive)
abelian group and the distributivity laws hold, when defined.
Distributivity relates the addition of morphisms to the given composition

m €. As every nonempty set admits some abelian group structure, it would
be foolish not to demand distributivity in the definition of pre-additive.
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Of course, gM and M are pre-additive. If € and D are pre-additive
categories, then we say a functor (contra or co) F:€ — D is additive if
F(f + g) = Ff + Fg for every pair of morphisms f and g lying in the same
group. This says the function Homg(C, C') - Homy(FC, FC’) given by
[ Ef is a homomorphism. Note that the Hom functors on module
categories are additive.

Exercises: 1.3. In a pre-additive category, zero morphisms 0: 4 — B are
defined (namely, the zero element of Hom(A4, B)). If F:€ — D is an additive
functor (either variance) between pre-additive categories, then F preserves
zero morphisms. If € and D are module categories, then F(0) = 0, where 0
is the zero module.

14. If R is a commutative ring, then Homg(M, N) is an R-module if
we define rf by m+— r - fm. Moreover, either Hom functor takes values in ;9.

(A special case of Exercise 1.4 is R a field (so that R-modules are vector
spaces and R-maps are linear transformations). The contravariant functor
Homg(, R) is the dual space functor that assigns to each space its space of
linear functionals and to each linear transformation its transpose.)

1.5. If Ris aring, its center is the subring
Z(R) = {x € R:xr = rx for all re R}.

For every ring R, prove that Homg(M, N} is a Z(R)-module and that the
Hom functors take values in 2.

1.6. Let A be a left R-module and let r € Z(R). Prove that the function
U:A — A defined by ar>ra is an R-map. Give an example to show this
may be false if r ¢ Z(R). (Hint: Take 4 = zR.)

1.7. LetRand § berings and ¢: R — S a ring map. Every left S-module
M may be construed as a left R-module if one defines r- m = o(r)m (similarly
for right modules).

TENSOR PRODUCTS

There is a second family of functors, tensor products, that are as funda-
mental in homological algebra as the Hom functors. Before describing them,
we give a construction for abelian groups; it will be generalized to modules
in Chapter 3.

Definition: Let G be an (additive) abelian group with subset X ; we say G
is a free (abelian) group with basis X if each g e G has a unique expression
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of the form

g= 3 mx,
xeX

where m, € Z and “almost all” m, = 0 (i.e,, all but a finite number of m, = 0).

The analogy between free groups and vector spaces is a good one; the
next result shows that the notions of basis in each are kindred.

Theorem 1.1: Let G be free with basis X ; let H be any abelian group and
and let f:X — H be any function. Then there exists a uniqgue homomorphism
F:G— H with f(x) = f(x) for all x € X.

X————3H
s

Proof: If geG, then g =y m.x. Define /:G—H byf g+ 2 m.f(x). Note
that f is well defined because the expresswn for g is unique and at most
finitely many m, are nonzero. That f is unique follows from the fact that X
generates G. ||

The construction of f from f is called extending by linearity.

Theorem 1.2: Given a set X, there exists a free abelian group G having X as
a basis. '

Proof: Let {Z,:x e X} be a family of copies of the integers Z. Consider
the cartesian product [[..x Z,; its elements are “vectors” (m,)—this nota-
tion indicates that the xth coordinate is m, € Z. The cartesian product is
an abelian group under coordinatewise addition:

(me) + (ng) = (m. + ny).

Define X’ = {all vectors having 1 as xth coordinate (fixed x € X) and all
other coordinates 0}. Clearly X’ is in one—one correspondence with X.
Define G’ as the subgroup of [[Z, generated by X'. It is immediate that
each g € G is a linear combination of elements of X”; that such an expression
for g is unique is the definition of equality in [ [Z,. Thus, G’ is a free abelian
group with basis X",

If one actually wants X itself as a basis, define G = (G’ — X)) U X (ie,,
replace X’ by X) and define the obvious addition on the new set G; the new
group G is free abelian with X as basis. ||
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Here is a very formal but useful notion.

Definition: A diagram

A——t B

A/__—O(,___)B/

commutes if fo = «'f’; a diagram

commutes if « = yf; a larger diagram comprised of squares and triangles
commutes if each of its squares and triangles commutes.

(Of course, commutativity of a triangle is the special case of a commutative
square one of whose sides is an identity map.)

Definition: Let R be an associative ring with 1. If 4 is a right R-module, B
a left R-module, and G is an additive abelian group, then an R-biadditive
function! is a function

f:AxB-G
such that forall a,a’ € 4,b, b’ e B,and r e R,
@) fla+d,b)=f(ab)+ fla,b);

(i) fla,b+b)=fla,b)+ flab);

(i)  f(ar,b) = f(a,rd).

We define a tensor product of 4 and B as an abelian group 4 ®x B that
converts R-biadditive functions 4 x B— G to additive maps 4 @z B — G.

Definition: A tensor product of 4 € My and B e I is an abelian group
A ®z B and an R-biadditive function h which solves the following “universal

! There is a related but distinct notion, R-bilinearity, that we will consider later in this
chapter.
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mapping problem”:

Ax B AR®gB

7
Ve

e
f ST
v
G
for every abelian group G and every R-biadditive f, there exists a unique
homomorphism f’ making the diagram commute.
Theorem 1.3: Any two tensor products of A and B are isomorphic.

Proof: Suppose thereisasecond group X and an R-biadditivek: 4 x B—» X
that also solves the universal mapping problem. There is a diagram

AxB———>"  ,A@eB

K
k 4

where k’ and /' are homomorphisms such that
Kh=k and Wk =h.
There is a second diagram

h

AXBe———t A ®.B
/
//
h /
4
A Qg B;

for the dashed arrow, we may choose either the identity or 'k’ (for ”kK'h =
W'k = h); uniqueness yields 1 = I'k’. A similar argument shows that k'h’ = 1,
so that k' is an isomorphism 4 ®x B3 X. 1

The proof of Theorem 1.3 should serve as a model for a more general
fact: any two solutions of a universal mapping problem, if, indeed, there
are any, are isomorphic. Having proved uniqueness of tensor product, we
NOW prove its existence.
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Theorem 1.4: The tensor product of a right R-module A and a left R-module
B exists.

Proof: Let F be the free abelian group with basis 4 x B, i.e., F is the group
of Z-linear combinations of all ordered pairs (g, ). Define S as the subgroup
of F generated by all elements of the following three forms:

(a+a,b)—(ab)—(d,b), (ab+b)—(ab)—(ab),
(ar,b) — (a,7D).
Define 4 ®z B= F/S.If we denote the coset (a, b) + S by a ® b, then it is easy

to check that h: 4 x B —» A ®z B defined by (a,b) > ¢'® b is R-biadditive.
Assume G is an abelian group, and we have the diagram

A x B h

A®pB

7
e

s /{’

vd
G

where f is R-biadditive. Since F is free on 4 x B, there is a unique homo-
morphism ¢:F — G with ¢((a,b)) = f(a,b). Moreover, f being R-biadditive
implies § < ker ¢; it follows that ¢ induces a homomorphism f’: F/S — G by
f:@b)+ S p((ab) = fla,b). This says that f:a® b+ f(a,b), and
this says f'h = f. We leave the proof of uniqueness of f” to the reader (use
the fact that 4 ®g B is generated by all a ® b). ||

It is important to realize that a typical element of 4 ®; B has the form
Y'a;® b; and may not have an expression of the form a ® b; furthermore,
the expression ) ; ® b; is not unique. As a practical matter, one must be
suspicious of a “homomorphism” g with domain 4 ®; B given by specifying
its value on each a ® b; since these elements merely generate 4 ®z B, the
“map” g is not well defined unless it preserves all the relations. The safest
scheme is to rely on the universal mapping problem, for it is easier to define
an R-biadditive function on the cartesian product 4 x B.

Theorem 1.5: Let f: 4 — A’ be an R-map of right R-modules and let g:B — B’
be an R-map of left R-modules. There is a unique homomorphism A ®z B —
A’ @g B with a® b+ f(a) ® g(b).

Proof: The function 4 x B— A’ @z B’ defined by (a,b) — f(a) ® g(b) is
obviously R-biadditive; now use universality. ||
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Definition: The map A®xB —> A @z B’ sending a®@b+ fa®gb is
denoted

f®g
Theorem 1.6: Assume A Ladia are R-maps of right R-modules and
B5 B’ % B” are R-maps of left R-modules. Then
GRS g®@f=99ff
Proof: Use Theorem 1.5. |

Corollary 1.7: If* A € My, then there is an additive functor F:z3t — Ab
defined by

F(B) = A ®g B;
if f:B— B'is an R-map between left R-modules B and B,
Ff=1,®/f.

Similarly, for fixed B € gIR, there is an additive functor G: Iz — Ab with
G(4) = A @ Band Gg = g® 1z (where g: A — A’ is-an R-map).

Proof: It is clear that F(15) = 1, ® 15 is the identity on 4 ®z B, for it
fixes the set of generators of the form a ® b. That F preserves composition
follows immediately from Theorem 1.6, setting g =g’ = 1,. Finally, if
f,f"B—>FB, then 1,Q@(f+f) sends a®@b—a@(f+fh=a®
(fb+fD)=a®@fb+a®@fb=(1,8f+1,®f)a®b. 1

We shall usually write 4 ®; instead of F and ®jy B instead of G. When
no confusion can arise, we suppress the subscript R.

In general, 4 ®z Bis only an abelian group; however, there is a common
circumstance in which it is a module.

Definition: Let R and S be rings. An abelian group B is an (R—S) bimodule,
denoted zBg, if B is a left R-module, a right S-module, and the two actions
are related by an “associative law”

r(bs) = (rb)s forall reR, beB, and seS.

Remark: The last condition says that, for each r € R, the map B — B given
by b+ rb is an S-map, and, for each s € S, the map B— B given by b+ bs is
an R-map.

Examples: 15 R itself is an (R—R) bimodule (which is merely a fancy
restatement of the ordinary associative law).
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16. If R is commutative, every left R-module B may be construed as a
right R-module by defining br = rb, in which case B is an (R—R) bimodule.

17. Every left R-module B is an (R-Z) bimodule: B = zB; similarly,
every right R-module C is a (Z~R) bimodule: C = ,Cg.

18. If R is commutative, then a ring S is an R-algebra if there is a ring
map @:R— Z(8), where Z(S) is the center of S. Note that S becomes a left
R-module (Exercise 1.7) if we set

r-s=@(r)s.
Since ¢(r) € Z(S), this definition also makes § into a right R-module. Finally,

§ is a ring that is both an (R—S) bimodule and an (S-R) bimodule.
19. Every ring is a Z-algebra.

Example 16 is the special case of Example 18 in which R = S and ¢ = 1.
In older textbooks, one often assumes that S is an R-algebra only when R is
a subring of Z(S), ie, ¢:R— Z(S) is an inclusion. This tends to be un-
necessarily restrictive; for example Z/nZ is not a Z-algebra with the older
usage.

Theorem 1.8: If A is a right R-module and B is an (R-S) bimodule, (briefly,
Ag and gBy), then A ®g B is a right S-module, where

(@a®b)s =a® (bs).
Similarly, in the situation sAg and g B, then A @z B is a left S-module, where
s(a®b)=(sa)® b.
Proof: For fixed se S, the function u:B— B defined by b bs is an
R-map, for B is an (R-S) bimodule. If F is the functor 4 ®g, then F(u,): B— B
is a homomorphism (of groups). But F(u,) =1,® u,:a @ b+ a® (bs).

Thus, the formula in the statement is well defined; it is mechanical that the
module axioms are satisfied. [

Corollary 1.9: Given Ag and zBg, the functor ®gB takes values in M;
similarly, given sAg and g B, the functor A ®g takes values in sIN.

Proof: All that remains to be shown is that if /: 4 —» 4’ is an R-map, then
S ® 1p is an S-map. This is a simple calculation on any generator a ® b,
using the formulas we have established in Theorem 1.3. ]

Corollary 1.10: If R is commutative and S is an R-algebra, then S @z B is a
left S-module for every left R-module B.

Proof: We know that § is an (S-R) bimodule. ||
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Tensoring an R-module by an R-algebra S is called base change, for it
changes the ring of scalars from R to S. This remark should alert the reader
that tensor product may behave in unexpected ways. For example, every
abelian group G is a Z-module, and the rationals, Q, is a Z-algebra (as is
any ring). Thus, Q ®; G is a Q-module, i.e, a vector space over Q. Since
every Q-space is torsion-free as an abelian group, the Q-space Q ®; G
cannot contain a copy of G if G has elements of finite order. It is thus possible
that the map G —» Q ®zG defined by x+— 1 ® x not be one—one! This
curious phenomenon will be treated in some detail later.

The following special case of Theorem 1.8 is of sufficient importance to
merit its own statement.

Corollary 1.11:  If R is commutative and A and B are R-modules, then
A ®zB is an R-module with r(a®b)=ra® b=a®rb. Moreover, for
fixedre R, if u.:S— Bisgivenbybr>rb, then 1 ® ;A @ B—> A ® B is
also multiplication by r (the same is true in the other variable).

Theorem 1.12: If R is a ring and B a left R-module, then there is an R-
isomorphism R ®zg B> B withr @ b+ rb.

Proof: First ofall, R ®z B is a left R-module since R is an (R~R) bimodule.
The definition of left R-module says that the function R x B— B with
(r,b) — rbis R-biadditive; the definition of tensor product provides a (group)
homomorphism 6:R ®g B — B with r ® b — rb. The reader may show that
6 is an R-isomorphism by observing that it has an inverse, namely, b — 1 ® b,
which is an R-map. |

Of course, there is a similar result on the other side: 4 ®z R = A4 as right
R-modules.

Theorem 1.13: If R is commutative and A and B are R-modules, then there is
an R-isomorphism 1:A @g B> B Qg A witha®@ b— bR a.

Proof: The “twist” t:A x B—>B Qg A defined by (a,b)—~ b®a is R-
biadditive, hence induces a Z-homomorphism 7:4 ® g B— B®z 4 that is
easily seen to be an isomorphism (construct its inverse in a similar way).
Theorem 1.8 shows that 7 is, in fact, an R-map. |

There is another consequence of Theorem 1.11 that should be mentioned.

Definition: If R is commutative and 4, B, and G are R-modules, then a
function 14 x B— G is R-bilinear if f is R-biadditive and

rf(a,b) = f(ra,b) = f(a,rb) all reR, aeAd, beB.
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Exercise 1.8 gives an example of a biadditive function that is not bilinear.
This new definition poses a new universal mapping problem:

Ax Bt 5 44B

/
//
i S
'
G

if 4 and B are R-modules (R commutative), is there an R-module 4 * B and
an R-bilinear function k:A x B— A * B such that, for every R-module G
and every R-bilinear f:4 x B — G, thereis a unique R-map f” with f"k = f?

Corollary 1.14:  If R is commutative and A, B are R-modules, then A ®z B
solves the universal mapping problem posed by R-bilinear functions as well as
that posed by R-biadditive functions.

Progf: Theorem 1.11 shows that 4A®zB is an R-module and that
h:A x B— A ® Bsending(a, b) — a ® bis R-bilinear. Assume f": 4 ®z B —
G is the unique Z-map provided by R-biadditivity, so that fa®b) =
[fl(a, b). Tt only remains to check that f’ is an R-map. This is easy:

fr(a®b)) = f(ra®b)  (by Theorem 1.11)

= f(ra,b) (f is R-bilinear)
=rf(a,b)
=1fa®b). 1

Exercise: 1.8. LetR = {m+ no:m,neZ,o* = 1}. (A concrete realization
of R 1s all 2 x 2 matrices over Z of the form (J'%)). Let A = B = Z be made
into an R-module by (m + ng)a = (m — n)a, where acZ. let G=17Z be
made into an R-module by (m + no)g = (m + n)g, where g € G. Finally,
define f: 4 x B— G to be ordinary multiplication of integers: (a,b) — ab.
Show that f is R-biadditive but not R-bilinear.

The next exercises give associativity laws as well as a useful construction.
Definition: In the situation (Ag, gBs, sC), a triadditive function

fZAXBXC—>G

(where G is an abelian group) is a function that is additive in each variable and

- flar,b,¢) = f(a,rb, ¢) and fla,bs,c) = f(a,b, sc).
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Exercises: 19. Prove that (4 ®zB)®sC and (a,b,c)—~ (a@b)®c is a
solution to the universal mapping problem for triadditive functions from
A x B x C. Prove that A ®z (B®sC) and (a,b,c)—» a®@ (b ®c¢) is also a
solution.

1.10. Using the technique of the proof of Theorem 1.3, prove the
associative law for tensor product: there is an isomorphism (4 ®z B) @ C =
ARr(BRsC)taking (a®b)® c+> a® (b ® ). If either 4 or C is a bimod-
ule, this isomorphism is a module isomorphism. (See Exercise 2.36.)

1.11. Prove the generalized associative law for temsor product by
defining n-additive functions and showing that any association yields a
solution to the corresponding universal mapping problem.

1.12. Let R be a commutative ring, I an ideal in R, and M and N R-
modules. Prove that M ® N/I(M @ N)= (M/IM)Q®g; (N/IN). (Hint:
Show that both modules solve the universal mapping problem for R/I-
biadditive functions from M/IM x N/IN.)

1.13. Let R and S be k-algebras. Prove that R &, S is a k-algebra if one
defines multiplication by (r ® s)(” ® ) = r# ® ss’.(Hint: This multiplication
is well defined, being the composite

RR®S)QVR®S)SRYEBQRR) QS ROR®S)®S
SRR ®ES®S) LZHRES,

where 7 is the twist map of Theorem 1.13 and y, v are the multiplications of
R, S, respectively.)
1.14. Prove that k[x] ®, k[ y] = k[x, y] as k-algebras.

1®,L®1

Definition: If R is a k-algebra, define its opposite R°P as follows: as a
k-module, there is a k-isomorphism R — R°® denoted r > r°; multiplication
R x R°" — R is defined by (r{,r3) = (r,r,)° (wWhere r,r, is multiplication
in R).

1.15. Every (R-S) bimodule 4 is a left R ®, S°*-module if one defines

(r ® s®)a = (ra)s = r(as)

(we are assuming R and S are k-algebras).
1.16. Every right R-module M is a left R°®*-module if one defines
r’'m = mr.

As anticipated in Exercise 1.4, the abelian group Homg(4, B) acquires a
module structure if one of the variables is a bimodule. The proof of the next
theorem is a dull exercise.

Theorem 1.15: (1) Given gxAs and gB, then Homg(4, B) is a left S-module
if one defines (sf)(a) = f(as);
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(i) given rAg and Bg, then Homg(A4,B) is a right R-module if one
defines (fr)(a) = f(ra);

(i) given Ag and ¢Bg, then Homg(4, B) is a left S-module if one defines
(Na) = s(f(a);

(iv) given sA and 3By, then Homg(A, B) is a right R-module if one defines
(fr)(a) = fla)r.

There is a mnemonic device for this theorem. Suppose one were to write
maps on the side opposite to that on which the scalars are written. Thus, if
A4 is a right module, write fa, but if 4 is a left module, write af. With this
convention, each of the four parts of Theorem 1.15 becomes an associa-
tivity law.

There is an analogue of Theorem 1.12 holding in one variable of Hom.

Theorem 1.16: If B is a left R-module, then there is an R-isomorphism
Homg(R, B) - B with f+ f(1). Similarly, the same formula gives an R-
isomorphism of right R-modules when B is a right R-module.

Proof: Theorem 1.15 shows that the formula does define an R-map. If
b e B, define f,:R — B by r > rb; then b — f, is the inverse. |

SINGULAR HOMOLOGY

Let us return to topology to construct the (singular) homology functors
H,: Top— Ab, one functor for each n > 0; we provide more details for a
generalization of our earlier discussion of curves in planar regions.

For each n > 0, consider euclidean n-space R" imbedded in R"** as all
vectors whose last coordinate is 0. Let v, denote the origin, and let
{vy, ..., v,} be the standard orthonormal basis of R” (v; has 1 in the ith
coordinate and O elsewhere). For each n > 0, let A, = {(z,,...,t,):; =0,
all i, and ), = 1} be the convex set spanned by {v,, . . ., v,}; A, is called the
standard n-simplex with vertices {vo,...,v,} and is also denoted A, =
[vo,...,v,]. Thus, Ay =[v] is a point, A; =[v,,v;] is the unit interval
[0,17; A, = [v,,v1,0,] is the triangle (with interior) having vertices vy, vy, 5}
A; is a tetrahedron, and so forth. A curve in a topological space X is a
continuous map ¢:4A; — X; a closed curve in X is a.curve o with ¢(0) = o(1).
The boundary of A; is {0,1}; more generally, the boundary of A, is
Ur=olvos---» 85 ..., 0,], where ~ means “delete”. However, we need an
“oriented boundary” if we are to generalize the picture of Green's theorem.

Definition: An orientation of A, is an ordering of its vertices.
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It is clear that different orderings may give the “same” orientation. For
example, consider A, with its vertices ordered vy < v; < v,. A tour of the
vertices shows that A, is oriented counterclockwise. Thus, the orderings

Uz

Vg v

v, <v, < vy and v, < vy < v give the same tour, while the other three
permutations give a clockwise tour.

Definition: Two orientations of A, are the same if, as permutations of
{vo, ..., vy}, they have the same parity (both are even or both are odd);
otherwise, the orientations are opposite.

After examining this definition for the tetrahedron Aj, the reader will be
content with it.

Given an orientation of A,, one may orient [v,,..., 8, ...,,] in the
sense (—1){vo,...,0;,...,v,], where —[vo,...,0;,...,0,] means its
orientation is opposite to that of [vy,..., 5, ..., v,] (vertices in displayed

order). For example, consider A, oriented counterclockwise:

Uz

g vy;
the natural way to orient the edges is:

]

Vo Uy

The edges are thus oriented [vo,v,], [v1,0,], and [v,,v,]. Since [v,,v,] =
—[vo,v,], the oriented boundary of A, is [v;,v,] U —[v,,0,] U [vg,0,] =
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Do, V1, 02] Y —[v0,01,02] U [00,0,,7;]. The oriented boundary of A,
should thus be | Ji=o (= 1[ve, -+, 0y .. ., 0]

Definitions: If X is a topological space, an #-simplex in X is a continuous
function ¢: A, — X. The n-chains in X comprise S,(X), the free abelian group
with basis all n-simplexes in X. For convenience, set S_(X) = 0.

Observe that S,(X) is precisely the group of chains suggested by line
integrals: all formal linear combinations of curves in X. The group S,(X) is
the n-dimensional generalization of S,(X) we anticipated.

Ifo:A,— X, its boundary do should be Y "o (— 1) |[ve, ..., Dy .., 1, ]):
A technical problem arises. It would be nice if do were an (n — 1)-chain; it
is not because the domain of ¢|[v,,...,8;,...,v,] is not the standard
(n — 1)-simplex A,.,. To state the problem is to solve it. For each i, define
e;:A,—; = A, as the affine map sending the vertices {vy, ..., v,_,} to the

-~

vertices {0y, ..., J;, ..., U,} that preserves the displayed orderings:
elty, oo tymy) =0, ot 1,08, .t ) €A,
Definition: Ifo:A,— X, then 9,0 = ) 1o (—1ioe € S, ((X).
Theorem 1.17: There is a unique homomorphism 8,:S,(X) — S,_ ((X) with
8,0 = Y 1=o (= 1)ae; for every n-simplex ¢ in X.
Proof: Extend by linearity. J

The homomorphisms d, are called boundary operators; usually one omits
the subscript #.
We now have a sequence of homomorphisms

o 8088, (0 - 8,(X) D Se(X) 0,
Let us denote ¢;:A, ., > A, by [vg, ..., 0, ..., 0,]

Lemma 1.18: The following formulas hold for e;» ej:A,_, — A, if i<,
then e;oe;=[vo,. .., 0. .., 05 ...,0,]; if i2], then e;0e;=[vo,...,
(7T ST -5

Proof: The maps ¢; and e;, hence their composite, are completely deter-
mined by their values on the vertices {v,..., v,-,}. The computation
showing that the two displayed vertices are the deleted ones is routine. ||

Theorem 1.19: For each n > 1, we have 8,_,8, = 0
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Proof: It suffices to show 8 do = 0 for every n-simplex o:A, — X.
800 =900 (—1)oe;) =Y (—1)yd(oe;) = Y (— 1) oee;
ij

=Y (=D olve, s By Byyent, U,

i<j
+ Z (=D g, ey By Bintseves Ul
izj
by Lemma 1.18. Now change variables in the second sum; set [ =j and
k =i+ 1. The second sum reads Y ;i (— 1" " ofvg,...sDppees Diseovs Vule
It is now clear that each term in the right sum occurs in the left sum with
opposite sign. Therefore all cancels and 880 = 0. |

Definition: An n-cycle is an element of kerd,; write kerd, = Z,(X). An
n-boundary is an element of im 8, , ,; write im 8, ;, = B,(X).

Both Z,(X) and B,(X) are subgroups of S,(X). Our discussion of the
oriented boundary of A, should make the definition of é,¢ appear reasonable.
It is also reasonable that n-cycles are generalizations of closed curves; at the
very least, this is so when n = 1. Assume ¢:A; — X is a closed curve, so that
0(0) = ¢(1). Now a O-simplex in X can be identified with a point of X, so that
So(X) is the group of all formal linear combinations of the points of X.
Furthermore, d,0 = o(1) — 0(0), so a closed curve is a 1-cycle. As a second
example, assume p, o, and 7 are curves forming a triangular path in X say,
p(0)=x,, p(1)=x;=0(0), o(1)=x,=1(0), and 1(1)=x, Then
dlp+a+1)=(x; —xo) + (X —x)+(xg—x,)=0,and p+o+1is a
1-cycle.

Corollary 1.20:  For each n > 0, we have B(X) = Z(X) = §,(X).

Proof: 1If feB,(X), then f = 0y for some y € S, (X). Thus 88 = 39y = 0,
by Theorem 1.19, whence f e kerd, = Z(X). |

Once we recall that Green’s theorem tells us boundaries should be trivial,
the next definition is forced on us.

Definition: The nth homology group of X is
H,(X) = Z,(X)/B(X).

The next few pages should be read without pausing to verify any particular
assertion; more details will be provided when we study homology in a purely
algebraic setting. At present, we merely wish to complete the topological tale.

For each fixed n > 0, we claim H,:Top— Ab is a functor. It remains to
define, for every continuous f:X — Y and every n > 0, homomorphisms
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H,(f):H(X)— H/Y). This is done as follows. As a preliminary step, define
“chain” homomorphisms f:S,(X)— S(Y) by o+ fo o (where o is an
n-simplex in X) and extend by linearity. A simple calculation shows the
following diagram commutes:

S(X)—F 8, ,(X)
S fo

SUY) ———5——5,,(Y)

ie., 0f« = f+0 (we have abused notation!), It follows easily that fx(Z,(X)) =

Z,(Y) and f,(B(X)) = B(Y), so that f, induces a well defined homo-
morphism between the quotients H,(X) — H,(Y) by

Hn(f):zn -+ Bn(X) Hf#(zn) -+ Bn(Y):

where z, € Z,(X). Each H, is, indeed, a functor.
Topological (and analytical) necessities require two modifications of this
construction. If G is a fixed abelian group, replace the sequence

o S0 B S, ()
by the sequence

5 SX) ®, G228, (X) @6

By Theorem 1.6, the composite of adjacent maps is 0 so that we may, as
above, define cycles, boundaries, and homology. The groups so obtained are
denoted H,(X;G) and are called homology groups with coefficients G. In
particular, Theorem 1.12 shows that our original construction yields the
groups H.(X ; Z).

" The second modification constructs contravariant functors, called
cohemology. If G is a fixed abelian group, replace the sequence

oS B S, i) >
by the sequence of “cochains”
- = Homg(S,(X), G) «—2—— Homy(S,_(X),G) « - .

The arrows have changed direction because Homy(,G) is contravariant.
Again, additive functors preserve zero morphisms, so the composite of
adjacent maps is still 0. Certain subgroups of Homy(S,(X), G) are defined,
“cocycles” and “coboundaries”, and their quotient H(X; G) is called the nth
cohomology group of X with coefficients G. Foreach n > 0, H"( ; G): Top— Ab
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1s a contravariant functor. If one lets G = R, the additive group of reals, this
is the correct context in which to simultaneously view the Fundamental
Theorem of Calculus, Greenw’s theorem, Stokes’ theorem, and higher-
dimensional analogues (de Rham theorem).

We end this chapter by exhibiting an algebraic context in which one
constructs a long sequence of modules and maps in which the composite of
adjacent maps is 0 (details of this construction are in Chapter 3). Every
module M can be described by generators and relations, i.e, there is a map
Fy — M of a “free” module F, onto M with kernel K, say. Now K, in turn,
may also be so described: there is a map F; — K, of a free module F, onto
K, with kernel K,, say. Link these together to get

K, > Fo M

N/

o

where F, — F, is defined as the composite F; — K, — F,. This procedure
may be iterated indefinitely to give a sequence

s F, >F, > Fy,>M-0,

where each F, is free and composites of adjacent maps are 0. Both of the
topologists’ modifications are available: for fixed module B, one may apply
the functor ® B to obtain a new sequence and construct homology functors;
one may apply Hom(, B) to obtain a new sequence and construct contra-
variant cohomology functors.




2 Hom and ®

Homological algebra studies a ring R by investigating its category of
modules z9; this category, in turn, is investigated by examining the behavior
of certain functors on it, the most important of which are Hom, ®, and
related functors derived from these.

There are at least two reasons why this approach should be successful.
The fancier reason is a theorem of Morita: two commutative rings R and
S are isomorphic if and only if the categories zt and I are “equivalent”;
actually, Morita’s theorem gives a necessary and sufficient condition on any
pair of (not necessarily commutative) rings R and S that their module cate-
gories be equivalent. This theorem thus shows that the category 9t conveys
much information about R. Of course, there is a much more elementary
way to see this. Recall that a left R-module M is an abelian group with a
scalar multiplication ¢:R x M — M. The module axioms assert that ¢ is
Z-biadditive. Thus, for every fixed r € R, the function ¢,: M — M defined
by m — o(r,m) = rm is a Z-homomorphism. Now End,(M) = Hom,z(M, M)
is a ring if we define multiplication as composition, and it is easy to see that
p:R — Endy(M) defined by r — g, is a ring map. Thus, every R-module M
defines a representation of R in the endomorphism ring of an abelian group.
Conversely, every such representation p:R — Endz(M) makes the abelian
group M into a left R-module by defining g:R x M — M by (r,m) — p,(m).
Module theory is thus representation theory of rings.

23
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MODULES

Let us now look at module categories. Our initial observations essentially
say that the usual first properties of abelian groups and of vector spaces
are also properties of more general modules.

Let R be a fixed ring (always associative with 1); we shall say “module”
instead of “left R-module”. Of course, all goes equalty well for right modules,
since Exercise 1.16 shows that every right R-module is a left R°*-module.

Definition: If M is a module, then a submodule M’ of M is a subgroup that
is closed under scalar multiplication:

meM implies rm'e M, all rekR.
Examples: 1. 0 and M are submodules of M ; any submodule M’ # M is
called proper.

2. If M =R, its submodules are precisely the left ideals.
3. If Iis a left ideal of R, then

IM = {Yam;:a;el, meM}

is a submodule of M.

4. IfIisatwo-sided ideal of R (so that R/I is aring) and if M is a module
with IM = 0, then M is an R/I-module (if 7 = r + I, define ¥m = rm).

5. Let f:M — N be an R-map. Then

ker f={meM:fm=0}
is a submodule of M, and
imf = f(M)={neN:n= f(m) for some me M}

is a submodule of N. Of course, we have abbreviated the words kernel and
image.
6. If M, and M, are submodules of M, then so is

M, +M,={m +my:m eM,, my,eM,}.

7. If {Mj:jeJ} is a family of submodules of M, then ();., M} is also
a submodule of M.

Definition: Let X be asubset of amodule M. The submodule of M generated
by X is ();ey M), where {M/:je J} is the family of all submodules of M
that contain X. We denote this submodule by (X .
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Theorem 2.1:  Let X be a subset of M. If X = , then{X)> =0;if X # J,
then (X) = {3 rx;:r;e R, x; € X}.

Proof: If X = ¢, then 0 is a submodule of M containing X, from which it
follows that (&> = 0. If X # ¢, then the subset S = {) r;x;:r; € R, x; € X}
is defined (it is defined when X = (¥ if one enjoys summing over an empty
index set). Since R contains 1, we have X < §. An easy check shows S is a
submodule of M, so it follows at once that (X> < S.For the reverse inclusion,
it suffices to show that if M’ is any submodule of M containing X, then
S « M’ (for then S is contained in the intersection of all such M’, which is
{X>). This is clear: x; e M', all i, implies  rx;e M' forallr,e R. |

Definition: A module M is finitely generated (f.g.) if there is a finite subset
{x1s..., Xpp of M with {x,, ..., x,> = M;amodule M is cyclic if there is a
single element x € M with (x> = M.

Definition: Let f:M — N be an R-map. We say f is menic (or is a mono-
morphism) if f is one—one; we say f is epic (or is an epimorphism) if f is onto.

Of course, f is an isomoerphism if and only if f is both monic and epic.

Definition: If M’ is a submodule of M, the quotient module M/M’ is the
quotient group M/M’ made into an R-module by

rm+M)=m+ M.

One must assume M’ is a submodule in order that the action of R on
M/M’ be well defined.

Examples: 8. If M’is asubmodule of M, the inclusion i: M’ — M is monic.

9. If M’ is a submodule of M, the natural map =: M — M/M’ defined
by m > m + M’ is epic, and ker r = M".

10. If f:M — N, then f is monic if and only if ker f = 0.

11. If f:M — N, then f is epic if and only if coker f = 0 (cokernel f is
defined as the quotient module N/im f).

12.  (First Isomorphism Theorem) If f:M — N, then the map m+
ker f + f(m) is an isomorphism M/ker =% im f.

13. (Second Isomorphism Theorem) If M, and M, are submodules of
M, thenm, + M, n M, + m; + M, is an isomorphism

M /M, n"M,S (M, + M,)/M,.

The Second Isomorphism Theorem follows easily from the First: let
n:M — M/M, be the natural map, and let f = =|M,. It is easy to see that
ker f=M, " M,andim f = (M, + M,)/M,.
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14. (Third Isomorphism Theorem) If M, = M, are submodules of M,
then (M/M,)/(M/M) = M/M.

The Third Isomorphism Theorem also follows easily from the First: the
map f:M/M,— M/M, given by m + M, m + M, is epic with kernel
M,/M,.

15. (Correspondence Theorem) If M’ is a submodule of M, there is a
one-one correspondence between the submodules S of M/M’ and the
“intermediate” submodules of M containing M’ given by S+ n~!(S)
(where n:M — M/M’ is the natural map).

Theorem 2.2: A module M is cyclic if and only if M = R/I for some left
ideal I. Moreover, if M = (x), then I = {r e R:rx = 0}.

Proof: First of all, R/I is cyclic with generator 1 + [; if f:R/I - M is an
isomorphism, then M = (x>, where x = f(1 + I). Conversely, assume M =
{x). Define f:R — M by f(r) = rx. Since f is epic, M = R/ker f. But ker f
is a submodule of R, which is a left ideal; indeed, ker f = {re R:rx = 0}. |

Definition: Two maps
IV EN VNV
are exact at M if im f= kerg. A sequence of maps (perhaps infinitely long)
o My D M, T M

is exact if each adjacent pair of maps is exact.

Exercises: 2.1. If0— M'% M is exact, then f is monic (there is no need to
label the only possible map 0 — M’); if M 5 M" — 0 is exact, then g is epic;
if 0> M % M’ 0is exact, then f is an isomorphism.

22. If M’ M5 M is exact with f epic and g monic, then M = 0.
Conclude that exactness of 0 > M — 0 gives M = 0.

23. Prove that a map ¢ is monic if and only if ¢f = g implies f =g

. . S, . .. .
(the diagram is 4 3 B3 C); prove that ¢ is epic if and only if he = ke
g9

mplies h = k.

24. If M5 M, > M;5 M, is exact, then f is epic if and only if g
is monic.

25 If M, 5 M, > M, M, % M, is exact, then f epic and g monic
imply M5 = 0 (use Exercises 2.2 and 2.4).
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26. If0—M'5 M— M" - Oisexact, then M’ = iM'and M/iM' = M"".
Such sequences are called short exact sequences.
2.7. Consider the commutative diagram with exact rows

0 > A — B >C
%
{
i g h
{
i
$

0 > A’ — B’ >C’

Prove that there exists a unique map 4 — A’ making the diagram commute.
Similarly, one can uniquely complete the commutative diagram with exact

TroOws

A > B —>

e ()

Ar ¢B/ 4;CI tO

Remark: Thereisa categorical translation of Exercise 2.7. Let 2% denote the
category whose objects are all R-maps; define a morphism ¢:f — g as a pair
of maps ¢ = (¢, ¢,) making the following diagram commute:

a—IL p

C———D

One may now see that ker arid coker are functors % — z 9.

Exercises: 2.8. If f:M — N is a map, there is an exact sequence

0—ker f > M5 N - coker f —0.

29. (Restatement of Third Isomorphism Theorem) If M, < M, are
submodules of M, there is a short exact sequence 0 - M,/M, - M/M, —
M/M, —0.
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2.10. (Another Version of Third Isomorphism Theorem) Consider the
commutative diagram

where « is monic and f§ is epic. Then ker f # 0 if and only if coker « # 0,
ie, aK is a proper submodule of K’. (Hint: Write C = M/K and C’ = M/K’,
so that ker § = K'/K.)

SUMS AND PRODUCTS

Definition: Let {4;:j € J} be a family of modules. Their product, denoted
I 1es 4;, is the module whose underlying set is the cartesian product of the
Aj, ie, all “vectors” a = (a;) where g;€ A;, and with module operations
defined by
(a) + (b)) = (a; + by),
ray) = (ray).

Definition: The sum of the A4;, denoted LL-E s 4;, is the submodule of
[ 1;es A; consisting of all (a;) “almost all” of whose coordinates a;=0 (ie,
all but a finite number of g; are 0).

Other names and notations are common. Product is often called “direct
product”, “complete direct sum”, or “strong direct sum”; sum is often called
“direct sum” or “weak direct sum” and is usually denoted Y ;.; 4;. In
category theory, sums are called “coproducts”.

If the index set J is finite with n elements, then [[;e; 4; = [1;cs 4;; in
this case we also write 4, ®--- @ A,. If the index set J is infinite (and

infinitely many 4; # 0), then ] [4; is a proper submodule of []4;.

Exercises: 2.11. If Ris a field (or a division ring), every module is a sum
of copies of R (this is just the statement that every vector space has a basis).
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2.12. If M, and M, are submodules of M with M, n M, =0 and
M;+ M, =M,then M = M, @ M,. (In this case, wewrite M = M, @ M,:
“equal” instead of “isomorphic”.)

Functors only recognize objects and morphisms, so our next task is to
characterize product and sum in these terms. If A = [[4,, define projections
p;:A — A; and injections 4;:4; — A by

piila) — a;
and

Aia;) is that element having g; in the
jth coordinate and O elsewhere.

Note that pid; = 14, and p;4, = 0 if j # k. These maps are also defined when
Ais a sum, in which case Y A;p; = 1,; this means that for each a € 4, almost
allpja=0and ) Apa=a

Theorem 2.3: Let modules A and {A;:j e J} be given. Then A = [ ;s A; if
and only if there are maps A;: A; — A such that, given any module-X and any
maps f;:A; — X, there is a unique map ¢: A — X with oA; = f;,all je J.

4
A; /A
/
5 i
/
X

Proof: Suppose 4 is the sum of the 4;, and let {p;: 4 — A4;} be the projec-
tions. Define ¢:4 — X by @a = ). f;p;a. Note that since A is a sum, almost all
pja are 0, so the formula for ga makes sense. The diagram above does

commute:
@8, = Y fibda; = fia;.
k

We claim ¢ is the unique Such map. If y: 4 — X satisfies Yl; = f;,all j, then
ya=YyAp;a=7y fip;a= oa

Suppose, conversely, that a unique ¢:4 — X always exists. Consider the
diagrams

4 o;
A 4 A—————]]4,

/ 7

/

dj /qo
/
114,

and
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where a;iA; - HAJ- is the jth injection. Now ¢ exists by hypothesis, while
 exists by the first part of the proof. Assemble these diagrams into

Jo

and note that we have commutativity: yed; = yo; = 1;. The hypothesis
applies to this last diagram if we set X = 4 and f; = 1;, and gives uniqueness
of Y. But, visibly, 1,: 4 — A completes the same diagram, so that yrp = 1.
If we assemble the original pair of diagrams a second way, then we obtain
@Y = 1y 4,- Hence ¢ is an isomorphism. |

Remarks: 1. The maps 4; must be monic.

2. The proof above should remind the reader of the proof of
Theorem 1.3. Indeed, we have shown that sum is the solution to a universal
mapping problem.

Theorem 2.4: If A; is the jth injection A; — | |A; and if B is a module, then
the map

6:Hom(] [A;, B) » [ [ Hom(4;, B)
given by
@t (Q’}bj)
is an isomorphism.
Proof: Itis clear that § is a homomorphism (of abelian groups). 8 is epic:
if (f) e [[ Hom(4;, B), then f;:A; — B for each j; by Theorem 2.3, there is a

map ¢:| [4; > B with ¢A; = f;, all j, ie., 8(p) = (f;). 8 is monic: suppose
8(p) = 0 = (p4;), i.e, each pA; = 0. Thus, ¢ completes the diagrams

A
A; - [14;
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Since any éompletion is unique and since the zero map also completes, we
have o = 0. |

In terms of functors, we have just seen that Hom(, B) converts sums to
products; in particular, it preserves finite sums.

Exercises: 2.13. Ifall the 4; are bimodules or if Bisa bimodule, then the
isomorphism 8 of Theorem 2.4 is a map of modules.

2.14 Give an example in which Hom([ [4;, B) # | | Hom(4;, B).

2.15 Give an example in which Hom([[4;, B) # [ Hom(4;, B).

2.16 If kis a field and V is a vector space over k, let V* = Hom(V, k),
its dual space. Assume dim V = m. If m is finite, then dim V* = dim V (whence
V* = V); if m is infinite, then dim V* = |k|" (whence V* % V).

We are also able to describe product as the solution to a universal
mapping problem.

Theorem 2.5: Let modules A and {A;:j € J} be given. Then A = [|;e; 4; if
and only if there are maps p;: A — A; such that. given any module X and any
maps fi: X — A, there is a unique map p:X — A withp;p = f;, allje J.

A, Pi A

’ /

Proof . 1f Ais a product, then one easily shows that the projections p; have
the property described. The converse is proved exactly as Theorem 2.3 if one
merely reverses direction of all arrows. |

One may prove that the maps p; must be epic.

Theorem 2.6: If p; is the jth projection | [A; > A; and if B is a module, then
the map

6:Hom(B,[[A4;) » [ Hom(B, 4))
given by
@ = (p;9)
is an isomorphism.

Proof. Repeat the proof of Theorem 2.4 mutatis mutandis. |}
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We have just seen that Hom(B, ) preserves products; in particular, it
preserves finite sums.

Exercises: 2.17. Ifall the A; are bimodules or if B is a bimodule, then the
isomorphism # of Theorem 2.6 is a module isomorphism.

2.18. Give an example in which Hom(B,[[4)) % | [ Hom(B, 4)).

2.19. Give an example in which Hom(B, | [4,) % [ Hom(B, 4)).

We have seen that the universal mapping problems describing sum and
product differ only in that all arrows have reversed direction. This phenome-
non is common enough to deserve a definition.

Recall that a statement S (in the first order propositional calculus) is a
well formed formula involving the usual logical connectives (“and”, “or”,
“not”, “implies”, “equality”) and the quantifiers 3 and V. If 2 is a category,

then we say S is a statement about  if the variables occurring in S are
interpreted as objects and morphisms of 2.

Definition: If S is a statement about a category U, then its dual S* is the
statement about 2 obtained by reversing the direction of each morphism
(i.e., interchange “domain” and “target”) and replacing each composite «f of
morphisms by fe.

The notion of “dual” extends in an obvious way to diagrams; reverse
every arrow and retain commutativity of any square or triangle.

Exercises: 2.20. Show that the zero module is a solution to the universal
mapping problem: for every module X, there is a unique map X — 0.

2.21. Show that the zero module is also a solution to the dual universal
mapping problem: for each module X, there is a unique map 0 — X. Conclude
that 0 is “self-dual”.

It is easy to see “identity morphism” and “isomorphism” are self-dual. In
Exercises 2.41 and 2.49, it is shown that “cokernel” and “kernel” are dual.
From this, it follows that “monic” and “epic” are dual. Finally, “exact” is

self-dual, for we may describe exactness of 4 %> B % C as ker(B — cokerf) =
kerg or as coker(ker f — B) = cokerg.

It is not true that the dual of a theorem must be a theorem. However,
should both be true, it is often (but not always) the case that the proofs of
each are dual. Two such examples are the dual pairs: Theorems 2.3 and 2.5;
Theorems 2.4 and 2.6. In future instances, we will supply only one proof (as
we did for Theorems 2.3 and 2.4) and merely say the other proof is dual.

The special case of the sum of two modules merits more discussion.
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Theorem 2.7: Given A and B with i: A — B monic, then A is a summand of B
(i.e, B=1iA® C for some submodule C of B) if and only if there is a map
p:B— Awithpi=1,.

Proof: If Aisasummand of B, define p: B — A asthe projection on 4 having
C = ker p. Conversely, given p:B — A with pi = 1, define C = kerp. We
claim B = iA @ C.If b € B, then

b =ipb + (b — ipb).

The first term is in iA4, and the second is in C, for p(b — ipb) = 0. Finally,
it is clear that i4A n C = 0, so Exercise 2.12 completes the argument. |

Definition: A short exact sequence 0 —» A4 LBAC0is split if there is
amap j:C —» Bwith pj = 1.

Exercises: 2.22. The short exact sequence above is split if and only if
there is a map ¢q:B — A with gi = 1. Conclude that in a split short exact
sequence, 4 is a summand of B and C is a summand of B.

223. AssumeA=B®@® CandBc M < A.ProvethatM = B@® (M n C).

2.24. If F:3M — Ab is an additive functor (either variance) and if
0— A— B— C—0is a split exact sequence, then FA is a summand of FB.
Conclude that F preserves finite sums. (Hint: 15 = jp + ig, where the notation
is as in Exercise 2.22.)

Having seen how the Hom functors treat sums, let us now see how tensor
product behaves.

Theorem 2.8: Let A be aright R-module and let {B;:j € J} be left R-modules.
The map
‘ 0:A®g][B;— [ 1(4 ®B)
given by
a®b)—(a®b)

is an isomorphism. There is a similar isomorphism if the sum is in the first
variable.

Proof: Observe first that 6 is well defined, for the function 4 x [ [B; -
[I(4 ® B;) given by (a,(b))+> (a® b)) is R-biadditive. Let 1;: B, > ] [B; be
the jth injection. In order to define a map cp:H(A@Bj)—»A@b I_[Bj, it

suffices to give maps f;:A® B;—> A ®][B;. Define f; so that a® b; >
a® ib; (e, fi=1,®4). If y; is the jth injection 4 ® B;—][(4® B;),
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Theorem 2.3 gives a map ¢ with pu; = f}, all j. It is a straightforward check
that 8¢ and @8 are identities. |

We have just seen that the functor A ®, preserves sums; the functor
®g B also preserves sums.

Exercises: 2.25. Ifeither 4 or each B;is a bimodule, then the isomorphism
6 in Theorem 2.8 is a map of modules.

2.26. Give an example of modules A and {B;:jeJ} for which
A®g([]B) % [[(4 ®zBy. (Hmt Take R =27 and p € Z a prime; define
A=QandB,=Z/p"Z,n=1,2,...)

EXACTNESS

The next question is how functors affect exactness. All functors are
additive functors between categories of modules.

Definition: A functor F is left exact if exactness of
0-45B%C
implies exactness of
0—-FA — FB — FC;
a functor F is right exact if exactness of
A5BLCco0
implies exactness of
FA — FB — FC—-0.

If F is left exact, then Fa:FA — FB is monic and im Fa = ker FB; thus F
preserves monomorphisms and F “preserves kernels” in the sense that
Fo:F(ker f) S ker FB. Similarly, if F is right exact, then F preserves epi-
morphisms and F “preserves cokernels”. It follows that FC = FB/im Fq.

There are analogous definitions for contravariant functors.

Definition: A contravariant functor F is left exact if exactness of
A5BLcoo
implies exactness of

Fo

0-FC -2 FB L2 Fa;
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a contravariant functor F is right exact if exactness of
0-45BL C
implies exactness of FC L2, rB LS Fa 0.

Thus, a contravariant functor F is left exact if and only if F(coker «) =
ker Fo via Ff, and is right exact if and only if F(ker §) = coker Ff via Fa.

Definition: A functor is exact if it is both left exact and right exact.

Clearly a left exact functor that preserves epimorphisms is exact, as is a
right exact functor that preserves monomorphisms. Now that we have the
words, we may state the theorems.

Theorem 2.9: Hom(M, ) is a left exact functor and Hom( , M) is a left exact
contravariant functor, for every module M.

Proof: We only show F = Hom(M, ) is left exact; the proof for Hom( , M)
is similar. f 0 > A 5 B 5 Cis exact, we must show exactness of

0 - Hom(M, 4) == Hom(M, B) £ Hom(M, C),

where Fa: f +— of and FB:g+> Bg.
() Foais monic. If (Fo)f = 0, then af = Oand af(m) =0 forallme M.
Since « is monic, f(m) = 0 for all e M, whence f = 0.
(i) imFa cker FB. Suppose geimFa, so that g=af for some
f e Hom(M, A). Then (FB)g = Bg = Baf = 0, since fo = 0.

(i) ker Ff <« imF« Suppose g e Hom(M, B) and Bg = 0; we must
show g = of forsome f: M — A. Ifm € M, then fgm = Oand gme ker f = im «;
hence there is a unique a € A withaa = gm (since a is monic). Define f:M — A4
by f(m) = a = a~ g(m); clearly of = g. |

Examples: Let R = Z, so that we deal with abelian groups, and consider

the exact sequence 0 » Z 5 Q % Q/Z - 0.
16. F = Hom(M, ) need not be right exact. Choose M = Z/2Z. Note
that Hom(M, Q) = 0 and Hom(M, Q/Z) # 0, so that

FB:Hom(M, Q) » Hom(M, Q/Z)

cannot be epic.

17. F = Hom(,N) need not be right exact. Choose N = Z. Note that
Hom(Q,Z) = 0 and Hom(Z,Z) # 0, so that Fo¢:Hom(Q,Z) - Hom(Z,Z)
cannot be epic.

Theorem 2.10: The functors M ®g and r® N are right exact functors.
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Proof: We only give the proof for M ® ; the other proof is similar. If
A5 BE €5 0is exact, then we must show

MRA- 2 MRB 2L MRC-0
is exact.

(i) iml®ackerl®pB. It suffices to prove (1 ® f)(1 ® o) = 0. But
(1@AI®w)=1®pf=100=0
(i) kerl®fciml®a. IfE=im(l ® «), then 1 ® finduces a map
B:{(M®B)/E->M®C given by m@b +E—mQ® fb (for Ecker1 ® p,
by (i)). It is easily seen that 1 ® B = fr, where n:M ® B — (M ® B)/E is
the natural map.
Suppose we show B is an isomorphism. Then

kerl®@f=kerfn=kern=E=iml ®u«

and we are done. We construct a map M ® C — (M ® B)/E inverse to B.
The function f:M x C— (M ® B)/E given by

fimc)=m®b +E, where fb=c

is well defined: such an element b exists because § is epic; if b’ = ¢ = fb,
then (b’ — b) = 0 and there is an element a € 4 with aa = b’ — b; it follows
that m@ b —mRb=m@ (' — b)=(1Ra)m®a) cim 1 ® = E. Since f
is biadditive, the universal property of temsor product gives a map
FM®C—(MQ® B)/E with f(m®c)=m®b -+ E. Visibly, / and F are
inverse functions. :

(i) 1® B is epic. Let Ym®c;e M ®C. Since f is epic, there are
b; € Bwith Bb; = ¢;, alli. Hence 1 Q@ B m; ®b) = Ym; ®@c;. |

Example: 18 The functor M ®; need not be left exact.

LetR == Zandlet M = {x) = Z,/2Z.Exactnessof 0 Z - Q> Q/Z -0
does not give exactness o0f 0 - M ®R®Z - M ®Q, for M® Z = M # 0, by
Theorem 1.12, while M ®Q =0(x® g =x®2g/2=2x® q/2 = 0Q g/2 = 0).

Exercises: 2.27. IfM isa torsion group (ie. every element has finite order),
prove that M ® Q = 0.
2.28. Prove that Q/Z ® Q/Z = 0.

ADJOINTS

There is a remarkable relationship between Hom and ®, which has a
very simple explanation: every function of two variables f:4 x B — C can
be regarded as a one-parameter family of functions of one variable f,: B — C,
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where a € A, merely by fixing the first variable. For technical reasons, see
below, fixing the second variable leads to a slightly different description.

Theorem 2.11 (Adjoint Isomorphism): For rings R and S, consider the
situation (g4, §Bg,sC). Then there is an isomorphism

t:Homg(B ®x 4, C) S Homg(A4, Homg(B, C)).
In the situation (Ag, xBs, Cs), there is an isomorphism
7 :Homg(A ®x B, C) S Homg(A4, Homg(B, C)).

Proof: We only discuss the first isomorphism; the second is similar.
Since B is a bimodule, Theorem 1.8 shows B®z A is a left S-module
[s(b ® a) = (sb) ® a] and Theorem 1.15 shows Homg(B, C) is a left R-module
[(r/)(b) = f(br)]. Thus, both sides make sense.

If f:B®rA—C is an S-map, for each ae A define f,:B—C by
f.(b) = b® a; one checks easily that a+> f, is an R-map 4 — Homg(B, C),
which we denote f. One further checks that t: f > f is a homomorphism. To
see that 7 is an isomorphism, we exhibit its inverse. Assume g: 4 — Homg(B, C)
is an R-map. Define ¢':B®z A — C by b ® a+> g,(b). Again computations
are left to the reader: ¢’ is a well defined S-map; g +> ¢ is the inverse of 7. |

Theorem 2.11 is the proper context in which to view the relation between
R-modules and representations of R. Every abelian group M is a (Z — Z)
bimodule, so the second isomorphism above gives

v:Homz(R ®; M, M) S Hom,(R, Hom, (M, M)).

If 0:R x M — M is the scalar multiplication defining the module structure
on M, then this Z-biadditive function determines a map &R ®, M — M,
and 1':6+>p, where p:R — Homy(M, M) = End,(M) is a representation.
The reason the isomorphism of Theorem 2.11 is called “adjoint” is quite
formal Let F = B ®; and G == Homg(B, ). With this notation, Theorem 2.11
becomes Homg(FA, C) = Homy(4, GC). If one pretends that Hom(, ) is an
inner product, then, in the parlance of linear algebra, F and G are adjoint.
‘We remind the reader of a convenient notation introduced in Chapter 1.
If ¢:4— B is a map and F = Hom(X, ), then let us write Fo = a,; if
G = Hom(, X), let us write Ga = a*. Thus, lower star is the map induced
by the covariant Hom functor, upper star is the map induced by the
contravariant Hom functor,

a(f) = of, and a*(g) = ga.

Definition: Let F:2 — € and G:€ — U be functors. The ordered pair (F, G)
is an adjoint pair if, for each 4 € obj U and C € obj € there is a bijection

T =Ty c: Homg(FA, C) - Homy(4, GC)
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which is “natural”! in each variable, ie., the following diagrams commute:

Hom(FA, C) (E Homg(FA', C)

lz lw al fid>A in®;

Homy(4, GC) — Homg(4', GC)

g
Hom ((FA, C) ——————— Hom(FA4,C")
lf B all g:C—-C inG.
(Gg),

Homg{A, GC) ———————> Homy(4, GC’)

Theorem 2.12: If B = (B is a bimodule, then (B ®y , Homg(B, )) is an
adjoint pair.

Proof: For each A and C, we have constructed the isomorphism 7 = 74,¢
in Theorem 2.11. It only remains to check naturality, and this is straight-
forward because there is an explicit formula for every map. |

Before we give an application of adjointness, we give a converse of
Theorem 2.9.

Lemma2.13: Let B5B5 B -0 bea sequence (not necessarily exact);
suppose that for every module M, we have exactness of

0 — Homg(B", M) & Homg(B, M) 5 Homg(B', M).

Then the original sequence is exact.

Remarks: 1. A dual statement is true if we apply covariant Hom functors
to0—->B -B—B"
2. We shall have a better version of this in Lemma 3.51.

Proof: (i) pBisepic. Let M = coker = B’fimf and let f:B” — M be
the natural map. Then B*f = ff = 0, so that f = 0 (since §* is monic). It
follows that coker f = 0, whence § is epic. .

(i) ima <kerf. We know a*f* = 0. In particular, if M = B” and
f =1z, then «*f*(f) = 0. But a*f*f = fBa = Ba, since f = 1p-, and so
Pa = 0.

(iii) kerf = ima. Choose M = cokera = Bfima, and let g:B — M be
the natural map. As before, a*g = ga = 0, so there is f € Hom(B", M) with

! A precise definition of naturality is given later in this chapter.
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Bt =g, lie, ff=g Ifim« ; ker B, there is an element b € B with fb = O and
b ¢ im «; this second fact gives gb # 0. But gb = b = 0, a contradiction. |

Theorem 2.14: Let F: .0t — (M and G: I — MM be functors. If (F,G) is
an adjoint pair, then F is right exact and G is left exact.

Proof: AssumeAd’ — A— A" —0isexact; wemustshow FA'—»FA—-FA"-0
is exact. Consider the commutative diagram (the naturality condition)

0 — Homg(FA", B) ——— Homg(F A, B) ——— Homg(FA', B)

| | |

0 — Homg(A", GB) ————» Hom (4, GB) ———— Homg(4', GB)

where B is any S-module. Since Hompg(,GB) is contravariant left exact,
the bottom row is exact; since all the downward arrows are isomorphisms,
commutativity gives exactness of the top row. As B is arbitrary, Lemma 2.13
applies to give exactness of FA' » FA — FA" — 0.

The proof of the left exactness of G is similar, using the other naturality
condition in the definition of adjoint pair and the dual of Lemma 2.13. |

Corollary 2.15: B ®g is right exact for any right R-module B.

Proof: We may consider the right R-module B as a bimodule ,Bjy, so
that (B ®g , Homg(B, }) is an adjoint pair. |

There are two remarks necessary here. First, there are many other
examples of adjoint pairs. Second, if (F,G) is an adjoint pair, much more
is true than Theorem 2.14. Actually, F preserves all direct limits and G
preserves all inverse limits. In order to prove this, and because the
constructions are useful, we now investigate limits.

DIRECT LIMITS

Definition: Let I be a quasi-ordered set and € a category. A direct system
in § with index set I is a functor F:1 — € (of course, we construe [ as a
category as in Example 7 of Chapter 1).

Let us elaborate this definition. For each ie I, there is an object F;
and, whenever i, j € I satisfy i < j, there is a morphism ¢’:F; — F; such that:

() @i:F; - F;is the identity for every i e I;
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(i) ifi<j <k, thereis a commutative diagram

) L S

Fj

Remarks: 1. There is no reason to restrict oneself to quasi-ordered sets;
one could speak of direct systems with an index category.

2. After our discussion of direct systems and direct limits, we shall
consider the dual notions of inverse systems and inverse limits.

In the following examples, the category € will be a category of modules
(and so will not be mentioned).

Examples: 19. For any I, fix a module 4 and set 4; = A4, all ie I, and
@i =1, for all i <j. This is the constant direct system with index set I,
denoted |4].

20. Let I have the trivial quasi-order: i < j if and only if i = j. A direct
system with index set [ is an indexed family of modules {F;:ie I}.

21. Let I have exactly three elements, I = {1,2,3}, with quasi-order
1 <2and1 < 3. A direct system with index set I is a diagram

Fimememoeo———— F4

F,

22.  Let I be the positive integers with the usual (quasi-) order. A direct
system is a sequence A; > A, —» A3 — - -+

23. If A is a module, then the family of all fg. submodules of 4 is
quasi-ordered by inclusion. This family together with all possible inclusion
maps is a direct system (over itself).

24. If A=]] jes Ay, then the family of all finite “partial sums”
A;, @ - @ A, is quasi-ordered by inclusion; this family together with all
inclusion maps is a direct system (over itself).

25. Let R be a domain with quotient field Q. The family of all cyclic
R-submodules of Q of the form (1/r) is quasi-ordered by Ay < L/s)
if and only if r[s, ie, rr' =5 for some r' e R. This family with inclusions
is a direct system (over itself).
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Definition: Let F = {F,, q)j} be a direct system in €. The direct limit of this
system, denoted lgn F;, is an object and a family of morphisms «;: F; — lgn F,
with a; = o;¢} whenever i < j satisfying the following universal mapping

roblem:
P B

hmF,
—p

for every object X and every family of morphisms f;:F, — X with f; = f;¢}
whenever i < j, there is a unique morphism ,B:li_r)n F; > X making the above

diagram commute.

As usual, lim F; is unique to isomorphism if it exists. Although lgn F;isthe
- .
standard notation, we admit it is deficient in that it omits the morphisms ;.

Theorem 2.16:  The direct limit of a direct system of modules {F;, ¢}} exists.

Proof: For each iel, let A;:F,— | [F; be the ith injection into the sum.
Define
li_flei = (I_IFi)/S:

where S is the submodule generated by all elements 1;¢}a; — Aa;, where
a; € Fyand i < j. If one further defives «;: F; — li_1;n F; by a;+ Ja; + S, then

he may routinely verify that we have solved the universal problem. |

Let us now determine the direct limits of the particular direct systems
above.

19. The direct limit of the constant direct system |4 is 4 (if the index
set satisfies a mild hypothesis [sec Excrcise 2.45)).

20'. If I has the trivial quasi-order, then lgn F,= | |F;. There are two

ways to see this. Since there are no ¢} with i+ j, the universal mapping
problem is exactly that of Theorem 2.3. Alternatively, the submodule S in
the construction in Theorem 2.16 is just 0, for ¢! is the identity.

21". If I is the three point quasi-ordered set above, then the direct
limit is usually called the pushout. Let us restate the universal mapping
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problem. Given a pair of maps

a—> L

C

the pushout is a module L and maps o, § such that

a—t g

C————1L

commutes; moreover, given any other pair of maps «’, #’ making the diagram
commute, there exists a unique 6 as below making all commute:

The construction of I as in Theorem 2.16 yields a certain quotient of
A®B®C.

Exercises: 2.29. Given
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prove that the following diagram is a pushout:

———reeee ey,
C 7 D
where D =(CQ@ B)/W, W ={(fa, —ga):ae A}, f':b+—(0,b)+ W, and
g :c+>(c,0) + W. (This is not the construction of Theorem 2.16.)

2.30. In the pushout diagram in Exercise 2.29, if g is monic (or epic),
then g is monic (or epic). Moreover, parallel arrows have isomorphic
cokernels.

2.31. Assume I is the positive integers and 4, @ A, < is an as-
cending sequence of subsets of a set X. Prove that li_r)n A= R, A

2.32. Prove every module A4 = lil)n A’, where A’ ranges over all fg.

submodules of A4.

2.33. Prove [[A; = li_r)n(A,-l @@ 4,;), the direct limit of all finite
“partial sums.”

2.34. If R is a domain with quotient field Q, then Q = 1£n< 1/r>, r#0,

so that Q is a direct limit of cyclic submodules each isomorphic to R.

Definition: Let E and F be functors: E:2 — B and F: U — B. A natural
transformation t: E — F is a class of morphisms t¢,:EA — FA, one for each
A e objU, giving commutativity of

EA—H  Epa

FA T A
for every f:4 — 4’ in . There is a similar definition if both E and F are
contravariant.

Exercises: 2.35. (i) The maps t,:A — R ®y A defined by a+> 1 ® a con-
stitute a natural transformation ¢t:1 — R ®5 , where 1 is the identity functor.
(i) The maps s,:4 — Homg(R, 4) defined by a — f, (where f,(r) = ra) con-
stitute a natural transformation s:1 — Homg(R, ).
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2.36. Fixing two variables in the expression A ® B ® C gives a functor
of the remaining variable. Prove that the associativity isomorphism of
Exercise 1.10 is natural in each variable.

2.37. IfWisthe category of all vector spaces over a field, then t;,: V — V' **
(second dual) defined by x +— <, x> (= evaluation at x) constitute a natural
transformation 1 — **.

2.38. Let (F,G) be an adjoint pair, where F: U —» € and G:€ — U, and
let r: Hom(F 4, C) —» Hom(4, GC) be the natural bijection. Now set C = FA,
so that t: Hom(F 4, FA)—»Hom(A4, GFA4).If one defines t, = t(15,): A— GF A4,
prove that the t, constitute a natural transformation 1 — GF. A similar
construction yields a natural transformation FG — 1.

2.39. Let | denote the identity functor on z3t. Show that the class of
all natural transformations 1 — 1 is a ring isomorphic to Z(R), the center
of R.

2.40. Show that all functors A — B form a category if we define
Hom(#, G) = all natural transformations F — G. (This is not quite correct,
for Hom(F, G) may be a class and not a set. To eliminate this difficulty, one
usually assumes that 2 is a small category, ie., the class of all morphisms
in U is a set.)

We continue our discussion of direct systems with index set I. Since I
is a small category, Exercise 2.40 shows that all such direct systems form a
category, Dir(I). We repeat the definition of a morphism (natural trans-
formation) t:{F;, ¢i} > {G,,¥}; t is a family of maps f;:F; — G, making
all the following diagrams commute (when i < j):

% g

i

@5 ¥

Fjmm——"7¢G;

We claim that lim: Dir(f) — g9 is a functor. We already knowhrn({F L5 =
(L1F)/s. 1f ¢: {F,,(pj} - {G,, 5} and if llm({G,,d/J = (1]G)/S’, then define
i lim F; - 1lim G, by Y + SHZA,t,a + S’ (where a; € F;, and 1;, A; are
mjectlons into [1F;:, 1 1G; respectively).

Definition: A quasi-ordered set I is directed if, for each i, j e I, there exists
kelwithi<kandj<k

Our first two examples of quasi-ordered sets (trivial and three point) are
not directed; the other examples are directed. In particular, a sum [ [4; is
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a direct limit of the A4;; if one wants the index set directed, however, then
] [A; must be taken as the direct limit of its finite partial sums.

The reason we have introduced directed index sets is twofold: we shall
have a simpler description of lgn F,; li_rp: Dir(I) — g is an exact functor.

Theorem 2.17: Let {4;,¢}} be a direct system with directed index set I,
let A; be the ith injection A:A;—][A;, and let lim 4, = (149/S (as in

Theorem 2.16).
® l_i’rn A; consists of all La; + S;

(i) Aa; + Sis 0if and only if pla; =0 for some t > i. -
Proof: Let us observe at once that Theorem 2.16 tells us that lgn A; con-
sists of all elements of the form x = Y Aq; + S. Since I is directed, there is
an index j>1i, all i occurring in the sum for x. For each such i, define
b' = ¢la; € A;, so that b= Y b’ e A;. It follows that

Yha; — Ab =Y (ha; — A) =Y (ha; — Apla) €5,

so that x = Y La; + S = 4,b + S; this proves (i).

If @la;=0, then Aa; = la — Lola S, so that XLa +S=0. For
the converse, assume Ja; + S = 0 (by (1), A,a; + S is a typical element of
l'g)n A,), ie, Aa;eS. Since any scalar multiple of a relator Awpla; — 4;a;
(where j < k) has the same form, there is an expression

Aia,‘ = Z(/lk(p,{aj — l]aj) es.
j
Choose an index t el larger than any of the indices in this expression.
Clearly,
hoia; = (hola; — Aa) + La;
= (Lpla; — \a;) + Z(/lk(l’f;aj — Aa)).
J

We may rewrite each of the terms on the right as a sum of relators in which
the lower index is t:

/11:(!’){‘1,' - /1jaj = (flt(szaj - /1jaj) + [At(P:‘("(PI{aj) = A~ (Pl{aj)J:
for ¥} = ¢/, by definition of direct system. Therefore, we may write
/1:(Pfai = Z(/l:(l’:jaj - /1jaj)
after a harmless change of notation; moreover, we may assume that we have
combined all terms having the same top index j (for the sum of such terms

has the same form). This last equation relates elements in [ [4;, where each

element has a unique expression of the form ) A,a,. We conclude that if
ta
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Jj # t,then Aja; = 0, hence g; = 0, for the element J.pla, has jth coordinate 0;
if j = t, then A,@la, — A,a, = O because ¢} is the identity. Thus, each term on
the right is 0, so that 1,¢la; = 0, whence ¢la; = 0. |}

It is now a simple matter to verify that the following gives an alternative
description of direct limit when the index set is directed. First of all, recall
the standard set-theoretic construction of disjoint union (-)4;: given a
family of sets {A4;:i e I}, one may pretend no two of them overlap, 4, N 4; =
& for i # j, and then take their union.

Definition: Let I be a directed index set and let {4;, %} be a direct system
over I.If X is the disjoint union (-)4;, define an equivalence relation on X by
a; ~ 4, aed;, aed,
if there exists an index k > i, j with gja; = @fa;. The equivalence class of ¢

is denoted [a;].

If {4;, ¢} is a direct system over a directed set I, define an R-module L
as follows. The elements of L are the equivalence classes [a;] defined above,
rla;] = [ra;] if reR,

and
L] + [@)] = [a + 4],
where k > i, j, a, = ¢la;, and g, = pld;.
Using Theorem 2.17, the reader may check that when the index set I is
directed, the map li_r)n A; — L defined by 4;a; + S+ [a;] is an isomorphism.

Theorem 2.18: Let I be a directed quasi-ordered set. Suppose there are
morphisms of direct systems over I
such that

054, 3B,3C,-0

is exact for each i € I. Then there is an exact sequence of modules

0 — lim 4; > lim B,  lim C, — 0.
= = =

Remark: The hypothesis is the appropriate notion of exactness in Dir().

Proof: The only possible difficulty (and the only place where one must
assume [ is directed) is showing f is monic; therefore, we prove this and
leave the remainder to the reader (but see the first paragraph following this
proof).
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Assume x € lim 4; and #x = 0 in lim B;. Let us set lim 4; = (114,)/S and
set A;:A;—[]A; the ith injection; let us set limB; = (IBy)/T and set
pi:B; — | | B; the ith injection. Thus, x = ALa; + S, by Theorem 2.17(i), and
fx = ptia; + T. Since fx = 0, Theorem 2.17(ii) says there is some j > i with
yita; = 0. Since ¢ is 2 morphism between direct systems, we have tjp;a; = 0.
But ¢; is monic, whence @ja; = 0, and this gives x = L,a;, + 5 =0. |

Here is a sketch of an argument proving that li_r)n is right exact (the

tedious part of Theorem 2.18 that we left to the reader). “Constant” is a
functor | |: k% — Dir(I): to each module 4, it assigns the constant direct sys-
tem with index set I having 4; =4, all ie I; if f:A— A, then | f|:|A] - |4
is the natural transformation |f|; = f for all i e I. Another way of stating
that lg)n is a solution to a universal mapping problem is to say there is a

natural bijection
Homg(lim 4;, C) - Hompn({4s, 95}, C))

(it is instructive to give all necessary details). But this just says that (li_r)n,

)
is an adjoint pair. Therefore li)rn is right exact, by a simple generalization of

Theorem 2.14 replacing module categories by more general categories
(e.g., Dir(I)). Indeed, the next theorem is such a generalization.

Theorem 2.19: Let U and € be categories, and let F:W — € and G:€ - A
be functors. If (F,G) is an adjoint pair, then F preserves all direct limits (with
any, not necessarily directed, index set).

Remark: Once we introduce inverse limits, we shall see that G preserves
them. :

Proof: If I is a quasi-ordered set and {4;, ¢!} is a direct system in % with
index set I, then it is easy to see {FA,, Fo}} is a direct system in € with
index set I. Consider the commutative diagram in €

F(lim 4) X
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where ai:Aielgn A; are provided by the definition of Ii_r)n. We require
a unique morphism y:F(Ign A;) — X making all commute. Since (F,G)
is an adjoint pair, there is a natural bijection 7:Homg(F Ii_r)n A4;,X)—
Homm(li_r)n A;, GX).By Exercise 2.38, the following diagramin U: commutes:

lim 4, 5 »GX

Gg;

Gg;

By definition of Ii_r)n, there is a unique fe Homm(lgn A;,GX) making the
diagram commute. Define y € Homg(F Ign A;,X) by y=1"%p). Since 1

(hence t~') is natural, y makes the original diagram commute. Finally, y
must be unique: if y* were a second such morphism, then 7(y’) would be a
second morphism Ii_r)n A;— GX, contradicting the uniqueness of f. Thus

F(Ign A;) and Ign FA; both solve the same universal mapping problem, and

so they are isomorphic. [

Corollary 2.20: For any right R-module B, the functor B ®g preserves direct

limits.

Proof: As in Corollary 2.15, (B®g , Hom,(B, )) is an adjoint pair. |
We now have a second proof of Theorem 2.8 that B ®; preserves sums,

for sum is a direct limit. We can also reprove Theorem 2.15 that B®jy 1s

right exact, i.e., B ®g preserves cokernels. It only remains to show that co-
kernel is a pushout, for pushout is a direct limit.

Exercises: 2.41. Provethatif f:4 — B, then coker f is the pushout of the
diagram

A—————B
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242, If F is a right exact functor that preserves sums and if F is addi-
tive (so that F(0) = 0), prove that F preserves direct limits. (Hint: Regard a
direct limit as a cokernel of a suitable map between sums.)

2.43. A subset K of a directed set I is cofinal if, for each ie I, there
exists k€ K with i < k. If {4;,i € I, %} is a direct system with index set I,
then {4;,ie K, (pj} is a direct system with index set K; moreover, the direct
limits of these two systems are isomorphic. Show this may be false if the in-
dex set is not directed. (Hint: Pushout.)

244. If {4;,¢}} is a direct system with index set I, and if I has a top
element, co (i€, 0 € I, i < oo for allie I, and oo is the unique such element),
then lim 4; = 4. (Hint: I is automatically directed.)

2.45. 1If|A]is the constant direct system with index set I, then lim |4] = 4

if 1 1s directed.

The reader may wonder why we were not content to prove Theorem 2.1
for module categories. Aside from the fact that the proof of the more general
version given is the same as its particular case, there is a nice application
to modules.

Theorem 2.21: Any two direct limits (perhaps with distinct index sets)
commute.

Proof: We have already noted that hm | ) is an adjoint pair of functors

(of course, the domains and ranges of the functors are not module cate-
gories). Theorem 2.19 applies to show Ig)n preserves all direct limits. |

We have refrained from giving precise notation for Theorem 2.21, for it
would make a simple result appear complicated. We only make two remarks
to aid the reader. First, if I and K are quasi-ordered sets, then the modules
in the direct system should be doubly indexed F;,. Second, here is a modest
example of Theorem 2.21. If 4, « 4, < A; < --- is a sequence of sub-
modules of A, then the cokernel of ( ] 4, (namely, 4/{ J4,) is isomorphic to
the “union” of the cokernels Ii_r)n AJA;.

INVERSE LIMITS

Let us now consider inverse limits, which will appear as the dual of
direct limits. Since all the proofs of the next theorems are dual to the ones
just given, we leave the details to the reader’s mirror.
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Definition: Let I be a quasi-ordered set and € a category. An inverse
system in € with index set I is a contravariant functor F:I — € (as usual,
regard I as a category).

In more detail, for each i e I there is an object F; and whenever i < j
there is a morphism ¥/: F; - F; such that

(i) i:F;— F; is the identity for every i e I;
(i) ifi<j< k there is a commutative diagram

Fe " R,

NS

In each of the following examples, the category € is a category of modules
(and so will not be mentioned).

26. For any I, the constant direct system |A| with index set I (where 4
is a module) is also an inverse system with index set I.

27. If I has the trivial quasi-order, then an inverse system with index
set [ is a family of modules {4;:i e I'} (so again this is the same as the cor-
responding direct system over I).

28. If I is the three point quasi-ordered set we have been considering,
an inverse system over I is a diagram

Fy

Fy—————F,

29. If I is the positive integers with the usual (quasi-) order, then an
inverse system over [ is a sequence

Ay Ay Az -+,

Definition: Let F = {F,,y{} be an inverse system in €. The inverse limit of
this system, denoted hm F;, is an object and a family of morphisms

o hmF — F;witho; = t,b o; whenever i < jsatisfying the following universal
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mapping problem:

for every object X and morphisms f;: X — F; making the diagram commute
whenever i < j, there is a unique morphism §:X —>1<i_r_n F; making the

diagram commute.

As usual Ig_n F; is unique to isomorphism if } exists. Although Iig_n F;1s
the standard notation, it is deficient in that it omits the morphisms ¥.

Theorem 2.22: The inverse limit of an inverse system of modules {F Wl }
exists.

Proof: Since direct limit is a quotient of a sum, the dual notion of inverse

limit should be a submodule of a product. For each i € I, let p; be the ith
projection p;:| [F; — F;. Define

HmF; = {(a) e [1F::a; = Yia;, whenever i < j}.

If one further defines a,-:l;lg_n F; — F,; as the restriction pillg_n F;, then he may
routinely verify that he has solved the universal problem.

Let us now determine the inverse limits of some particular inverse systems.

26'. The inverse limit of the constant system |4| is 4 if the index set is
directed.

27. Xf I has the trivial quasi-order, then lim F; = [ [F:. There are two
ways to see this. Since there are no ¥ with j # i, the universal mapping
problem is exactly that of Theorem 2.5. Alternatively, the submodule of HF i
is everything, for there are no constraints on the coordinates.

28'. If I is the three point quasi-ordered set above, then the inverse
limit is usually called the pullback (or fiber product). Let us restate the
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universal mapping problem. Given a pair of maps
C

B
I A
the pullback is a module L and maps «, f such that

B—————4

comrmutes; moreover, given any other pair of maps «, §’ making the diagram
commute, there exists a unique 8 as below making all commute:

—_—y
B I A

The construction of L as in Theorem 222 yields a certain submodule of
A@BaC.

Exercises: 2.46. Given
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prove that the following diagram is a pullback:

D.______....o‘—____,c

B "’“"""'f"”"_"A

where D = {(b,c)e B® C: fb = gc}, a:(b,¢c)— ¢ and B:(b,c) — b. (This is
not the construction of Theorem 2.22.)

2.47. In the pullback diagram in Exercise 2.46, if g is monic (or epic),
then B is monic (or epic). Moreover, parallel arrows have isomorphic kernels.

2.43. Inthe pullback diagram of Exercise 2.46, if both f and g are monic,
then we may identify D with B n C. Moreover, in this case, there is a pushout
diagram

A > A/B

A/C ————— 4/(B + C)
249. If f:B— A, then

ker f ———— 0

_.——-_._—-—._._.——-—_)A
B f

is a pullback diagram. (Thus, cokernel is a pushout, hence a direct limit,
while kernel is a pullback, hence an inverse limit.)

2.50. Let {A;:ie I} be a family of submodules of a module M. If one
quasi-orders {4;:i € I} by reverse inclusion, then this family and the various
inclusion maps form an inverse system, and lim 4; = (\ie1 A; when the sys-
tem is directed.

2.51. If K is a cofinal subset of a directed quasi-ordered set, and if
{A;, ¥4} is an inverse system with index set I, then lim 4, is isomorphic to the
inverse limit of the corresponding system with index set K (see Exercise 2.43).

2.52. If {4;,¥]} is an inverse system with index set I, and if I has a
top element oo, then Ig_r_n A= A,.
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2.53. Show that Exercise 2.51 may be false if the index set is not directed.
(Hint: Pullback.)

It would be a sin not to mention completions. If I is an ideal in a com-
mutative ring R, then

I"={aa, - a, :a,-eI}'
it is easy to see I" is anideal and that I = I' > I? > - - - . If M is an R-module,
then M > IM>I*M >--+. The family of quotlent modules M/I M,
i=1,23,... ,andmapsn//{:M/I’M—»M/I‘M for j > i, given by x + I'M
x + I'M, is an inverse system indexed by the positive integers.
Definition: The I-adic completion of M, denoted M, is lim M /M

Consider the diagram

~

M/I'M

where 7; is the natural map, and f§ is provided by the definition of Iz_r_n. Itis

a fact that f is monic if (JI'M = 0; it is another fact that if M = R, then Ris
a commutative ring and every I-adic completion is an R-module.

There is a more down-to-earth description of M (we leave details to the
interested reader). Assume (JI'M = 0. If x € M, and x # 0, there exists i
with x € I'M but x ¢ I'*1M; define ||x|| = 277, if x = 0, define ||x|| = 0. It is
easy to see that ||x — )|| isa metric on M. It turns out that M is the - completion
of M in the sense of metric spaces (M is a dense subspace of M and every
Cauchy sequence in M converges in §).

Given two contravariant functors % — €, one may define a natural
transformation between them (no surprises). Let us only give the special
instance of a morphism between inverse systems.

Definition: If I is a quasi-ordered set, a morphism t:{F;,¢{} — {G;, !}
between inverse systems over [ is a family of maps ¢;: F; —» G; making the
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following diagrams commute when i < j:

{
Ffee b G,

il ol

F;————————— G,
t:

i

It is easy to see that all inverse systems with index set I and their mor-
phisms form a category, Inv(I). We claim that 1('1_r_n: Inv(I) — x9N is a functor.
It remains only to define E:I%_r_n F; - lim G; for a morphism t:{F,¥i} —
{G;, @i}, and this is done by

t:(ar) — ().
We have already noted that we may regard | |:z9t — Inv(l), for the

constant system is, at our pleasure, either a direct system or an inverse
system.

Theorem 2.23: (| |,1<i_r_n) is an adjoint pair of functors.

Proof: Dual to the argument that (IjLn,I |) is an adjoint pair. 1

Theorem 2.24: Let W and € be categories, and let F: U — € and G:€ — U be
Sfunctors. If (F,G) is an adjoint pair, then G preserves all inverse limits.

Proof: Dual to the proof of Theorem 2.19. ||

Corollary 2.25: If B is a left R-module, then Homgk(B, ) preserves inverse
limits.

Proof: We may.regard B as a bimodule zB,, so Theorem 2.12 gives
(B ®4 ,Homg(B, )) an adjoint pair. |}

There is another way to prove Corollary 2.25, dual to Exercise 2.42.

Exercises: 2.54. If Fisaleft exact functor that preserves products, then F
preserves inverse limits. (Hint: Regard an inverse limit as the kernel of a
suitable map between products.)

2.55. If K and L are submodules of M, then Hom(B, K) and Hom(B, L)
may be regarded as subgroups of Hom(B, M) and

Hom(B,K n L) =~ Hom(B, K) n Hom(B, L).
(Hint: Use pullback.)
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2.56. 1<i_r_n is left exact (in the sense of Theorem 2.18). One need not
assume the index set is directed.

Theorem 2.26: Any two inverse limits (perhaps with distinct index sets)
commute.

Proof: Dual to the proof of Theorem 2.21. |

Theorem 2.27: For any module B, Hom(l'g)n A4;,B) = Ii_r_n Hom(A4;, B).

Proof: Use the analogue of Exercise 2.54: if F is a left exact contravariant
functor converting sums to products, then F converts direct limits to inverse
limits. |1 ‘

. One last remark about limits: usually, direct limit and inverse limit do
not commute. We give an easy example which the reader may formalize.
Construct an example of three subgroups 4, B, C of an abelian group for
which

AnNB®CO)#(ANB@® (AN C),

and note that intersection is an inverse limit (even a pullback in this case)
and sum is a direct limit. A more interesting example is that the completion
of a product is the product of the completions, but this is not so if one replaces
“product” by “sum”.
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FREE MODULES
We begin by generalizing the notion of free abelian group to modules.

Definition: A left R-module A4 is free if it is a sum of copies of R. If Ra, = R
and A = [ [;.; Ra;, then the set {q;:i € I'} is called a basis of 4.

From the definition of sum as “vectors” almost all of whose coordinates
are 0, it follows at once that given a basis {;:i € I'}, each a € 4 has a unique

expression
a= Zrl'al':

where r; € R and almost all r, = 0.

Theorem 3.1: . Let X = {a;:i € I} be a basis of a free module A. Given any
module B and any function f: X — B, there is aunique map f - A — B extending f.

A
~

J
~
~
~

X——3p

f

Proof: For fixed i 1, define f;:Ra;— B by ra, — rf(a). Since A =]]Ra,,
Theorem 2.3 gives a unique map f: 4 — B with fa, = fia; = fa;, alli. |

Note that it is easy to describe f explicitly: f Y ra Y rfla).
57
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Theorem 3.2: If X is a set, there exists a free module A having X as a basis.

Proof: Exactly as Theorem 1.2 (with the advantage that all necessary
constructions are already available). |

Theorem 3.3: Every module M is a quotient of a free module.

Proof: Let UM be the underlying set of M (forget addition and scalar
multiplication), and let 4 be the free module with basis UM. Define
f:UM = M by m+— m. By Theorem 3.1, there is a map f: 4 — M extending
f,and f is epic because f is onto. |

Of course, the free module with basis UM may be extravagantly large;
there may be many, smaller, free modules mapping onto M. In down-to-
earth language, Theorem 3.3 says that M may be described by generators
and relations: if 4 is free with basis X and f:4 — M is epic, then X is called
a set of generators of M and ker f is called its submodule of relations. This
definition conflicts with our previous notion of generators of M; the earlier
usage (which we shall maintain) says M is generated by f(X).

Exercises: 3.1. Let U:zI — Sets be the “forgetful” functor: regard every
module as a mere set and every map as a mere function. Let F:Sets — 90t be
the “free functor”: FX 1is the free module with basis X; if f:X > Y is a
function, Ff = f defined as in Theorem 3.1. Prove that U and F are functors.

3.2. Prove that (F, U) 1s an adjoint pair. (This really says that module-
valued functions on a'set X may be identified with homomorphisms from the
free module with basis X.)

Before pursuing generators and relations further, let us consider an
obvious question. Do every two bases of a free module have the same car-
dinal? We do know this is so for left R-modules when R is a field or Ris a
division ring,

Definition: A ring R has IBN (invariant basis number) if, for every free left
R-module A4, every two bases of 4 have the same cardinal. In this case, rank
A is defined as the cardinal of some basis of A.

Theorem 3.4: Every commutative ring R has IBN,

Proof: By Zorn’s lemma, R has a maximal ideal M, whence R/M is a field.
Let A be free with basis {a;:i € I}. By Example 4 of Chapter 2, the quotient
module 4/MA is an R/M-module (being annihilated by M), ie., A/MAis a
vector space over R/M. Since MA =][][Ma, we see that A/MA =~
11(Ra;/Ma;). Since Ra;/Ma; = R/M, it follows that A/M A has dimension
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card(I). If {b;;jeJ} is a second basis of 4, the same argument gives
dim A/MA = card(J). Since fields have IBN, we conclude that card(l) =
card(J). |

Exercises: 3.3. A ring R has IBN if and only if, for every fg. free left
R-module A4, every two bases of 4 have the same cardinal.

34. If R has IBN and ¢:S — R is a ring map (by definition, ¢(1) = 1),
then S has IBN. (Hint: If 4 is a free left S-module, consider R ®g A4.)

3.5. Let k be a field and V an infinite-dimensional vector space over k.
Prove that R = End, (V) does not have IBN. (Hint: Show that, as left R-
modules, R = R @ R by applying Hom,(V, ) to anisomorphism V= V @ V)

3.6. Assume R has IBN, and there is an exact sequence

O_)Fn_)Fn—l_). “_)FO_)O:
where each F; is a f.g. free left R-module. Prove that » 7o (— 1) rank F; = 0.

In the next chapter, we shall introduce a large class of (not necessarily
commutative) rings having IBN: left noetherian rings. It is fair to say that
most rings one encounters do have IBN.

Here is a standard use of determinants.

Lemma 3.5: Let S be commutative and let M be a f.g. S-module. If M = JM
for some ideal J of S, then (1 — a)M =0 for some a e J.

Proof: 1If {xy,...,x,} generates M, then each x; = ) a;;x;, where a;; € J.
In terms of matrices, these equations become BX = 0, where X is the column
vector of the x;’s and B is the n x nmatrix B=I — (a;;) (of course, I isthen x n
identity matrix). Let B* be the classical adjoint of B, ie., the matrix of
cofactors, so that B*B = (det B)l. Then B*BX = (detB)X and B*BX =0
(since BX = 0). We conclude that (det B)x; = 0 for all i, hence (det BIM = 0.
But obviously det B = 1 — a for a € J, because each a;;€ J. |

Theorem 3.6: Let R be commutative and let M be a fg. R-module. If
B:M — M is epic, then § is an isomorphism.

Proof: Let S = R[x], the polynomial ring in one variable x, and make M
into an S-module by defining

(reX" 4+ rx+rogm=r,fm+---+r pm+rom

where £’ is the composite of # with itself i times. If J = Sx, then § epic implies
JM = M. By Lemma 3.5, (1 — a)M =0 for some a e J. Since a = Y ', rf,
where r; € R, it follows that y =3*_, r,f~* is f~* (for § and y commute,
and1 —y8=0). |
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Corollary 3.7: Let R be commutative and let A be a free R-module of
Sinite rankn. If {ay, ..., a,} generates A, then it is a basis of A.

Proof: Let F be free with basis {x;,. .., x,} and define p: F - A by x; — a;;
it suffices to prove ¢ is an isomorphism. Now ¢ is epic because 4 is generated
by {ay, ..., a,}. There is thus an exact sequence

0-K->F5% 450,

where K = ker¢. Since A is free, hence projective, this sequence splits.
Therefore, F = K @ A', where A’ =~ 4 = F (both A and F are free of rank n).
Define f:F —F as the composite F5 4’ — F, where p is the projection
having kernel K. Clearly f is epic with kernel K. By Theorem 3.6, K = 0 and
¢@:F — A is an isomorphism. [

In the next chapter, we shall see that Corollary 3.7 holds when R is left
noetherian. Indeed, it is not difficult to see that a ring R satisfying Corollary
3.7 must have IBN (where one replaces “A of rank n” by “4 a sum of n
copies of R”). The converse is false [ P. M. Cohn, 1966].

Let us return to generators and relations. In the next chapter we shall
prove that every subgroup S of a free abelian group F is itself free; moreover,
rank S < rank F. If a fg. abelian group G is given as F/S, where F is fg. free
(and Theorem 3.3 says G can always be so given), then one may use the
freeness of S to obtain information about G. The “Simultaneous Basis
Theorem™ [Fuchs, 1970, p. 78] states that if {x,,...,x,} is a basis of F,
then there is a basis {y;,..., ¥} of S, m < n, and integers {ky, ..., k,}
such that k;x; = y;, all {, and each k; divides k, .., . Of course, the Simultaneous
Basis Theorem implies that G is a sum of ¢yclic groups (in which the order
of any summand divides the order of the next summand). If one considers
R-modules instead of Z-modules (abelian groups), then submodules of free
modules need not be free; also, f.g. R-modules need not be sums of cyclic
modules. Rather than surrender, we iterate the process of generators and
relations.

Definition: A free resolution of a module M is an exact sequence
~'-—>Fni">Fn_1—>"'—>Flil>F0—£>M—>O

in which each F, is a free module.

Theorem 3.8: Every module M has a free resolution.

Proof: By Theorem 3.3, there is a free module F,, and an exact sequence

0> Sy Fy5>M-0.
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Similarly, there is a free module F; and an exact sequence
0—-S,—>F, —>S,—-0,
and, by induction, a free module F, and an exact sequence
0-S,>F,—»S,.,—0.
Assemble all these sequences into the diagram

1 €

o Fy > I > F, > Fo >M -0

NSNS
/\/\/\

where the maps d, are just the indicated composites. For every n, kerd, = S,
and imd, = S,_ ;. Hence imd, ,; = kerd, and the top row is exact. |

3 2

The diagram above makes it plain how to decompose a long exact
sequence into short exact sequences.

We emphasize that a module has many free resolutions. Let us return to
free modules.

Theorem 3.9: Consider the diagram with f epic:

F
/
/
Y
//
B——5—C >0

If F is free and a: F — C is any map, then there exists y:F — B with a = By.

Remark: We do not assert y is unique.

Proof: Let X = {x;:ie I} be a basis of F. Since 8 is epic, each ax; can be
lifted, ie., there is an element b, € B with Sb; = ax;. The axiom of choice
provides a function ¢:X — B with ¢x; = b,, all i ¢ I. By Theorem 3.1, there
is a map y:F — B with yx; = ¢x;, all i. To see that a = fy, it sufﬁces to
check each on X, and fy(x;) = fo(x;) = Bb; = ax;. |

Corollary 3.10: If F is free, then the functor Hom(F, ) is exact.
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Proof: Since Hom(F, ) is left exact (Theorem 2.9), we need only show that
it preserves epimorphisms. If B 2 €0 is exact, then we must show
Hom(F, B) % Hom(F, C)— 0is exact, i, if f e Hom(F, C), then f = §,(g) = fg
for some g € Hom(F, B). But this is precisely the situation of Theorem 3.9:

F
/
g//
y f
/
B‘/ C >0 1
— >

PROJECTIVE MODULES

Definition: A module P is projective if it behaves as F does in Theorem 3.9:

B > C > ()

Theorem 3.11: A module P is projective if and only if Hom(P, ) is exact.

Proof : The proof of Corollary 3.10 shows that Hom(P, ) is exact if P is
projective. Assume, conversely, that Hom(P, ) is exact. Consider the diagram

P

B 7 »C >0

Since p,:Hom(P, B) » Hom(P,C) is epic, there is g e Hom(P,B) with
S = B.(g) = Bg; this says that P is projective. |

Is every projective module free? Let us first gather a bit more information.

Theorem 3.12: If P is projective and B:B— P is epic, then B=ker f&@ P,
where P' =~ P,
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Proof: Consider the diagram

P
/
7/
e
//

B I P

Since P is projective, there is a map y: P — B with fy = 1,. By set theory,
y is monic, and so Theorem 2.7 gives the theorem. |

> 0

It is useful to restate Theorem 3.12 in two ways.

Corollary 3.13:  If A is a submodule of B with B/ A projective, then A is a
summand of B. -Every short exact sequence 0 - A—B— P—0, with P
projective, is split.

Theorem 3.14: A module P is projective if and only if it is a summand of a
free module. Moreover, every summand of a projective is projective.

Proof: By Theorem 3.3, there is a free module F and an epimorphism
F — P. By Theorem 3.12, P is (isomorphic to) a summand of F.

For the converse, we show that any summand of a projective module F
is itself projective. There are maps i:P — F and p:F — P with pi=1,.
Consider the diagram

p
F———p
H

§

|

i lf

i

!

¥

B »C > ()

B

Since F is projective, there is a map y:F — B with iy = fp. Define g:P —» B
by g = vi. Since fg = Byi = fpi = f, it follows that P is projective. |

We can now give an example of a ring R for which projectives may not be
free. If R = Z/6Z, then R = Z/2Z & Z/37Z, so that Z/2Z is projective, being
a summand of the free module R. But Z/2Z is not free, for every nonzero
free R-module has at least 6 elements. We shall consider the question when
projectives are free in the next chapter.

The next theorem is often useful; it characterizes projectives by means
of “linear functionals” that act like coordinate functions.
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Theorem 3.15 (Projective Basis): A module A is projective if and only if
there exist elements {a;:k € K} = A and R-maps {¢p,: A— R:k € K} such that

() if x e A, then almost all o, x = 0;
(i) i xeAd,thenx =) 4 x(@iX)ay.

Moreover, A is then generated by {a,:k e K}.

Proof: Assume A4 is projective, and let y: F — A be an epimorphism from
some free module F. By Theorem 3.12, thereisamap ¢: 4 — F with o = 1.
Let {e,:k € K} be a basis of F. If x € 4, then ¢x has a unique expression

Px = Z"k@k,

where r, € R and almost all r, = 0. Define ¢,:4 — R by ¢;x = r,. Visibly
@ix = 0 for almost all k. If we define a, = Y, then i epic implies {a,:k € K}
generates 4. Moreover, if x € A, then

X=px= ‘//(Z"kek) = Z"k‘/fek = Z((ka)'/fek = Z((ka)ak-

Conversely, assume the existence of {a,:k € K} and {¢;: 4 — R:k e K}.
Let F be a free module with basis {e,:k € K}, and define a map y:F —> 4
by e, — a,. It suffices to exhibit a map ¢:4 — F with y¢ = 1,. Define
@A — F by x> Y (¢, X)e,; this sum is finite, by condition (i), so ¢ is well
defined. By condition (ii),

Yox = ‘//Z((ka)ek = Z((ka)‘lfek = Z((ka)ak = X.
Therefore, o =1,. |

Exercises: 3.7. A module P is projective if and only if every short exact
sequence 0 - 4 —» B — P — 0 splits.

3.8. If{P;:j e J}isafamily of projective modules, then HPJ- is projective.
(We shall see in the next chapter that a product of projectives need not be
projective.)

3.9. If R is commutative and P and Q are projective R-modules, then
P ®z Q is a projective R-module. \

3.10. Assume R and § are rings, with S an (S—-R) bimodule. If P.i§ a
projective R-module, then S ®; P is a projective S-module. 4

3.11. Assume P is a projective left R-module and I is a two-sided ideal
in R. Prove that P/IP is a projective left R/I-module. -

3.12. A complement of a projective module P is a module Q (necessarily
projective) with P@ Q free. Prove that every fg. projective has a fg.
complement.

3.13 (Eilenberg) Every projective module P has a free complement.
(Hint: First, prove this when R = Z/6Z and P = Z,2Z.)
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INJECTIVE MODULES

We now dualize the notion of projective.

Definition: A module E is injective if, for every module B and every sub-
module A of B, every f:A— E can be extended to a map ¢g:B— E. The
diagram is

E
l\
N
4 N
_ \\
0 > A >B

There are no obvious examples of injective modules, but we shall see
that they exist in abundance. Let us derive their first properties; one should
expect duals of the first properties of projectives.

Theorem 3.16: A4 module E is injective if and only if the functor Hom( , E)
is exact.

Proof. Assume E is injective. Since Hom( , E) is contravariant left exact,
it suffices to show it converts monomorphisms to epimorphisms: if «: 4 — B
is monic, then «*:Hom(B, E) — Hom(4, E) is epic. Therefore, we must show
that if f e Hom(A4, E), there exists g e Hom(B, E) with o*(g) = f. Since
a*(g) = ga, this is precisely the definition of injectivity of E.

The converse is just as easy and is left to the reader. |

Theorem 3.17: If {E;:je J} is a_family of injective modules, then [|E; is
injective.

Proof: Let A;and p; be the injections and projections of the product | [E;.
Consider the diagram

p;
[1E; — E;
j )
}
S E g;
|
0 > A > B

o
Since E; is injective, there is a map g;:B — E; with g = p;f. Define
h:B—[[E; by b+ (g;b). Then
hoa = (g,0a) = (p; fa) = fa,
so that ha = f and []E; is injective. ||
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We shall see in the next chapter that a sum of injectives need not be
injective.

Theorem 3.18: Every summand D of an injective module E is itself injective.
Proof: Consider the diagram

‘A
——— ey
[ -

D

b
fl
» A

o

By e 1
<

0

v

where 1 and p are injection and projection, respectively. Since E is injective,
there is a map g: B — E with go = Af. Define h:B — D by h = pg. Then

ho = pga = pif = f
since pA = 1p. Thus, D is injective. |
Theorem 3.19: A4 module E is injective if and only if every short exact
sequence 0— E 5 B — C — 0 splits. In particular, E is a summand of B.

Proof: Assume E is injective; consider the diagram

There exists a map g:B — E with gi = 1, so the sequence splits.
For the converse, consider the diagram

E
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Construct the pushout diagram

E—— P

0 > M’ > M

o

By Exercise 2.30, the map o': E — P is monic. By hypothesis, there is a map
B:P— E with fa’ = 1. Define g:M — E by g = §f". Then

go= pf'a= pa’f = f,
and so E is injective. ||

Now Theorem 3.19 is the dual of Theorem 3.14. If one compares the
proofs, one sees that we could give a second proof of Theorem 3.19 if we
knew the dual of the statement “Every module is a quotient of a projective”
were true. The dual, “Every module can be imbedded in an injective,” is,
indeed, true; it is an important result (being the dual of “generators and
relations”) and we now begin working toward it.

Theorem 3.20 (Baer Criterion): (471 R-module E is injective if and only if
every map f:1 — E, whére I is a left ideal of R, can be extended to R.

Proof: Suppose E is injective. As a left ideal is a submodule of R, the
hypothesis is just a special case-of the definition of injective.
Suppose we have the diagram

E

0 »A - > B

i

For notational convenience, let us assume i is an inclusion map. We approxi-
mate a map g:B — E by looking at all modules between A and B that do
possess an extension of f. More precisely, let € consist of all pairs (4,¢"),
where A ¢ A’ = Band ¢g': 4’ — E extends f. Note that € # &, for (4, f) e €.
Partially order € by saying (4',¢") < (4”,¢9") if A’ = A” and ¢" extends ¢'.
By Zorn’s lemma, there is a maximal pair (4, go) in €.If 4, = B, we are done.
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Suppose A4, # B and let xe B— A4,. If I = {re Rirx e A}, then I is
a left ideal in R. Define h:I — E by h(r) = go(rx). By hypothesis, there is
a map h':R — E extending h. Define 4, = 4, + Rx, and define g,:4, - E
by ag + rx > goao + rh'(1), where r € R. First, g, is well defined: ifag + rx =
ap + r'x, then (r — ¥)x = ay — ay € Ay and r — v’ e I. Therefore, go((r — 7')x)
and h(r — r’) are defined, and we have '

goldo — ao) = gol(r — ¥)x) = hr —v) = K(r —r) = (r — r(1).
Thus, go(as) — golag) = ri'(1) — (1) and golag) + r'i(1) = golao) + ri'(1).
Second, g, does extend gy, for g;a, = goao for all a, € 4,. The pair (4;,94)

lies in € and is larger than the maximal pair (4,,g,), a contradiction.
Therefore, 4, = B and E is injective. |

The following diagram lemma will be useful.

Lemma 3.21: The diagram with exact row

0 “ _sp—7F ,coo0

0-4 a » B i »C -0
y Y Ic
0—-E - > P »C -0
o Iz

in which the first square is a pushout.

Proof: Augment the given diagram by forming the pushout of the arrows(
emanating from A; note that o’ is monic, by Exercise 2.30. Recall (Exercise
2.29) that we may assume P =(E@® B)/(W, where W = {(ya, —o):a € 4},
Y:b—(0,b) + W,ando':e+ (¢,0) + W.Define §': P — Cby (e, b) + Wi— Bb.
We let the reader check that §’ is well defined, the diagram commutes, and
the bottom row is exact. ||
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Theorem 3.22: A module E is injective if and only if every short exact
sequence 0 — E — B — C — 0, with C cyclic, splits.

Proof: If E is injective, Theorem 3.19 says the sequence splits for every
(not necessarily cyclic) module C.

For the converse, let I be a left ideal of R and let f:I — E be an R-map.
By Lemma 3.21, there is a commutative diagram with exact rows

i

0 > [ *R > R/I — 0
f{ I t
0 >FE ———P » R/I >0

Since R/I is cyclic, our hypothesis is that the bottom row splits. There is
thus a map s:P — E with sa’ = 1. If we define g:R — E by g = sf’, then
it is easy to see gi = f. By Theorem 3.20, E is injective. |

Definition: Let M be an R-module, m € M, and r € R. We say m is divisible
by r if rm’ = m for some m' € M; we say the module M is divisible if each
m € M is divisible by every non-zero-divisor® r € R (i.e., there is no nonzero
s e R with sr = ().

Example: 1. The additive group of rationals, Q, is a divisible abelian
group ( = Z-module).

Theorem 3.23: Every injective module E is divisible.

Proof: Let me E and let r, € R be a non-zero-divisor. Define f:Rro — E
by f(rro}=rm; note that f is well defined because r, isnot a zero divisor.
Since E is injective, there is a map g: R — E extending f. In particular,

m = f(ro) = g(ro) = rog(1),
so that m is divisible by r,. |

Exercises: 3.14. Every quotient of a divisible module is divisible.
3.15. Every summand of a divisible module is divisible.
3.16. Every product of divisible modules is divisible.
3.17. The sum of divisible modules is divisible.

1t is clear that r must be restricted: for example, we must exclude r = 0. The proof of
Theorem 3.23 shows why zero divisors are excluded.
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3.18. Let R be a domain with quotient field Q. Prove that Q is divisible.

3.19. A module M over a domain R is torsion-free if rm = 0 implies
r =0 or m= 0 (where r € R and m € M). Prove that a torsion-free module
M is injective if and only if M is divisible.

3.20. Let Q be the quotient field ofa domain R. Prove that a torsion-free
module is divisible if and only if it is a vector space over Q.

It is obvious that divisible modules share many properties of injectives;
however, the converse of Theorem 3.23 only holds for a restricted class
of rings.

Theorem 3.24: If R is a principal ideal domain, then an R-module D is
divisible if and only if it is injective.

Proof: By Theorem 3.20, it suffices to extend every map f:I - D to R,
where I is an ideal. Since R is a PID, we know I = Rry; clearly we may
assume r, # 0, and thus r, is not a zero divisor. Since D is divisible, there
is an element d € D with rod = f(r,). Define g:R — D by r > rd, and note
that g extends f.

The converse is Theorem 3.23. |

We finally have some examples of injective modules, at least for principal
ideal domains. Here is a special case of the imbedding theorem we seek.

Theorem 3.25: Every abelian group G can be imbedded in an injective
abelian group.

Proof: Write G = F/S, where F is a free abelian group; thus, F =] [Z.
If we imbed each copy of Z in a copy of the rationals, Q, then we have

G =F/S=(]12)/s = (LJQV/s.

Since Q is divisible, so are | [Q and (] [Q)/S, by Exercises 3.17 and 3.14.
By Theorem 3.24, (] JQ)/S is injective as a Z-module. ||

Theorem 3.26: If D is.a divisible abelian group, then Homy(R,D) is an
injective left R-module.

Proof: First of all, R is a bimodule: R = ,Ry; by Theorem 1.15(i),
Homy(R, D) is a left R-module via rf:r" > f(¥7).

We shall show that the contravariant functor Homg(, Homg(R, D)) is
exact; it is only necessary to show it converts monomorphisms to epi-
morphisms. The adjoint isomorphism (Theorems 2.11 and 2.12) gives a
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commutative diagram whenever 0 — 4 — B is an R-monomorphism:
Homg(B, Hom4(R, D))——————— Homg(4, HomzR, D))

Hom,(B, D) >»Hom,(A4, D)
(we have identified R ®g B with B and R ®z 4 with A). Since D is divisible,
it is Z-injective, and so the bottom arrow is epic, by Theorem 3.16. It follows
that the top arrow is also epic (by commutativity and the fact that the
vertical arrows are isomorphisms). ||

Theorem 3.27: Every left R-module M can be imbedded in an injective module.

Proof: Ifweregard M only ?s an abelian group, there is a Z-monomorphism
0— M 5 D for some divisible group D (Theorem 3.25). If m € M, define
f.:R - M by r+>rm. It is easy to see that ¢:M — Homg(R, D) given by
m+ if,, is an R-map that is monic. ||

Txercises: 3.21. Fix a module E. Use Theorem 3.27 to prove that if
0 — E — B — C — 0 always splits, then E is injective.

3.22. IfSis commutative, D an injective S-module, and R is an S-algebra,
then Homg(R, D) is an injective left R-module.

3.23 Assume R is a left principal ideal domain (i.e, R has no zero
divisors and every left ideal is principal). Prove that every divisible left

R-module is inje%
We now dualize the notion of generators and relations.

Definition: An injective resolution of a module M is an exact sequence
0-M—->E5E'—» - 5 E" 5 Et .-

in which each E" is injective.

Theorem 3.28:  Fvery module M has an injective resolution.
Proof: Dual to the proof of Theorem 3.8, using Theorem 3.27. |

We may also define a projective resolution of a module M in the obvious
way; since free modules are projective, free resolutions are a special kind
of projective resolution. Therefore, every module has projective resolutions.

A natural question is whether there is a “smallest” injective containing
a given module. The affirmative answer was first discovered by Baer (who
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was the first to discover injectives), and the characterization below was
first given by Eckmann and Schépf. Our exposition follows that of Lambek
[1966]. '

Definition: An essential extension of a module M is a module F containing
M such that every nonzero submodule of E meets M (ie., if S < M and
S # 0, then S n M # 0); if, in addition, M & E, we say E is a proper essential
extensionof M.

The additive group of rationals, Q, is an essential extension of the
integers, Z; indeed, every intermediate subgroup G with Z <« G < Q is an
essential extension of Z. Here are some easy exercises we shall soon use.

Exercises: 3.24. LetM < E < E;if Fisessential over M and E essential
over E, then E, is essential over M.

3.25. Let M < E. Show that E is an essential extension of M if and only
if, for each e € E, either ¢ = 0 or there is an r € R with re € M and re # 0.

3.26. LetM < E,andlet {E;:i e I'} be asimply ordered (under inclusion)
family of submodules of E, each E; being essential over M. Prove that | JE;
is essential over M. (Hint: Use Exercise 3.25.)

327. If M <« E' < E and both E’ and E are essential over M, then E
is essential over E'.

3.28. If E is essential over M and ¢:E — D is a map with ¢|M monic,
then ¢ is monic. (Hint: M N ker o = 0.)

Theorem 3.29: A module M is injective if and only if M has no proper
essential extensions.

Proof: Assume M is injective and M & E, where E is an essential extension.
By Theorem 3.19, M is a summand of E; there is thus a nonzero submodule
Nof Ewith E =M @ N.As N n M = 0, this contradicts E being an essential
extension.

Assume M has no proper essential extensions, and let E be an injective
module containing M. By Zorn’s lemma, there is a submodule N of E
maximal with M n N = 0. The composite M ¢ E — E/N is monic (since
N n M = 0). Indeed, E/N is essential over M: if S/N is a nonzero submodule
of E/N, then § 2 N and maximality of N yields § ~ M # 0; it follows easily
that S/N meets M. By hypothesis, the composite M — E — E/N is an iso-
morphism, whence E=M + N. As M n N =0, we have M a summand
of E, and so M is injective. |

Theorem 3.30: The following conditions on a module E containing a module
M are equivalent:
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(i) E is a maximal essential extension of M (i.e, no proper extension
of E is an essential extension of M);
(i) E is an essential extension of M and E s injective;
(iii) E is injective and there is no injective E' with M < E' & E.

Moreover, such a module E exists. —~

Proof: ()= (i) Since “an essential extension of” is a transitive relation
(Exercise 3.24), the hypothesis is that E has no proper essential extensions.
By Theorem 3.29, E is injective.

()= (iii) If such an injective E’ exists, then E’ would be a summand
of E, say, E=E @UE". Since M < E’, we have E' n E’" =0 implying
M n E” = 0, contradicting E being an essential extension of M.

()= (i) Assume only that E is an injective containing M and consider
the family of all essential extensions of M that lie in E. By Exercise 3.26,
Zorn’s lemma yields a maximal such, say, £. We claim E’ is a maximal
essential extension of M. Assume N is an essential extension of M that
contains E’'. There is a diagram

0 > E' >N

where i is the inclusion. Since E is injective, there is a map ¢:N — E with
@|E' =1i; thus, ¢ fixes E’, hence M, pointwise. By Exercise 3.28, ¢ is monic
(for N must be an essential extension of E', by Exercise 3.27). But now
¢(N) is an essential extension of M contained in E. Maximality of E’ forces
@(N) = F', whence N = E'. We conclude that E’ is a maximal essential
extension of M (as defined in statement (i) ) and that E’ has no proper essential
extensions. By Theorem 3.29, E’ is injective. If we now invoke the full
hypothesis of (iii), then E' = E, as desired.

To prove the existence of E, imbed M in an injective module and take
the submodule E’ just constructed. |

Definition: A module E satisfying any of the equivalent conditions of
Theorem 3.30 is called an injective envelope (or injective hull) of M.

We have already proven existence of injective envelopes; we now prove
uniqueness.

Theorem 3.31: Let E be an injective envelope of a module M.
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(1) If D is an injective containing M, then there is a monic ¢:E — D
fixing M pointwise;

(i) any two injective envelopes of M are isomorphic (by an isomorphism
fixing M pointwise).

Proof: (1) Injectivity of D allows us to complete the diagram

D
N
AN
i No
\\
0 » M N

where i is the inclusion. Exercise 3.28 gives ¢ monic, since E is an essential
extension of M. :

(i) Assume D is an injective envelope of M. Using the notation of part
(1), we claim ¢ is an isomorphism, i.e., ¢ is also epic. Were ¢ not epic, then
@(E) would be a summand of D containing M, and this would contradict D
being an essential extension of M. ||

One may thus speak of the injective envelope of M.

Exercises: 3.29. If R is a domain, considered as a module over itself,
then its injective envelope is its quotient field.

3.30. Theorem 3.31(ii) characterizes injective envelopes: a monomor-
phism i:M — E, where E is injective, is an injective envelope if and only if
a monic dashed arrow always exists below

0

whenever j is an imbedding of M into an injective D.

Exercise 3.30 allows us to dualize the notion of injective envelope; also
see Exercise 3.31 for the usual (equivalent) description.
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Definition: A projective cover of M is an epimorphism &:P — M, where
P is projective, so that an epic dashed arrow always exists below

0 \

£ 3 3
P\ > M >0
\\
AN 4
AN
AN
Q

whenever ¥ is an epimorphism from a projective Q.

Exercises: 3.31. (Usual Definition of Projective Cover) A submodule N
of M is superfluous if, whenever L is a submodule of M with L + N = M, then
L = M. Prove that an epimorphism ¢:P - M, where P is projective, is a
projective cover if and only if ker & is superfluous. (Hint: P =
im ¢ + kere.) Prove that any two projective covers of a module M are iso-
morphic.

3.32. Prove that the Z-module Z/2Z. has no projective cover. Conclude
that projective covers may not exist.

3.33. Ife:P;— M, are projective covers, i = 1,..., n, then
HE{ZHP{ -> HMl
1s a projective cover, where Us,-:(pl, e P (8P - - - 5 EnD)
WATTS’ THEOREMS

There is a lovely application of frees and injectives in the coming proofs,
due to Watts, of characterizations of the Hom and tensor functors. First,
we need the appropriate notion of isomorphism of functors.

Definition: If F, G:U — B are functors of the same variance, then F and
G are naturally equivalent, denoted F = G, if there is a natural transformation
7:F — G with each 74: F4 — G4 an equivalence.

Of course, if B is a category of modules, each 7, is an isomorphism.

Examples: 2. The natural transformation 1 - R ®;, of Exercise 2.35 is
a natural equivalence.
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3. The natural transformation 1 — Homg(R, ) of Exercise 2.36 is a
natural equivalence.

4. If U is the category of finite-dimensional vector spaces over a field k,
and if * = Hom,(, k), then the usual evaluation 1 — ** (see Exercise 2.37)
is a natural equivalence. .

5. If 9 is the category of finite abelian groups and * = Homy( , Q/Z),
then there is a natural equivalence 1 — ** (this is a special case of Pontrjagin
duality of locally compact abelian groups).

6. Let Rbearing and r € Z(R) (so that multiplication by r is an R-map).
Define F: z9t— I by F(M)= M /rM and, if f : M — N, then Ff : M/rM —>N/rN
is given by m + rM + fm 4+ rN. If we apply ®pz M to the exact sequence

RS R R/Rr—0,
we obtain an exact sequence
M5 M- (R/RY) @z M —0.
There is thus an isomorphism o, M/rM — (R/Rr)®g M (first isomor-
phism theorem), and ¢:F — (R/Rr) ®y 1is a natural equivalence.

This seems an appropriate opportunity to introduce an elementary and
common technique, called diagram-chasing. At the moment, we will only
need a special case of the coming lemma, but we give a general form for
later use as well as to illustrate the technique. The important thing to observe
is that each step of the proof is automatic in the sense that there is only one,
obvious thing to do.

Lemma 3.32 (Five Lemma): Consider the commutative diagram with exact
rows

fi 5 f fa » As

As > Ay
131 153 [53 [14 Is
> B4

B, hy B, hy > B, hs

(i) Ift, and t, are epic and t5 is monic, then t5 is epic;
(i) If t, andt, are monic and t, is epic, then t is monic.

In particular, if t(, t,, ty, ts are isomorphisms, then t5 is an isomorphism.

Proof: We only prove (i); the proof of the dual (ii) is similar.
Let b, € B;. Since t, is epic, Ja, with t4a, = h3b;. Commutativity of the
last square gives ts fyaq = hatia, = hghsbs = 0 (exactness at B,). Since t5
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is monic, fyaq = 0, s0 a4 € ker f, = im f5. Hence Ja; with a, = f3a3, and so
hst3as = t4 f305 = t404 = h3bs (definition of a,). Therefore by — t3a; e kerhy =
im h,, whence 3b, with h,b, = by — t3a3. Since t, is epic, 3a, with t,a; = b;.
Commutativity gives ts faa, = hytsa, = hyb, = by — tza;. Therefore~

t3(faa; + az) = bs \
and 5 is epic. }

Theorem 3.33 (Watts): Let F:I; — Ab be a right exact functor that
preserves sums. Then F = ®g B for some left R-module B. Moreover, we may
choose B = F(R).

Proof: First of all, let us make the abelian group FR into a left R-module.
For M = Mz and me M, define ¢,:R —> M by r— mr. Since ¢,, is an
R-map, we have Fg,:FR—FM. Define 1,,:M x FR—>FM by
(m, x) > (Fo,,)x, where x € FR. If we set M = R, then 1z:R x FR — FR may
easily be seen to define a left R-module structure on FR. The same calculation
now shows that 7,,: M x FR — FM is R-biadditive, and 7,, induces a map
oy:M ®g FR - FM.If we denote FR by B, then one checks thato: @z B — F
is a natural transformation.

Now ox:R ®z B — FR is an isomorphism (for B = FR); moreover, since
both ®zB and F preserve sums, ¢,4:4 ®z B — FA is an isomorphism for
every free R-module 4. Let M be any right R-module. By Theorem 3.8,
there is an exact sequence C - 4 —» M — 0, where both C and 4 are free.
Since both ®; B and F are right exact, there is a commutative diagram
with exact rows:

C ®g B———> A @ B————s M @3 B ——— 0

FC ———— F4 ———— FM ———0

Since g and ¢4 are isomorphisms, the Five Lemma gives o, an isomorphism.
Therefore, 0: ®gz B — F is a natural equivalence. |

Remark: If F:9M; — M, then one may modify the first paragraph of the
proof to see that the right S-module FR can be construed as a bimodule;
thus the theorem remains true if we replace Ab by 9.

Example 6 illustrates this theorem: the functor F there (F = “dividing
by r”) is easily seen to be right exact and sum preserving, and F = FR ® =

(R/Rr) ®x .
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Corollary 3.34:  Assume R is a ring for which every submodule of a fg.
moduleis f.g. If § is the category of all f.g. right R-modules and if F:§g — My
is right exact additive, then there is a bimodule B = g B and a natural equiva-
lence ®gx B =~ F. Moreover, we may choose B = F(R).

Proof: The proof is almost the same as that of Theorem 3.33 (together
with our remark at its end). As we are looking at 5, we need only consider
fg. free R-modules A; moreover, the hypothesis on the ring R guarantees
that there is an exact sequence C — 4 — M — 0 in which both C and A4 are
free and f.g. (were C not f.g., then FC would not be defined). Finally, we need
not assume F preserves sums, for every additive functor preserves finite
sums (Exercise 2.24). ||

In the next chapter, we shall identify the rings R/satisfying the hypothesis
of the Corollary (left noetherian again!). The folléwing theorem ties several
ideas together.

Theorem 3.35: The following are equivalent for a functor F:g — Ab:

(1) F preserves direct limits;
(i) F is right exact and preserves sums;
(i) F= ®gB for some left R-module B;
(iv) there is a functor G:Ab— My so that (F, G) is an adjoint pair.

Proof: ()= (i) Cokernel and sum are direct limits.
(if) = (i) Theorem 3.33.
(iii)= (iv) Theorem 2.12; set G = Homy(B, ).
(iv)= (1)) Theorem 2.19. |

Once we give a characterization of covariant Hom functors, we shall have
the dual version of Theorem 3.35. These theorems are special cases of
“Adjoint Functor Theorems” [MacLane, 1971, pp. 116-127] which give
necessary and sufficient conditions that a functor between more general
categories be half of an adjoint pair. Before we do this, however, let us
characterize contravariant Hom functors, for the proof is so similar to that
of Theorem 3.33.

Theorem 3.36 (Watts): Let F:xW — Ab be a contravariant left exact
Sfunctor converting sums to products. Then F = Homg(,B) for somé teft
R-module B. Moreover, we may choose B = F(R).

Proof: First of all, we make the abelian group FR into a left R-module. If
M = M and me M, define ¢,,:R — M by ¢,,(r) = rm. Since ¢,, is an R-map,
Fo,:FM — FR is defined. Define 1,;:M x FM —FR by (m,x) — (Fp,)x,
where x € FM. In particular, tz:R X FR-> FR equips FR with a left R-
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module structure: note that if r, s € R, then ¢,; = ¢,¢,: R — R and contra-
variance of F gives Fo,, = Fo, Fo,.

Define 6y:FM — Homg(M, FR) by oy (x):m i (Fo,)x. It is easy to
check that ¢: F — Homg( , FR) is a natural transformation, and that ¢y is an
isomorphism. The remainder of the proof proceeds, mutatis mutandis, as that
of Theorem 3.33. |

Remarks: 1. Ifone assumes F: ;9 — (IR, then one may modify the proof
above by showing FR is a bimodule.

2. The analogue of Corollary 3.34 is also true, if one assumes the same
condition on the ring R that appears there.

Definition: A module C is a cogenerator for x93t if, for every module M and
every nonzero m € M, there exists f: M — C with fm # 0.

Lemma 3.37: There exists an injective cogenerator for gIN.

Proof: Define B =] [(R/I), where the sum is over all left ideals I in R, and
define C to be some injective module containing B. Let M be a module with
me M, m# 0. Now {(m) is cyclic, so that {m) = R/I for some left ideal I
(Theorem 2.2). Since R/I is contained in C, there is a monomorphism

Cc

N
_ 0 > (my > M
g:{my—C; since C is injective, there is a map f:M —C with
fm=gm#0. |
The construction above of an injective cogenerator may not be the most

efficient. For example, we will see later that Q/Z is an injective cogenerator
for Ab (Lemma 3.50).

Theorem 3.38 (Watts): Let G:x3 — Ab be a functor preserving inverse
limits. Then G = Homg(B, ) for some left R-module B.

Remark: The module B has no easy description as in Theorems 3.33 and
3.36.

Progf: Foramodule 4 and aset X, let A¥ denote the product of copies of A
indexed by X. We may regard A* as all functions X — 4; in particular, we
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may regard e = 1, € 4. If x € A, then the xth coordinate of e is x, so that
D<€ = X,

where p,:A* — A is the xth projection. Choose an injective cogenerator C
for z9M, and let IT = C%. Since products are inverse limits, G preserves
products and

e = 1g4c € GII = (GC)°C,

Define 1:Hom(I1,C) —» GC by f+> (Gf)e. The map t is epic, for if
x € GC, then the xth projection p,: T — C exists. Since G preserves products,
Gp, is the xth projection GII = GC% — GC, so that (Gp,}e = x. Therefore
7(p.) = x and 7 1S epic.

We now describe ker 7. If S is a submodule of IT with inclusion i,:».?(lf
we may identify GS with the submodule im(Gi) of GII, for G is left exact
(kernel is an inverse limit). Define B as the intersection of all submodules S
of IT for which ee GS. By Exercise 2.50, B = lim S; it follows that

GB = I{i_m GS = (\GS, using our identification and Exercise 2.50 again; we

observe that ee GB. The following are equivalent for f:I1— C:f eker1;
0=1(f)=(Gf)e; e ker Gf; e € G(ker f) (G is left exact); B = ker f (defini-
tion of B). If j:B—1II is the inclusion, then j*:Hom(II, C) - Hom(B, C),
and f e kerj* if and only if j*(f) = fj = 0. Thus f e ker j* if and only if
B =imj < ker f, so that kerj* = ker«.

Exactness of 0— B IT— I1/B - 0 and injectivity of C give exactness
of the top row of the diagram

0-> Hom(T1/B, C) - Hom(IT, C) —— > Hom(B,C) -0
I

oc

v
GC—0;

our previous calculation shows the lower sequence is exact. Since kert =
ker j*, the two cokernels are isomorphic via

gc:Hom(B,C) — GC

given by f > (Gf)e (this is a general fact: if a:4 —» X and B:4— Y are
epimorphisms with the same kernel, then X = Y via x B(¢"'x)). It is
easily checked that ¢:Hom(B, ) » G is a natural transformation, where
oy Hom(B,M)— GM ié“given by f + (Gf)e.

For any module M, there is an imbedding 0 — M — CHemM:C} given by
m > ( fm), that “vector” whose f'th coordinate is fim (here we use the fact that
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C is a cogenerator). There is thus an exact sequence
0-M->C¥-CY

for suitable sets X and Y. Since G and Hom(B, ) are left exact, there is a
commutative diagram with exact rows

0 ————— Hom(B, M) ————— Hom(B, C¥) ————> Hom(B, C¥)

o— GM — GC¥ — GC¥

The vertical maps ¢ are isomorphisms, since o, is an isomorphism and both
functors preserve products; the Five Lemma shows g, is an isomorphism.
We conclude that Hom(B, ) = G. |

Corollary 3.39: The following are equivalent for a functor G:z3 — Ab.

(1) G preserves inverse limits;
(1) G = Homg(B, ) for some left R-module B,
(i) there is a functor F:Ab — I so that (F, G) is an adjoint pair.

Proof: ()= (ii) Theorem 3.38.
(i) = (iii) Define F = B®4, noting that B is an (R — Z) bimodule.
(fiiy=> (i) Theorem 2.24. J

Remark: Exercise 2.54 gives a fourth condition equivalent to (i):

(iv) G isleft exact and preserves products.

There are several comments, whose proofs are more appropriate in a book
emphasizing category theory, that should be made. First, the hypothesis in
Corollary 3.34 that F be additive is not necessary in the other Watts’ theorems,
for any functor between module categories that preserves finite sums must
be additive. Second, the more general adjoint functor theorems stress
characterization of Hom functors, for these always exist, by the very definition
of category. Third, one may give a precise definition of a solution to a univer-
sal mapping problem, “universal construction”, and this is intimately related
to adjoint functors. There are also two uniqueness results. If (F,G) and
(F,G’) are adjoint pairs, then G = G’; the same result holds in the other
variable. Second, if Hom(B, ) and Hom(B', ) are naturally equivalent, then
B = B'. For details, the reader may consult [MacLane, 1971].
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There is one more result in this circle of ideas which is within our reach
and which is rather interesting.

Definition: Two categories € and D are equivalent, denoted € =~ D, if there
are functors F:€ — D and G: D — € such that GF =~ 1; and FG = 1.

We consider whether it is possible that xR = 9. Should this obtain,
then homological algebra cannot distinguish between the rings R and S.

Exercise: 3.34. If g = (I, then Z(R) = Z(S). (Hint: Use Exercise 2.39.)
Conclude that if R and S are commutative rings and g3t = I, then R = S.

Definition: A module Pis a generator for 9 ifevery module M is a quotient
of a sum of copies of P.

Clearly R itself is a generator for z9, for every module is a quotient
of a free module. Also, the sum of # copies of R, denoted R”, is a generator
for zIR.

Exercise: 3.35. Prove that 2 module Q is a cogenerator for I if and
only if every module can be imbedded in a product of copies of Q. Conclude
that generator and cogenerator are dual.

Definition: A module P is small if Hom(P, ) preserves sums.

Note that R” is a small projective generator for g3,

Theorem 3.40: Let P be a small projective generator for gt and let
S = Endg(P). Then g = .

Proof: Clearly P is a right S-module (if we write maps on the right);
mcreover, P is an (R-S) bimodule, for if xe P, then (rx)f = r(xf) is
just the condition that f is an R-map. By Theorem 1.15, the functor
G = Hompg(P, ): g — Ab actually takes values in (9. Define F: IRt — I
by IFi= P ®;s . Since (F, G) is an adjoint pair, Exercise 2.38 provides natural
transformations 15— GF and FG — 1z, where 1; is the identity functor
on IR and 15 is the identity functor on (9. It suffices to prove these natural
transformations are equivalences.

Since P is projective, G = Hom(P, ) is exact; since P is small, G preserves
sums. The functor F is right exact and preserves sums. It follows that the
composites GF and FG preserve sums and are right exact.

Let us evaluate:

FG(P) = F(Hom(P, P)) = F(S) = P ®; S = P.
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If M is any R-module, tl} fe is an exact sequence of the form
LHP-1]P-M -0

(where the index sets of the sums may be distinct) because P is a generator
for gt There is thus a commutative diagram with exact rows

[fp - [Ip - M -0

[1FG(P) = [[FG(P) - FG(M) — 0

We know the first two vertical maps are isomorphisms, so the Five Lemma
gives M = FG(M). This gives 1z = FG.
For the other composite, note that

GF(S) = G(P ®5 S) = G(P) = Homg(P,P) = S.

If N is any S-module, there is an exact sequence of the form
[Is-[]s-N-o,

for every module is a quotient of a free module. The argument concludes
just as for the first composite. ||
Corollary 3.41: If R is a ring and S = R, all n x n matrices with entries
in R, then g = ;I
Proof: We know that R" is a small projective generator for IR, and

Endg(R") = R,. |

Corollary 3.42: Let P be a small projective generator for g and let
S =Endg(P). If F=Homg(P, ):xI — M, then F is an exact functor
preserving projectives and injectives.

Proof: Assume Q is R-projective, and consider the diagram of S-modules

FQ
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If G = P ®s , then we have the diagram of R-modules

GFQ=0
7
s/
s/
s/
7

e
GB GB” — 0;

the dashed arrow exists because Q is projective. Now apply F to this diagram
to obtain the desired arrow FQ — B. A similar argument shows F preserves
injectives. ||

The Morita theorems go on to say, among other things, that every
equivalence between module categories arises as above, that is, from a
small projective generator P. We should also point out that the functor
F = Homg(P, ) in this case is (right) exact and preserves sums, so Watts’
Theorem 3.33 gives F = Homg(P,R)®y . An exposition of the Morita
theorems may be found in DeMeyer—Ingraham [1971].

FLAT MODULES

A module P is projective if and only if Homg(P, ) is exact, and a module
E is injective if and only if Homg( , E) is exact. Let us now fix a variable of
tensor.

Definition: A right R-module B is flat if the functor B ®; is exact.

Of course, there is a similar definition for left R-modules C and ®; C.
Since B®;y is always right exact, a module B is flat if and only if f monic
implies 1z ® f monic.

Theorem 3.43: R is a flat R-module.

Proof: Let f:A"— 4 be monic. If 1:1 - R ®; is the natural equivalence
of Theorem 1.12, then there is a commutative diagram

A S A

R@gA' R®p A

Lk®f
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Since the vertical maps are isomorphisms, the map 1; ® f is monic and R
is flat. 1l

An example of a nonflat module is contained in Example 18 of Chapter 2:
Z/2Z is not a flat Z-module. The next theorem generalizes Theorem 3.26
and Exercise 3.22.

Theorem 3.44: Assume B is a bimodule By that is R-flat and C = 4C is
injective. Then Homg(B, C) is an injective left R-module.
Proof: First of all, Homg(B, C) is a left R-module, by Theorem 1.15.

We must prove Hompg(, Homg(B, C)) is an exact functor. The adjoint
isomorphism shows this functor is naturally equivalent to Homg(B ®3 , C),
which is the composite Homg( ,C) o (B ®g ). Each of these is exact, since B
is R-flat and C is S-injective, and the composite of exact functors is exact. ||

Setting B = R, we obtain the theorem and exercise mentioned above.

Theorem 3.45: Let {B,:k e K} be a family of right R-modules. Then | |B,
is flat if and only if each B, is flat.
Proof: Note first that if { f;: A, — 4} is a family of maps, there is a unique
map | [ fi:] 14— 4 with 3.a; — Y fiai; moreover, | | f, is monic if and
only if each f, is monic.

Assume f: 4’ — A4 is monic. There is a commutative diagram

([B)® 4'—2L

1IB)® 4

[B® ) —ren > LUBo 4
where 1, = 15, _and the vertical maps are the usual isomorphisms
Qb ®ar Y (b ® a).
Our initial remarks give 1 ® f monic if and only if each 1, ® f is monic,
ie,] | B, is flat if and only if each B, is flat. I
Corollary 3.46: Every projective module is flat.

Proof: Theorems 3.43 and 3.45 show that every free module is flat; Theorem
3.45 shows that every summand of a free module is flat. ||

It follows that every module 4 has a flat resolution, i.e., there is an exact
sequence - -+ — F, - Fy— 4 — 0 in which each F, is flat.
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Theorem 3.47: If {B,, ¢} is a direct system of flat modules over a directed
index set K, then lil)n By is flat.

Proof. If f:A’— A is monic, there is a commutative diagram where the

(lim B ® A ——2_ (imB) @ 4
lim(B, ® ') ——5——— Lim(B, ® 4)

vertical maps are the isomorphisms of Corollary 2.20, and ¢ is the mono-
morphism of Theorem 2.18. It follows that 1 ® f is monic. ||

This theorem may be false if the index set is not directed; for example,
coker(flat — flat) need not be flat.

Corollary 3.48: If R is a domain, then its quotient field Q is a flat R-module.

Proof: We saw in Exercise 2.34 that Q is a direct limit of copies of R,
indexed by a directed set. ||

Corollary 3.49: If every f.g. submodule of B is flat, then B is flat.

Proof: We saw in Exercise 2.32 that every module is a direct limit of its f.g.
submodules, and the index set there is directed. ||

Let us give another proof of Corollary 3.49 avoiding direct limits.
Assume f:4' — A is monic and that x eker 1 ® f. As xe B® A', we have
x =", b;®ad;. Let F be the free abelian group with basis B x 4, and let
S be the subgroup of relations (as in Theorem 1.4) so that F/S = B® A. To
say that >'b;® fa;=01in B® 4 is to say that Y (b;,fa}) € S. Let B’ be the
submodule of B generated by b, . .., b, together with the (finite number of)
first coordinates of relators exhibiting > (b;,fa) e S. If X=>h,® a; in
B ® 4, then Xeker(B @ A'— B'® A). As B’ is f.g, the hypothesis gives
X=0in B'® 4, from which it follows that x = 0in B® A (ifj:B’ — B is the
inclusion, then x = (j ® 1,)X).

We now aim toward a characterization of flat modules that links them to
injectives,

Lemma 3.50: The group Q/Z is an injective cogenerator for Ab.

Proof: Since Q/Z is divisible, being a quotient of Q, it is injective (Theorem
3.24). Let M be an abelian group, and let me M, m # 0. If m has infinite
order, define f:{m)> — Q/Z by m~ % + Z; if m has finite order n, define
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f:{my—> Q/Zby mr> 1/n + Z.In either case, f(m) # 0. Now use injectivity
of Q/Z to extend f to all of M. || /

Definition: If B is a right R-module, its character module B* is the left
R-module Homg(B, Q/Z).

Since B is a bimodule ;Bg, Theorem 1.15(i) gives the left R-module
structure on Homg(B, Q/Z) by rf:b — f(br). We now improve Lemma 2.13.

Lemma 3.51: A sequence of right R-modules
0->45BEC—0
is exact if and only if the sequence of character modules
0-C*EB*5 4% 50
is exact.

Proof: Ifthe original sequence is exact, then the exact contravariant functor
Homg( ,Q/Z) carries it into an exact sequence.

To prove the converse, we shall show that kero* = im f* implies
ker f = im a without assuming f* monic or o* epic; the result will then follow.

Is imo < ker f? Suppose a€ A and aa ¢ ker §, ie, faa # 0. Since Q/Z
is a cogenerator, there is a map f:C— Q/Z with ffaa+# 0. Thus, f e C*
and fBa # 0, ie.,, a*B*(f) # 0. This contradicts a*p* = 0

Is ker B < im«? If not, there is an element b € ker § with b ¢ ima. Thus,
b + im« is a nonzero element of B/ime, so there is a map g:B/imo — Q/Z
with g(b +im«) # 0.1fz: B — B/imais the natural map, then f = gn:B— Q/Z
issuch that fb # Oand f(im«) = 0. Therefore 0 = fa = o*(f),s0 f € kera* =
im f*. Thus f = p*(h)= hp for some he C*. In particular, fb = hfib. This is
a contradiction, for fb = 0 while b e ker 8. 11

Theorem 3.52: A right R-module B is flat if and only if its character module
B* is an injective left R-module.

Proof: Asevery right R-module, Bis a bimodule B = ,By. Since Q/Z is an
injective Z-module, Theorem 3.44 shows B* = Hom,(B, Q/Z) is injective.

For the converse, assume B* is R-injective and f: A’ — 4 is monic. There
is a commutative diagram with vertical isomorphisms

Homg(4,B*) ————  Homg(4,B*) ——n——530

Homz(B ®g 4,Q/Z) — > Homz(B®z A, Q/Z) — 0
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so that exactness of the top row gives exactness of the bottom. In character
module notation, (B ® A)* — (B® A')* — 01is exact, and Lemma 3.51 applies
to give exactness of 0 » B ® 4’ — B ® A. Therefore, B is flat. §

This theorem may be exploited by coupling it with Baer’s criterion.

Theorem 3.53: If B is a right R-module such that 0>B®I—>B®R is
exact for every f.g. left ideal I of R, then B is flat.

Proof: Since every left ideal is a direct limit (with directed index set) of £.g.
left ideals, Theorem 2.18 implies that 0 - B ® I - B ® R is exact for every
left ideal I of R. This gives exactness of (B ® R)* — (B ® I)* — 0, which, in
turn, gives exactness of

Hompg(R, B*) > Homg(I, B¥) - 0

as in the proof of Theorem 3.52. By Baer’s criterion (Theorem 3.20), we have
B* injective;and this shows B is flat. |}

Of course, the converse of Theorem 3.53 is true.

Theorem 3.54: If By is flat and I is a left ideal, then the map B @z 1 — Bl
given by b ® i +> bi is an isomorphism.

Proof: Recall that BI = {) b;i;:b; € B,i;€ I} is a subgroup of B. The com-
posite B ®z I - B ®z R — B, the second map being the usual isomorphism,
has image BI and is monic, by Theorem 3.53. |

In general, neither quotients nor submodules of flats are flat (the same is
true if we replace “flat” by “projective” or “injective”), but we must wait until
we examine specific rings before examples can be given. The following in-
stance, however, guarantees that a quotient of a flat is flat if the kernel is
“nicely” imbedded; the situation is related to the notion of “purity” in abelian
groups.

Theorem 3.55: Let F beflat and 0 - K > F 2% B0 be an exact sequence
of right R-modules. The following conditions are equivalent: (

(1) Bisflat;
(1) K n FI = KI for every left ideal I,
(i) K n FI = KI for every f.g. left ideal I.

Proof: In conditions (i) and (iii), note that KI = K n FI, so only the
reverse inclusion is significant. We give a preliminary discussion before
proving the implications.
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Tensoring the original exact sequence by a left ideal I gives exactness of

A KQI-FRI-L2, BgI-o.
By Corollary 3.54, we may identify F® I with FI via f® i~ fi; this
identifies Im(K ® I - F ® I) with KI. There results an isomorphism

y:FIIKISB®I

given by fi + KI — ff ® i. Next,

BI = {3 (Bf)i;: f;e F,i;el}  since Bisepic

= {B(2S5i)} = B(FI).
The first isomorphism theorem provides an isomorphism
8:BI = B(FI)—~ FI/FI n K

given by bi + fi + FI n K, where §f = b. We assemble these maps to obtain
the composite o

FI/KI»B®I1-5BIS FIJFI A K,

where 6:b® i bi. Explicitly, o:fi+ Kl fi+ FI n K.Since KI =« FI n K,
o is an isomorphism if and only if KI = FI n K. Moreover, since the flanking
maps y and ¢ are isomorphisms, ¢ is an isomorphism if and only if 0 is.

()= (i1) If B is flat, Corollary 3.54 says 0 is an isomorphism. Thus ¢
is an isomorphism and KI = FI n K.

(ii) = (ili) Trivial

(in)=-(1) If KI = FI n K for every f.g. left ideal I, then @ is an isomor-
phism for every such I, and Theorem 3.53 gives B flat. ]

Another technical lemma and we will be able to relate flat modules to
projectives.

Lemma 3.56: Let F be free with basis {x;:j € J},and let0 - K - F >B—0
be an exact sequence of right R-modules. If v e F is written

V=X5F 4 X0,
define 1(v) as the left ideal of R generated by the “coordinates” ry, ..., 7.
Then B is flat if and only if v e KI(v) for every v e K.

Proof: IfBisflatandve K, thenve K n FI(v) = KI(v), by Theorem 3.55.
Conversely, let I be any left ideal and let v e K n FI. Then I(v) = I; by
hypothesis, v € KI(v) < KI. Therefore, K n FI < KI. As the reverse inclu-
sion always holds, Theorem 3.55 gives B flat. |
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Theorem 3.57 (Villamayor): Let F be free and let 0 - K—>F—>B—-0
be an exact sequence of right R-modules. The following are equivalent.

() Bisflat;
(i) for everyve K, thereis amap 0:F — K with v = v;
(i) for every vy,...,v,€K, there is a map 0:F — K with 0v, = v,
i=1,...,n

Proof: ()= (i) Suppose B is flat and v e K; choose a basis {x;:je J}
of F. Let v = x;,r; + - + x;7, and let I(v) be the left ideal generated by
r1,-..,1,. Since B is flat, Lemma 3.56 gives v e KI(v). Hence v = ) k;s;,
where k; € K, s; € I(v); as s; € I(v), 5, = Y a7, where a;; € R. Thusv = ) kir;,
where k; = Y k;a,; € K. Define 0:F - K by x;,+ k; and the other basis
elements going to 0. Clearly 6v = v.

(ii)=>(1) Chooseabasis{x;:;jeJ}ofF,andletv=x;r, + -+ x;r€K;
let 0:F - K satisfy 0v =v. Then v=0v =0(x;)r; + - + 00x;)r, € KI(v).
By Lemma 3.56, B is fiat.

Since (iii) trivially implies (ii), it only remains to show (ii) = (ifi). We
do an induction on n, the case n =1 being our hypothesis (ii). Suppose
n>1and v,,...,v,€ K. By (ii), there is a map 6,:F — K with 0,v, = v,.
Define vje K, i=1,...,n—1, by v; =v; — 0,5;. By induction, there is a
map & :F — K with v; =1}, i=1,...,n— 1. Finally, define 8. F —» K by

Ov=0,v+ 0@ — 0,v).
It is a routine check that Oy, = v, i=1,...,n |
Definition: A right R-module B is finitely related (or finitely presented) if
there is an exact sequence
Fi,—>Fy—>B-0
where F, and F, are fg. free.

It is easy to see that B is finitely related if and only if there is an exact
sequence 0 > K — F — B — 0 in which F is free and both F and K are f.g.
Note that every f.g. projective module B is finitely related: choose a f.g. free
module F mapping onto B, say, with kernel K, this sequence must split,
F = B®K, and this shov&&th‘at K 1s f.g. If B is flat, then the converse is true.

Corollary 3.58: Every finitely related flat R-module is projective.
Proof:. There is an exact sequence
0>K5F>B— 0,
where F 18 free and both F and K are fg If K = {v,,..., v,>, then Theorem
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3.57 provides a map 6:F —» K with O, =v;, i = 1,. .., n (we are assuming,
without loss of generality, that A is an inclusion). Therefore 84 = 1, so the
sequence splits and B is projective. |

There is a quicker way to prove this last corollary.

Lemma 3.59: Let R and S be rings and consider the situation (g4, rBs, Cs)-
If A is a fg. projective R-module, then there is a natural isomorphism

Homg(B, C) ®z A = Homg(Homy(4, B), C).

Proof: Observe that B being a bimodule allows us to regard Homg(B, C)
and Homg(4, B) as modules, so the above terms do make sense.
Define o ,:Homg(B, C) ®z A = Homg(Hompg(A4, B), C) by
f®ai—>0’A(f®Cl),

where, for g € Homg(A4, B),
o4f®a):g— flgla)) e C.

It is a routine check, with no hypothesis on 4 other than A = 4, that o 1s
a homomorphism, natural in A. Moreover, if 4 = R, then o, is visibly an
isomorphism; indeed, it is just as clear that o, is an isomorphism when A4
is f.g. free. Finally, we let the reader check that if o4 is an isomorphism and
A’ is a summand of 4, then g, is also an isomorphism. J

Let us record another isomorphism as above, even though we do not
need the result for the new proof of Corollary 3.58.

Lemma 3.60: Let R and S be rings and consider the situation (z4, gBs, Cs).
If A is finitely related and C is injective, then there is a natural isomorphism
Homg(B,C) @ 4 = HomS(Homf(A, B),C).

Remark: The map o, of Lemma 3.59 is the desired isomorphism; we shall

prove this in the midst of the next proof. |
Theorem 3.61: Every finitely related flat R-module E is projective.

Proof: Let F, - Fy,— E — 0 be exact, where F,, Fy are f.g. free. It suf-
fices to show that Hom(E, ) is exact, te, if 4A— 4" —0 is exact, then
Hom(E, 4) —» Hom(E, 4”) — 0 is exact. By Lemma 3.51, it suffices to show
exactness of

0— (Hom(E, 4"))* — (Hom(E, 4) }*,

where (Hom(E, 4) )* is the character module Hom,(Hom g(E, 4), Q/Z).
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Consider the following diagram, for any module B and for C injective:

Hom,(B,C)®F; — HomgzB,C)®F, — HomgB,C)QE -

omz(Homg(F,, B), C) = Homz(Homg(Fy, B), C) = Homy(Homg(E, B), C)—

By Lemma 3.59, the diagram commutes and the first two vertical maps are
isomorphisms. The top row is exact, for tensor product is right exact; the
bottom row is exact because Hompg(, B) is left exact and Homg(,C) is
exact (for C is injective). The Five Lemma gives the final vertical map an
isomorphism for every B:

Homy(B, C) ® E = Hom,(Hom(E, B), C)

(we have proved Lemma 3.60).
Finally, consider the diagram

0 - Homz(4",Q/Z)®E - Homz(4,Q/Z)® E

0 — Homg(Hom(E, A”), Q/Z) — Homy(Hom(E, A), Q/Z)

Naturality of the maps o gives commutativity, and we have just seen that
the maps o are isomorphisms. Recall that we began with an epimorphism
A—A"—0,so that we have exactness of 0—Hom, (4", Q/Z)—Hom,(4, Q/Z).
Since E is flat, the top row is exact, and this implies exactness of the bottom
row, which is precisely what we had to show. §

Are there any fg. modules that are not finitely related? Let R =
k[xy,x,,...], polynomials in infinitely many variables over a field k; if
I is the ideal generated by the indeterminates, then R/ is cyclic (hence f.g),
and we shall show it is not finitely related.

Theorem 3.62 (Schanuel’s Lemma): Given exact sequences

0-K,->P,>B->0 and 0-K,»P,-B-0,

where P, and P, are projective, then K, @ P, = K, @ P,.




Flat Modules 93

Proof: Consider the diagram with exact rows

i

0 » K, > Py > B > 0
| |
lo ]1/)’ Iy
! .
| |
v ¥
0 *K, > P, > B > 0

J
Since P, is projective, there is a thap f:P; — P, making the right square
commute; diagram-chasing shows there exists a map «:K; — K, making
the left square commute. There is an exact sequence

O_’K1_9’P1@K2_W’Pz—’0,

where 0:k; > (ik,,0k;) and §:(p,, k,) — Bp, — jk, (verification of exactness
is routine). Since P, is projective, this last sequence splits, giving P, @ K, =
K,epr, 1

Corollary 3.63:  If B is finitely related and
0-K->MLBo0O
is exact, where M is fg., then K is f.g.

Proof: Assume first that M is free. Since B is finitely related, there is an
exact sequence 0 » K, - F; - B— 0 with F, free and both F, and K,
fg. By Schanuel’s lemma, M@ K, = F, ® K. But M @ K, is fg., hence
so is its summand K (summands are images).

Let us drop the assumption that M is free; choose a f.g. free F mapping
onto M. There is a commutative diagram with exact rows

B
0 > ker B > F / > B > 0
!
|
Eoc B llx
|
¥
0 > K > M~ 7 > B >0

Now ker f§ is f.g., by the first part of the proof, and the induced map « is
epic, by the Five Lemma. Therefore K isf.g. |

It follows immediately from the Corollary that the cyclic module exhibited
above is not finitely related. The real significance of Schanuel’s lemma is
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that a strong connection exists between any two descriptions of a module
by generators and relations.

Exercises: 3.36. State and prove the dual of Schanuel’s lemma involving
njectives.
3.37. Given two exact sequences, where the P’s and Q’s are projective,

0—-K—->P,>P,.,— —-P,—>B->0
and
0-1-0,-0,_ > ">0,>B-0,

then K@ Q,@P,- 1@  =2L®P,PQ,.,® . The dual is also true.

3.38. Let B be a bimodule zBs and let C be a left S-module. If B is
a flat R-module and C is a flat S-module, then B ®, C is a flat R-module.
(Hint: The composite of exact functors is exact.)

PURITY

In this brief section, we examine loss of exactness from a different view-
point. If0 -4’ 4> 4" > 0isexactand0-B®R® A -BRA->BR A" -0
is not exact (of course, this means the 0 at front cannot be there), then we
have made B the culprit. Good modules preserve exactness, and we have
called them flat. Perhaps the fault is not in our modules but in our sequences.

Definition: An exact sequence of left R-modules
045454750
is pure exact if, for every right R-module B, we have exactness of
0-BRA 25 B®A>B®A" 0.
We say that 14’ is a pure submodule of 4 in this case.

Of course, one need only worry whether 1; ® A is monic for every B. It
is easy to see that every split short exact sequence is pure exact; every
summand is a pure submodule.

Exercises: 3.39. Prove that a right R-module 4 is flat if and only if
whenever Y ar; =0 in A (where g, A4 and r; e R), there exist elements
b;€ A and s;; € R such that

ai = Z bjsu al’ld Z sijri = O.
J i
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340. 0—> A’ — A —> A" —01s pure exact if and only if it remains exact
after tensoring by every finitely related module B. (Hint: To say an element
lies in ker(B ® 4’ — B ® A4) involves only finitely many elements of B.)
341. If 0> A'> A-» A" -0 remains exact after applying Hom(B, )
for all B, then the original sequence is split.

Lemma 3.64: Let B be a finitely related right R-module with generators
by, ..., b,and relations Y by, i=1,... m. If Ais aleft R-module with

M=

b;®a;=0 in B®gA,

i=1

then there are elements b; € A with a; = Y ryh;, all j.

Proof: We have varied the definition of generators and relations a bit.
We really mean there is an exact sequence

0-K5HF5BS0

with F free on x, ..., x,, K generated by Y x;r;;, i = 1,..., m,and px; = b;.
Tensoring by A gives exactness of

KRQAL2L FoA-225% B A -0,

and, by hypothesis, Y x; ® a;ekerp® 1 = im u ® 1. Now every element of
K ® A has an expression of the form

Y xjrs ® by, where hed
i
In particular,
2Xi®a=p®) ) xri®@h=3 x;® (Z rjfhi)'
6j j i

Since F is free on the x;'s, every element of F® A =[[(x;R) ® 4 has a
unique expression of the form ) x;® o;, where ;e A. It follows that
aj = er,-h,-, as deSlI‘ed. I

Theorem 3.65 (P.M. Cohn): Let A:4"— A be monic. Then AA’ is a pure
submodule of A if and only if, given any commutative diagram with F,, F,
fg. free, there is a map Fy — A' making the top triangle commute.

Fl‘—‘“‘—'—;FO
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Remark: We restate the condition in terms of equations and then in terms
of matrices.

1. Ifai,...,a in A satisfy a system of equations ia} = Zrﬁai, where
a; € A, then there exist hi € A’ with aj = Y r;h; for all j.

2. Assume ¥’ is a column vector in AA’ and D is a rectangular matrix
over R with V' = DV for some column vector V in A4; then there is a column
vector H' in A4’ with V' = DH'.

Proof: Assume AA" is pure in A and Ad) =Y r;aq; for elements g; € A.
Define a finitely related module B = F/K, where Fisfreeonx,,j=1,...,n,
and K is generated by Y xjry, i=1,...,m; let b;=x;+ K. In BQ A,
we have

Yh® dd; = Z by ® Qrpa) = Z (Z i @ ) 0.

Since 1 ® A is monic, by purity, we have ) b; ® a; = 0in B® 4". By Lemma
3.64, there are elements h; € A’ with aj = Y rih;, aH J-

For the converse, we must show 1 @ A:BQ A’ —B® A is monic for
every B. By Exercise 3.40, we may assume B is finitely related, say, with
generators by, ..., b, and relators Y br;;, i=1,...,m. A typical element
of B® A’ can be written ) b; @ a; for aje 4. I (1@ )Y b;®a;=0 in
B®A, is Yp;®@a;=0in BRA'? By Lemma 3.64, there are elements
h;e A with Ad; = Y1k, all j. By hypothesis, there are elements hje A’
with a} = ) r;hi, all j. Therefore

Yb;®aj —Zb ®Qr ih’)_Z<Zb“,>®h;=0 in BA.

Hence 1 ® A is monic and A4’ is a pure submodule of 4. |

Exercises: 3.42. If R =Z, prove that a subgroup A’ of 4 is pure if and
onlyif 4’ nnd =nd'forallne Z.

3.43. If A4 and B are torsion abelian groups, prove that A® B 1s a
sum of cyclic groups. (Hint: Use Kulikov’s theorem [Rotman, 1973, p. 197]:
if 4 is a torsion abelian group, there is a pure exact sequence

0-C—-A4->D->0,

where C 1s a sum of cyclic groups and D is divisible.)
3.44. Let A’ be a subgroup of a torsion-free abelian group A. Prove
that 4’ is pure in A if and only if 4/4’ is torsion-free.




Localization 97

3.45. 1f{A;:ieI}isafamily of pure subgroups of a torsion-free group 4,
then ﬂAi is pure in 4. (Hint: There is an exact sequence

04—~ A [](4/4))
(If 4 is not torsion-free, an intersection of pure subgroups need not be pure.)

LOCALIZATION

A very important construction in commutative algebra is “localizing”
aring R (it is the ring-theoretic way to focus on the behavior of an algebraic
variety at a neighborhood of one of its points). All rings in this section
are commutative; I saw the elegant exposition below in unpublished lecture
notes of M. Artin. We assume the reader accepts the existence of R[U],
the ring of all polynomials in (possibly infinitely many) variables U. More-
over, we assume the reader knows R[U] is the free commutative R-algebra

with basis U:
R[U]

U————3FR
®
if R" is an R-algebra and ¢:U — R’ any function, there exists a unique
R-algebra map § extending ¢ (that § is an R-algebra map means § is a
ring map with @(rx) = r(x) for all r€ R and x € R[U]). This merely says
R-algebra maps from R[U] are completely determined by their values
on the variables U. -

Definition: Let S be a subset of a commutative ring R. The localization
S§T'R is a commutative R-algebra and an R-algebra map 6:R —S 'R
such that

(i) O(s) is invertible for every se S;
(i) SR is universal with this property:

R——————§~1R
/
/
v /o
/
/
R/
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if R’ is a commutative R-algebra and y:R — R’ is an R-algebra map with
Y(s) invertible for all se S, then there exists a unique R-algebra map
@:S7!R - R’ with @8 = .

As any solution to a universal mapping problem, S™*R is unique if
it exists.

Theorem 3.66: For every subset S of a commutative ring R, the localization
S™IR exists.

Proof: Let R[U] be the polynomial ring over R in variables U = {u;:5 € S},
a set in one-one correspondence with S. Define S™'R = R[U]/I, where
I is the ideal generated by all elements of the form su, — 1, s € S; define
0:R -» S7*R as the composite R — R[U] — S™!R, the first arrow imbedding
R as the constants, the second being the natural map. It is clear that S™'R
is a commutative R-algebra, 0 is an R-algebra map, and that 6(s) is invertible
for every s e S.

Assume R’ is a commutative R-algebra and ¥:R—~ R’ is an R-algebra
map with (s) invertible for all s € S. Now the definition of # is precisely

R » R[U]

commutativity of the top triangle in the diagram. Define ¢o:R[U] — R’ as
the unique R-algebramap with u, — (s}~ !, all s € S. Since /(s) is|invertible
for all seS§, kerg, = I; it follows that ¢, induces an R-algebra map
@:S™'R = R[U]/I = R with @0 = 4. Uniqueness of ¢ follows from S™!R
being generated, as an R-algebra, by the image of R[U]. |

We now know SR exists, but what does it look like? Here are some
simple observations, whose verifications are left as exercises.
Definition: A subset S of a ring R is multiplicatively closed if it is 2 monoid:
1eS;ifs,,s, €8, then sys,€ 8.

If S is any subset of R, let S be the monoid in R generated by S.
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Exercises: 3.46. For any subset S of R, there is an isomorphism
S™'R = (S)"'R. (Hint: Both are solutions to the same universal mapping
problem.)

3.47. If S is finite, say, S={sy,...,s,}, and if s=[[i=, s, then
S§™1R = s7'R. (Hint: If s~* exists, so does s™(s, - -+ § - - 5,) = s !, where
~ means delete.)

Theorem 3.67: If S is a subset of R, then each x € S™'R has a factorization
x=0nb(s)"!, 58§, rekR

Remark: This factorization is not unique.

Proof: The set A of all x € S™!R admitting such a factorization is a sub-
algebra containing im @; in particular, 6(s) is invertible in A for every se S.
If i:4 — ST'R is the inclusion, there is a commutative diagram

R—"—ss5iR

¢ P,

o A 1

\fi
STIR

where ¢ exists by universality. As the identity on S™!R makes the large
triangle commute, uniqueness gives ip = 1. By set theory, i is onto and
A=S"'R 1]

It follows that we may write the elements of S™!R as “fractions” /s,
where r € R and s € §; moreover, addition and multiplication of fractions
have the usual formulas. The only difficulty is that “cross multiplication” is
not the answer to the question of when r/s = #'/s’. This is plain in case O € S,
for 0 invertible in S™*R forces 0 = 1 there; in this case, S™'R = {0}, a ring
whose existence we admit, but whose abode we choose to be outer darkness.
In particular, if we denote 8:R — S™! R by r — r/1, then 6 need not be monic.

Theorem 3.68: If 0:R— SR, then

ker = {r e R:sr = 0 for some s € §}.

Proof: Ifsr =0 for some s e S, then 6(r) = 6(rs)8(s)~! = 0.
Conversely, assume 0(r) = 0. As ST!R = R[U]/I, we have r € 1, the ideal
generated by all su; — 1. Writing what this means gives an equation involving
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only finitely many u, say, u,, ..., U,. Iif Sg = {s;, ..., 5.}, then r € ker 6,
where 0y:R — S *R. By Exercise 3.47, we may assume the finite set S
consists of just one element, s, whence s~ 'R = R[u]/(su — 1). But 0(r) = 0
says
r=(su— 1)f(u), where  f(u) € R[u]
=(su — D(ag + ayu+ - -+ au").
Expanding and equating coefficients of like powers of u give equations:
r= —a, 840 = A1, -, 8Qmoq = Oy, sa, = 0.

This gives s” " 'r = 0, as desired. |

Corollary 3.69: (i) If S contains no zero divisors, then R — S™ 'R is monic.
(i) If R is a domain with quotient field Q, then S™*R is a subring of Q.
(iii) If Ris adomainand S = R — {0}, then S"'R= Q.

Corollary 3.70: Let r/s and /s e S"*R. Then r/s=r/s’ if and only if
there is o € § with o(rs’ — r's) = 0.

Proof: Ifr/s=7r/s, then (rs — r's)/ss = 0in S™*R. Since s is invertible,
rs' — s =01n ST!R; by Theorem 3.68, o(rs' — r's) = 0 for some o € S.

The converse is left to the reader; it is easy and does not need Theorem
3.68. 1

The usual construction of S™'R mimics the standard construction of
the quotient field of a domain. Consider all ordered pairs (r,s) € R x § and
define an equivalence relation by the, a priori, mysterious condition in
Corollary 3.70 (the usual relation of cross multiplication does not work, for
the possible presence of zero divisors in S prevents it from being an equiva-
lence relation). The standard definitions of addition and multiplication of
equivalence classes are given, and the myriad easy calculations (the operations
are well defined and all the ring axioms hold) are left as a tedious exercise.

Usually one assumes S is multiplicatively closed (S =S) when con-
structing S R; by Exercise 3.46, the same localizations arise. The two most
popular examples of multiplicatively closed subsets S of Rare: (i) S = R — P,
where P is a prime ideal of R; (i) S = {":n > 0} for some fixed re R.

The ring S™ 'R is an R-module (if we forget some multiplication). One of
its most useful features, and the reason localization appears in this chapter,
is that S™'R is flat as an R-module. We now prove this.

Definition: IfS is a subset of a commutative ring R and if M is an R-module,
then

ST'M =S IR ®; M.
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There is an obvious map 0,,: M — S~ *M given by m — 1 ® m. The next
result generalizes Theorem 3.68, which describes ker 6, (we wrote 6 for 0y
then).

Theorem 3.71:  ker 0, = {m € M:om = 0 for some g € S}.

Proof: If om = 0 for some ¢ €5, then 0,,(m) = 1/50,,(cm) = 0. The proof
of the reverse inclusion parallels that of Theorem 3.68. As there, we may
reduce to the case S = {s}, so there is an exact sequence

0—(su— 1) R[u] 5 S 'R 0.
There is a commutative diagram

Ol L SM 0

u—yeM—2 LR eM

where the top row is exact because of right exactness of ®zM, and
A:m— 1 ® m is monic (because, as R-modules, R is a summand of R[u]).
It follows that

kerOy ={meM:1@mekern®@1}={meM:1@meimj® 1}.
Now R[u] is a free R-module with basis {1,u,u%...}. Therefore
Ru]@M =[[(R¥ ® M), so that every xe R[u]® M has a unique
expression

n
x=Y u@m, where m; e M.

i=0

Hence,
kerOy ={meM:1@m=(su—1) Y, v ®m;].
i=Q

We now proceed as in Theorem 3.68, expanding and equating coefficients.
There are equations:

1®@m=—-1Qmy; U@ smg=u®my;...;
U@ sm,_, =u"®r¢/,; @ sm, =0.

These give "' @5 'm=0 in Ru"** ® M =~ M, whence 5" 'm =0, as
desired. |}
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Corollary 3.72: Every element of S™'M has the form s™'®m, ‘where
seS. Moreover, sT* @ m, = s3* @ m, if and only if there is some o € S with
o(symy — symy) = 0.

Proof: A typical element of S™!M = S™'R ®z M has the form ) x; ® m;,
where x; € S”'R and m; € M. But x; = r;/s;, where s; € S, so that

Yx:@m =31/ @m =3 1/s; @rm; =Y 0:/s @ ram;
(where s = [[s; and 0; = [ [j: 5))
=1s®Yorm=1/s@m.
If s;'@m, =s;' ® m,, then (1/s5,5,) ® (sym; — 5,m,) =0 and hence

1® (sym; — s;m,) = 0. By Theorem 3.71, there is se S with o(s,m; —
simy)=0. §

As a consequence of Corollary 3.72, one writes the elements of S™*M as
m/s, where me M and se §, with addition and scalar multiplication as
suggested by the notation.

Theorem 3.73:  For any subset S of R, the localization S™'R is flat as an
R-module.

Proof: Assume f:M' — M is monic; we must show 1 Q@ f:S™*M' - S™M
is monic. Let (1 ® f)(s™ ' ®@m) =s" ' ® fm' = 0in §™ ' M. Then multiplying
by s gives 1 ® fm’ = 0. By Theorem 3.71, there is o € S with gfim’ = 0. But
ofm’ = f(om), so that f monic implies om’ = 0. Since ¢ is a unit in S7'R,
however, 0= s"* @ om’ = o(s” ! @ m') implies s™* @ m' = 0. ]

Corollary 3.74:  S™1: 33 — g-1x M is an exact functor.

Proof: S™1'is, by definition, the functor S™!R ®; ; to say this functor is
exact is precisely to say that S™'R is a flat R-module. |

We remark that if f:M — M’, then S™*f:S7'M — S~ *M’ is given b
mfs > (fm)/s. :

Exercises: 348. If S, = S<R, then S7Y(S7'4)=S"14=S87(S"14)
for every R-module A.

349. If A, and A4, are submodules of B, then S™'(4, N 4,) =
S™1A4, A~ S™1A4,.

3.50. Every R-map f:B— B, where B and B’ are S™!R modules, is
automatically an S ™! R map. (Hint: Consider sf(m/s).)

3.51. The maps 0,:M— S™'M define a natural transformation
0:1- 871,

3.52. Find a functor G so that (S, G) is an adjoint pair.
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3.53. Prove that S"'R®@zS 'R~ S 'R as S~ !R-modules. (Hint:
Consider multiplication on S™!R.)

Lemma 3.75: If BisanS™'R-module, then B = S~ *B; moreover,if f:B— B’
is an S™*R-map between S™*R-modules, then f = §™'f,

Proof: Define p:B—S™'Bbybr—> 1@ b.Ifp(h)=1®b=0,thencb =0
for some o € S; since o is a unit in S”*R and B is an S™ *R-module, we have
0 =0"*ob) = b. To see ¢ s epic, note that s™* @ b = (s~ h).

The second statement is obvious from the identification s™* ® b = b/s.
Without identification, it says we have commutativity of

B —_—..—f_._’ B

S"1R®B"""‘—lé}-“—-’S"1R®B’ ]

The next theorem says S™ ! preserves most nice modules.

Theorem 3.76: Let S be a subset of a commutative ring R, and let A be an
R-module.
(i) If Ais R-free, then ST A is S~ 'R-free.
() If Aisfg.,thenS™t Ais fg.
(iit) If A is finitely related, then S™*A is finitely related.
(iv) If Ais R-projective, then S™'A is S~ *R-projective.

Proof: (i) S™*! preserves sums.

(i) If F> A—0 is exact with F f.g. free, then ST F>S"14-0 is
exact, with S™!F f.g. free.

(i) IfF, > Fo— A— 0is exact with F; and F, fg. free, then S™*F, —
§™'F,— S™'4 — 0 has the same properties.

(iv) 87! preserves summands. J

It is true that S™* preserves flatness, but this requires a short lemma.

Lemma 3.77: For R-modules B and A, there is a natural isomorphism
STYB®gA) = STIB®@s-x ST A

Proof: An elementary argument is to define an isomorphism by bringing
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an element of S™!B ®g-1z S™! 4 into a normal form:
Ybi/s ® aifo; =Y (bi/s,0) ®a;  (slip 1/, across tensor sign)
=) (1/5:0)(b; ® ).

A fancier argument is to show S™Y(B ® A) satisfies the universal mapping
problem for §*R-bilinear maps f:

STIBxS'A—F L5 B®A)
/
/
//
/ /
%
/
/
M

Define h:(b/s,a/c) — (1/s0)(b ® a). Details of either version are left to the
reader. ||

Theorem 3.78: If B is a flat R-module, then S™*B is a flat S™*R-module.

Proof: Let f:A— A’ be monic in ¢-.zxM; is 1@ f:S 'BRs-1xg4
S7!B ®s-15 A’ monic? By Lemma 3.75, we may ask whether

19SS 'B®s-1g S 'A—> S 'BRs-1zg 814’
is monic; by Lemma 3.77, we may even ask whether
STM1® f):STH(BRrA) — S (B®rA)

is monic. The affirmative answer is now apparent: 1 ® f is monic because
Bis Rflat, and S™ (1 ® f) is monic because S~ is an exact functor. ||

This theorem may also be proved using Exercise 3.38.

Corollary 3.79:  Let S, < S be subsets of R. For any R-module A,
ST'A=S8"Y(S7'4) = S7'A ®s; 1z S”'R.

Proof: InExercise 3.48, weobservedthat S™*A4 = S™}(S7*4) = ST {(S™'A4)
(for all satisfy the same universal mapping problem). But
STHST'A) = ST (A ®rS™T'R) = 874 ®s-12 S; (S™'R), by Lemma 3.77.
Since S7*(S™'R) = S™'R, we have the desired formula. |

The proper attitude is that ST R is a less complicated ring than R. For
example, if R is a domain, its quotient field is a localization (thus, Theorem

3.73 is a vast generalization of Corollary 3.48). More generally, if P is a
prime ideal in R and § = R — P ({0} is a prime ideal when R is a domain),
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S~ 'R isaring having only one maximal ideal. In this very important special
case, one writes Rp, Mp, and f, instead of S™'R, S™'M, and S~ 'f, where M
is an R-module and f is an R-map. The next theorem illustrates how one may
use localization to reduce a problem to a simpler setting.

Theorem 3.80: (i) If M is an R-module with My =0 for every maximal
ideal P of R, then M = Q.

() If f:M — N has fp:Mp — Np monic (or epic) for every maximal ideal
P, then f is monic (or epic).

Proof: (i) Assume M s 0, and choose meM with m# 0. If I =
{re Rirm =0}, then I is a proper ideal of R, hence is contained in some
maximal ideal P. Now m/1 € M, = 0, so Theorem 3.71 provides ¢ € R — P,
ie., o ¢ P, with om = 0. But ¢ € I < P, a contradiction.

(i) Consider the exact sequence 0 — K — M I, N, where K = ker f.For
each maximal ideal P, Corollary 3.74 gives an exact sequence

O*KP*MP'—'{?“)NP.

By hypothesis, each f, is monic, whence K = 0 for all P, and so K = 0, by
part (i). Therefore f is monic.

If each f, is epic, there is a similar argument using coker f. |
A variation on the proof just given is useful.

Theorem 3.81: Let M be fg. and S = R. Then S™*M =0 if and only if
there exists o € S with oM = 0.

Proof: LetM =<{xy,...,%,p. If 7'M =0, then each x;/1 = 0in S™*M.
By Theorem 3.71, there is g; € S with o;x; = 0. Note that ¢ = []o; € S and
that gx; = O for all i. It follows that oM = 0.

For the converse, oM = 0 implies ¢(S™*M) = 0. On the other hand,
§7'M is an S~ 'R-module, and o is invertible in S * R. Therefore, multiplica-
tion by ¢ is an automorphism of S™*M (whose inverse is multiplication by
1/0). It follows that M = 0. ||

Our final desire in this chapter is to obtain an analogue of Lemma 3.77
for Hom in place of ® : we wish to show S ™! Homg(N, M) = Homg-z(S !N,
S~1M), but, in contrast to Lemma 3.77, some restriction must be imposed on
N. To see that the formula is not generally true, take R = Z and S"*R = Q.
If N =Q and M = Z, then Hom,(Q,Z) = 0, hence its localization is 0; on
the other hand, Homg(Q ® Q,Q ® Z) = Homy(Q,Q) = Q.

We first give two very general results.

Lemma 3.82: Let A be an R-algebra, and N a finitely related R-module. For
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every A-module M, there is a natural isomorphism
6:Hompg(N, M) = Hom (N ®z 4, M)
given by f — f, where f(x® 1) = f(x) for all x e N.

Proof: We first establish an isomorphism when N is fg. free. If N has a basis
{es,...,e,}, then N®zA has a basis {¢,®1,...,¢,®1}. Define
6:Homg(N, M) — Hom (N ® A, M) by f s f, where fle;® 1) = fle), i =
1,...,n That 0 is a well-defined isomorphism is a restatement of the
definition of basis.
Now assume N is finitely related, so there is an exact sequence
RT->R ->N-Q.
There is a commutative diagram with exact rows:

0—  Homg(N,M) — Homg(R’,M)— Homg(R", M)

€ e

0 — Homy,(N ®g 4, M) - Hom4(4%, M) —» Hom (4", M)
As the vertical maps 6 are isomorphisms, the (dashed) induced map is also an
isomorphism, and it has the desired formula. We leave the check ofnaturality
to the reader. | .

Lemma 3.83: Let B be flat and N finitely related. For any module M, there
is a natural isomorphism

¥:B ®z Homg(N, M) = Homg(N, M ®z B)
givenby b ® g — g, where gy(n) = g(n) ® b.

Proof: It is clear that ¢ arises from the R-bilinear function sending
(b, 9) — g, it is natural (in N), and it is an isomorphism when N is f.g. free.
There is an exact sequence when N is finitely related:

R" >R N 0.
Since B is flat, there is a commutative diagram with exact rows:

0— B® Hom(N, M) - B® Hom(R*, M) —» B ® Hom(R", M)

¥ ¥ ¥

0— Hom(N, M ® B) - Hom(R*, M ® B)— Hom(R", M ® B)
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Since the second two vertical maps are isomorphisms, so is the first. ]|

Theorem 3.84: Let S < R, and let N be a finitely related R-module. There is
a natural isomorphism, for every R-module M,

@:S™ ! Homg(N, M) = Homg-15(S™'N,S™* M)
given by g/1 v g, where 3(x/1) = g(x) ® 1 forall xe N.

Proof: By definition, S™'Homg(N, M) = S™'R ®z Homg(N, M). Since
S~1R is flat (Theorem 3.73), Lemma 3.83 gives an isomorphism

S Homg(N, M) = Homg(N, S~ 1M);
since S™'R is an R-algebra, Lemma 3.82 gives an isomorphism
Hompg(N,S™ M) = Homg-1x(S™IN,S™*M).

The composite is an isomorphism having the given formula. |

Theorem 3.85: Assume R is a ring in which every ideal is finitely related.
If S = R and 4 is an injective R-module, then S™!4'is an injective S™!R-
module.

Proof: Note first that if I = {ry/s;,...,r/S,;:1;€R,s;€8) is an ideal in
S™1R, then there is anideal Jin R, namely, J = {ry, ..., r, with S™'J = L
By Baer’s criterion, it suffices to show

i*:Homg- ,g(S 'R, S~ ! 4) —» Homg- z(I,S ' 4)

is epic for every ideal I, where i:I - S™'R is the inclusion. But Theorem
3.84 gives a commutative diagram

S~'Homg(R, A) ——> S~ Homg(J, 4)

\ \
Homyg- 1z(S™'R,S™'4) —» Homg- 1 x(S™1J, S~ 1 4).

Injectivity of 4 implies Homg(R, 4) — Homg(J, 4) is epic, so that (right)
exactness of S™* shows the top arrow is epic. Since the vertical arrows are
isomorphisms, the bottom arrow is epic, too. This completes the proof be-
cause 71U =1 |

Remarks: 1. Ifeveryideal of Ris{g. (i.e, R is noetherian), then Corollary
4.2 shows that every ideal of R must be finitely related.

2. Dade [1981] shows that if k is a commutative ring and R = k[ X], where
X is an uncountable set of indeterminates, then there exists a subset S of R
and an injective R-module E such that $™'E is not an injective S~ !R-
module. If, however, X is countable and k is noetherian, he shows E an in-
J;:ct;ve R-module implies $™'E is an injective S~ *R-module for every subset

of R.




4 Specific Rings

The time for examples has come. We pose twin problems: if conditions
are imposed on projective, injective, or flat modules, how does this affect
the ring of scalars R; if we put conditions on R, how does this affect these
special modules? We deviate from earlier style in that a number of results
are stated without proof (though references are given). There are almost no
exercises, for they would be more ring-theoretic than homological. We do,
however, include a little ring theory to give the reader some feeling for the
theorems, thereby removing some of their mystery. Of course, what is
included and excluded is a matter of taste.

NOETHERIAN RINGS

Let us begin with a class of rings that arose several times in Chapter 3.
Definition: A ring R is left noetherian if every left ideal is f.g.
Examples: 1. Every principal ideal ring (possibly with zero divisors, e.g.,
Z/nZ, possibly noncommutative, e.g., division rings).

2. If R s left noetherian, so is R[x], polynomials in which x commutes

with all constants in R (Hilbert Basis Theorem) [ Lambek, 1966, p. 70]. By
induction on n, R left noetherian implies R[x,, .. ., x,] left noetherian.
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3. If R is commutative noetherian, so is any localization $™'R
[Kaplansky, 1970, p. 57].

4. Every quotient ring of a left noetherian ring is left noetherian.

5. If R is the ring of all matrices of the form (% ), where a € Z and b,
c€Q, then R is right noetherian but not left noetherian [Small, 1966].
(Dieudonné gave an example of this phenomenon in the 1950s [Cartan-
Eilenberg, 1956, p. 16].)

Theorem 4.1: R is left noetherian if and only if every submodule of a f.g. left
R-module M is also f.g.

Proof: Assume M = {x,, ..., X,», and S is a submodule of M. We do an

induction on nthat S is f.g. If n = 1, then M 1s cyclic, hence M = R/I for some

left ideal I (Theorem 2.2). It follows that S = J/I, where J is some left ideal

containing I. Since R is left noetherian, J, hence its image J/I = S, is f.g.
Suppose n > 1. If M’ = Rx,, there is an exact sequence

0-M->M->M/M -0,

and M/M' can be generated by n — 1 elements. There is another exact
sequence

0S8 M —S—S/(SM)-0.

Now S n M’ is fg., being a submodule of the cyclic module M’, while
SIS MYy~ (S+ M)M < M/M'is fg. by induction. It follows that S is

fg.
For the converse, the submodules of R, namely, the left ideals, are fg.,

hence R is left noetherian. |

Corollary 4.2: If R is left noetherian, then every f.g. module is finitely related.
Proof: If0— K — F—B—0is exact, where F is f.g. free, then K is fg.
by Theorem 4.1. ||
Corollary 4.3: If R is left noetherian, every f.g. flat module is projective.
Proof: Couple Corollary 4.2 with Corollary 3.58. |}

Note that we have identified the rings in the hypothesis of Corollary 3.34.

Corollary 4.4:  [f Ris left noetherian, every f.g. module M has a free resolution
---—-)Fn—-)Fn_l—-)---—-)Fl—-)FO—-)M—-)O
in which each F, is f.g.
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Proof: Since M 1s f.g., we may choose a f.g. free module F, and an exact
sequence 0 — Ky — Fy — M — 0. Since R is left noetherian, K, 1s f.g., so we
may choose a fg. free module F, mapping onto K, and obtain an exact
sequence 0 — K, — F, — K, — 0. Moreover, K, is fg, so we may iterate
this process as in Theorem 3.8. ||

Definition: A module M (over any ring) has ACC (ascending chain condition)
if every ascending chain of submodules

M,cM,cM;c<:

stops, i.e, there is an integer n with M, =M, =M, , ="

Theorem 4.5: 4 module M (over any ring) has ACC if and only if every sub-
module of M is fig.

Proof: Assume every submodule is fg. and let M; c M, < be an
ascending chain of submodules of M. If M* ={ )&%, M;, then M* =
{X1,..., X, by hypothesis. Each x; € My, let n = maxi(j). Then M*
M, = M*, so that the chain stops.

Assume S is'a submodule of M that is not f.g. Choose s, € S and define
M, = Rs;. Assume, by induction, that we have chosen s,,...,s,€ S so
that if M; = (s, ..., 5, then M, & M, & -+ & M, Since S is not fg, M,
is a proper submodule of S; we may thus choose s,,; € S with s, , ¢ M,.
Define M, = M, + Rs, 44, so that M, &€ M,,, ,. By the axiom of choice,!
there is an ascending sequence of submodules of M, namely, M; =« M, <.. .,
that plainly does not stop. This contradicts ACC. |

A module with ACC is often called “noetherian” because of this theorem.
Corollary 4.6: A ring R is left noetherian if and only if it has ACC on left
ideals.

Proof: If we consider R as a module, its submodules are the left ideals. |

Corollary 4.7:  If R is left noetherian, every f.g. module has ACC.
Proof: Theorems 4.1 and 4.5. |

Lemma 4.8: Let A be amodule (over any ring) and ¢: A — A an epimorphism.
If 4 has ACC, then ¢ is an isomorphism.

! This is a subtle logical point, Induction allows us to choose a suitable s, for each integer n.
The axiom of choice allows us to make all these choices simultaneously. Of course, one could
phrase this more formally.
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Proof: Let K, =kerp and let K, = ker(¢?), where ¢? = p¢. Clearly
K, = K, and ¢? is epic. There is a commutative diagram

The version of the Third Isomorphism Theorem in Exercise 2.10 shows that
if K, # 0, then K, is a proper submodule of K,. This procedure may then
be iterated, by induction, to obtain ker(¢") & ker(¢"*!). Since 4 has ACC,
it must be that K; = ker ¢ = 0, so that ¢ is an isomorphism. [

Theorem 4.9: If R is left noetherian, then R has IBN. Moreover, if A is free
of rank n, then any generating set with n elements is a basis.

Proof: Assume A is free and 4 =~ R" =~ R™, where m > n (R™ is the sum of
m copies of R). If m > n, there is an epimorphism ¢: 4 — 4 having a nonzero
kernel. But 4 has ACC, by Corollary 4.7. Therefore ¢ is an isomorphism, by
Lemma 4.8, contradicting ker ¢ 5 0.

Let A4 have a basis {x;,...,x,} and let 4 ={a,...,a,». Define an
epimorphism ¢:4 — 4 by x;+> a;. If ker ¢ 5 0, we reach a contradiction as
above. The result now follows from Exercise 3.3. |

Theorem 4.10:  The following are equivalent for a ring R.

() R is left noetherian; »
(i1) every direct limit (directed index set) of injective modules is injective;
(i) every sum of injective modules is injective.

Proof: (i)=-(il} Let {E;,¢}} be adirect system of injective modules over a
directed index set. By Theorem 2.17, ligl E; consists of elements [e;], ¢; € E;,

where [¢;] = Aie; + S and A;:E; — | | E; is the ith injection.
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Consider the diagram

f
0 -»7C >R
where J is a left ideal. Since R is left noetherian, J = {a,,...,a,». If F is
free on {x,, ..., x,} and we map F — J by x;+ g;, there is an exact sequence

0K — F—J— 0. Moreover, Theorem 4.1 gives K =<{yy, ..., y,»; each
Vp = 2rpi%;, where r,; € R,

The idea is to force S to take values in some one E;. In detail, fa; =
[e,( )+ Since the index set is directed, there is an index k > i(j), all j. Define
@eE,j=1,...,nbye = ¢, so that fa; = [e;;] = [¢/]. Each y,in K
yields [ereJ] 0. By Theorem 2.17, there is an index g(p) > k with
q)q(p)er Jef 0. Finally, choose an index m > g(p), all p, and define ¥’ € E,,
by b = ¢*el. The end result of these choices is that ¥ e E,,, j=1,...,n,
fa;=[V], and ) r,' = 0, all p.

Define f':J — E,, by a;+ b’. Note that f” is well defined, for we have
taken care that all the relations are sent to 0. Since E,, is injective, there
is a map ¢’:R — E,, extending f". Finally, define g:R — l;ujx E; by res[g7]
The map g does extend f, for

ga;=[g'a ] =[f'a]= (7] = fa;.
Therefore, lgn E; is injective.

(i) = (iii) A finite sum of injectives is injective and, by Exercise 2.33,
every sum is a direct limit, with directed index set, of its finite partial sums.
Thus | | E; is injective.

(iiiy=> (1) (This implication is due to Bass.) We show that if R is not
noetherian, there is an ideal J and a map from I to a sum of injectives that
cannot be extended to R. If R is not noetherian, there is a strictly increasing
sequence of left ideals I, & # Lz # . Let I ={ 5%, I,,; note that I/I #0
for all n. Imbed I/I, in an injective module E,. We claim that [ | E, is not
injective.

Let =,:I —I/I, be the natural map. For each ae I, n,a =0 for large
n, so the map f:I — [ |E, given by

a—(ma,m,a,. .., 4, ... = (7,0

does have its image in | [E,. We regard f as a map I — | [E,. Suppose there
were amap g: R — | [E, extending f. Write g(1) = (x,). Choose m and choose




Noetherian Rings 113

ael, a¢l,. Now m,as# 0, so that ga = fa has nonzero mth coordinate
n.a. But g(a) = ag(1) = a(x,) = (ax,). Therefore =,a = ax,,, so that x,, 0.
Since m is arbitrary, we have contradicted the fact that almost all the
coordinates of an element in a sum are zero. |}

Let us give a direct proof that R left noetherian implies [ [E; is injective
when each E; is injective. Consider the diagram

LIE

0 » 1 C >R

where I is a left ideal. Since R is left noetherian, I = {a,, ..., a,). For each
j, the “vector” fa; in [|E; has only finitely many nonzero coordinates;
since there are only finitely many a;, { fa,, . . ., fa,} collectively involve only
finitely many E;, say, E;,, ..., E; . It follows that im f < E; @ @ E; ,
which is injective, being a finite sum of injectives. There is thus a map
g:R—E, @ ' @®E, extending f, which we may regard as having its
image in the larger module | [E;.
We quote a theorem of Chase analogous to Theorem 4.10.

Definition: A ring R is left coherent if every f.g. left ideal is finitely related.

Examples: 6. Every left noetherian ring is left coherent.
7. I kis a field, then the ring of polynomials over k in infinitely many
variables is coherent (but not noetherian).

Theorem A (Chase): A ring R is left coherent if and only if every product
of flat left R-modules is flat.
Proof: [Anderson—Fuller, 1974, p. 229].

Another important class of rings is dual (in the lattice-theoretic sense)

to noetherian rings.

Definition: A ring Risleft artinian if it has DCC (descending chain condition)
on left ideals (i.e., every descending chain of left ideals I, > I, = - - - stops).

Examples: 8. If k is a field, every finite-dimensional k-algebra R is left
(and right) artinian.
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9. A product of finitely many left artinian rings is left artinian (in a
product of rings R = [ [R;, each R, is a two-sided ideal of R).
10. Every finite ring is left (and right) artinian.
11. There exist rings that are right artinian but not left artinian.
Small observed that {3¢): a€ Q, b, c € R} is such a ring.
- 12, Every left artinian ring is left noetherian (Hopkins-Levitzki
Theorem) [ Anderson-Fuller, 1974, p. 172].

Definition: A ring R is left perfect if it satisfies DCC on principal right ideals.

(This curious mixing of left and right is explained by the theorems
to come.)

Examples: 13. IfRisleft or right artinian, then Ris left perfect [ Anderson—
Fuller, 1974, p. 318].

14. A ring may be left perfect but not right perfect [ Anderson~Fuller,
1974, p. 322].

Theorem B (Bass): A ring R is left perfect if and only if every flat left
R-module is projective.

Proof: [Anderson-Fuller, 1974, p. 315].

Theorem C (Chase): Every product of projective left R-modules is projec-
tive if and only if R is left perfect and right coherent.

Proof: [Chase, 1960].

Theorem D (Chase): If R is commutative, every product of projective
R-modules is projective if and only if R is artinian.

Proof : [Chase, 1960].
Theorem E (Bass): A ring R is left perfect if and only if every left R-module
has a projective cover.

Proof: [Anderson-Fuller, 1974, p. 315].
We shall return to projective covers later in this chapter (Theorems 4.46
and 4.50).

Exercises: 4.1. If R is a division ring, every left R-module is projective
and injective.
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42. IfRisadomain but not a field, an R-module that is simultaneously
projective and injective must be 0.

43. If R is left artinian, then R contains a minimal left ideal S, ie.,
S s 0 and S contains no smaller nonzero left ideal.

SEMISIMPLE RINGS

We are going to characterize those rings for which every module is
projective.

Definition: A module A is simple (or irreducible) if 4 5 0 and A has no
proper submodules; 4 is semisimple if it is a sum of (possibly infinitely many)
simple modules.

Theorem 4.11: A module A is semisimple if and only if every submodule of A
is a summand.

Proof: Suppose A is semisimple: A = | [,.x S;, where S, is simple. Given
a subset I < K, define S; = | [,.; S,. If B is a submodule of 4, choose, by
Zorn’s lemma, a subset I of K maximal with S; B = 0. We claim
A= B® S;; to prove this, it suffices to show S, = S; + B for every ke K.
Clearly this is so for k € I. If k ¢ I, then maximality gives (S; + Si) N B # 0.
Writing what this means in terms of elements, one sees (S; + B) n S, # 0.
Since S, is simple, (S; + B) N S, = S, ie, S, = S; + B.

Suppose, conversely, that every submodule of 4 is a summand. We first
show each nonzero submodule B contains a simple submodule. If b € B,
b # 0, Zorn’s lemma gives a submodule C of B maximal with b ¢ C. Since
every submodule of B is a summand of A4, hence of B (Exercise 2.23),
B = C @ D for some submodule D. We claim D is simple, for if D’ is a proper
submodule of D, then D=D"@® D" and B=C® D =C@ D @ D”. Either
C®D or C@® D" does not contain b, contradicting the maximality of C.
Second, we show 4 is a sum of simple modules. By Zorn’s lemma, there is
a family of simple submodules of 4, {S,:k € K}, maximal such that the
submodule M they generate is their sum | [S,. By hypothesis, 4 = M & B
for some B. If B = 0, we are done. If B 0, then B = S @ B’ for some simple
S, by our first argument. The family {S, S,:k € K} violates the maximality
of {S,:k e K}, whence A is semisimple. [

Corollary 4.12:  Every submodule and every quotient of a semisimple module
A is semisimple.
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Proof: If B is a submodule of A4, Exercise 2.23 shows the criterion of
Theorem 4.11 applies to B. If A/B = C, then B is a summand of 4, so that
C is isomorphic to a submodule of 4, hence is semisimple. |

Definition: A ring R is left semisimple if, as a left R-module, it is semisimple.

Since the submodules of R are its left ideals, R is a sum of simple left
ideals. Moreover, since R has a unit, it 1s easy to see R is a sum of a finite
number of simple left ideals. Of course, a simple left ideal is just a minimal
left ideal.

Example: 15. Wedderburn’s theorem asserts that every semisimple ring R
is a finite product of full matrix rings over divisionrings: R = [[;=, End, (V3),
where End, (V;) = Hom,,(V,, V), and V; is a left vector space over a division
ring A; (say, of dimension n;). Moreover, the numbers r and »; and the division
rings A; are uniquely determined by R.

It follows from Wedderburn’s theorem that R is left semisimple if and
only if it is right semisimple. Proofs of this theorem abound in the literature.
In particular, it is shown in [Anderson-T uller, 1974, p. 154] that R is semi-
simple if and only if R is a finite product of simple artinian rings (where
“simple” means no nontrivial two-sided ideals). Here is a proof, due to
Rieffel,? that R simple left artinian implies R & End,(V) for a division ring
A and a left vector space V over A. If ¥ is a minimal left ideal of R (which
exists, by Exercise 4.3), then A = Endg(V) is a division ring (an elementary
fact called Schur’s lemma). Now V is a left A-module if we write endo-
morphisms on the left, and V is finite-dimensional (since R is left artinian).
Define ¢:R — End,(V) by

o.wy=rs, reR, veV.

One checks easily that ¢ is a ring map. Since ¢ is not identically O (it preserves
the identity), ker ¢ # R; since R is simple, ¢ is one—one. To see that ¢ is
onto, we first show that (V') is a left ideal in End,(V): indeed, we show f¢, =
@ forall feEndy(V)and allve V. If ue V, then v vu € Endg(V) = A,
so that f a A-map says

J(ow) = (f(0))u

(i.e., f commutes with the right multiplication by u). This last equation may
be restated as (fo,)u = @ ,yu, all u e V, as claimed.

Now VR is a nonzero two-sided ideal in R (for 1 € R), so that R = VR.
Hence ¢(R) = ¢(V)@(R) is a left ideal in End,(V), which must be the whole

%I am grateful to I. Kaplansky for calling my attention to this proof.
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ring since ¢(R) contains the identity of End,(R). Therefore ¢:R — End,(V)
is an isomorphism of rings.

Definition: Let G be a (multiplicative) group and k a commutative ring,
The group ring kG is the k-algebra whose additive structure is that of a free
k-module with basis the elements of G, and whose multiplication is given
by the multiplication in G and the distributive law.

Examples: 16. Maschke’s theorem [Curtis—Reiner, 1962, p. 41] says that
if G is a finite group and k is a field whose characteristic does not divide
the order of G, then kG is semisimple. (See Theorem 10.28.)

17. If k is a field of characteristic 0, then R = k[x]/(x" — 1) is semi-
simple (for R is just kG, where G is cyclic of order n).

18. R = Z/nZ is semisimple if and only if n is square free.

Here is the reason we have been discussing semisimple rings.

Theorem 4.13:  The following are equivalent for a ring R:

(1) R is semisimple;

(i) every left R-module is semisimple;

(iii) every left R-module is injective;

(iv) every short exact sequence of left R-modules splits;
(v) every left R-module is projective.

Proof: (i)=> (i) Since R is semisimple as a module, every free module is
semisimple. By Corollary 4.12, every quotient of a free module is semi-
simple. But this says every module is semisimple.

(i) = (ii}) If M is a module, then M may be imbedded in an injective
module E. By Theorem 4.11, M is a summand of E, and hence is injective.

(iiiy=> (iv) Theorem 3.19.

(iv)=(v) If M is a module, there is a short exact sequence 0 — K —
F — M — 0 with F free. As this sequence splits, M is a summand of F, hence
is projective.

(v)=(1) IfIis aleft ideal of R, then the module R/I is projective, by
hypothesis. By Corollary 3.13, I is a summand of R. By Theorem 4.11, R is
semisimple as an R-module, whence R is a semisimple ring. ||

Remark: It now follows from Corollary 3.42 that if R is semisimple, so is
R,, the ring of all n x n matrices over R. This may also be proved directly
from Wedderburn’s theorem.

This is an appropriate place to show that projective modules really do
occur naturally. The next theorem describes separability of field extensions
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in such a way that Galois theory may be done for commutative rings, not
just for fields.

Theorem 4.14: Let L and k be fields, with L a finite separable extension of
k. Then L is a projective L &, L-module.

Proof: First of all, Exercise 1.13 shows that L ®, L is a k-algebra, where
multiplication is given by (I; ® L)} ® ) = 1,1, ® LI;. It is obvious that
L is an (L — L)-bimodule, so that Exercise 1.15 shows that L is a module
over L ®, L (note that the exercise does apply, for L commutative allows us
to identify L with L°P). To prove the theorem, it suffices to prove L ®, L is
a product of fields, for then it is semisimple and every module is projective.

Since L is a finite separable extension of k, the theorem of the primitive
element [Lang, 1965, p. 185] provides an element « € L with L = k(). Let
f(x) € k[x] be the irreducible polynomial of «. There is an exact sequence of
k-modules

0—(f)—k[x]5L—0,

where (f) is the principal ideal generated by f(x); moreover,  is a k-algebra
map. Since k is a field, every k-module is flat, so we have exactness of

0-(f)® L —k[x] @ L == L®,L—0.

Now 7 ® 1 is a ring map, even a k-algebra map, so that (f) ®; L is an ideal
in k[x] ®, L. Therefore, there is a k-algebra isomorphism

L&L~k[x]®L/(f)® L.

If L[ y] is the polynomial ring with indeterminate y, then there is a k-algebra
isomorphism 6:k[x] ®, L — L[ y] given by

g ® I lg(y) ,
(we identify x ® 1 with y); moreover 8 takes () ® L onto (f(y)). Therefore,
L &L= L[y]/(f(y).

Now f, though irreducible over k, may factor over L. However, separability
tells us there are no repeated factors:

fy=[Ie(y) in L[y], \

where the p;(y) are distinct irreducible polynomials. The principal ideals
(p:(y)) are thus distinct maximal ideals in the principal ideal domain L[ y],
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so the Chinese Remainder Theorem® gives a k-algebra isomorphism

LIylAS () = [ TALyIApd9))).

This concludes the proof, for each L[ y]/(p;) is a field. 1

The converse of Theorem 4.14 is true [DeMeyer-Ingraham, 1971, p. 49],
so finite separable field extensions may be characterized in terms of projec-
tivity. Notice that the characterization “L is a projective L ®, L-module”
makes sense for k any commutative ring and L any commutative k-algebra.

VON NEUMANN REGULAR RINGS
The next class of rings deals with flatness.

Definition: A ring R is von Neumann regular if, for each q € R, there is an
element o' € R with ad'a = a.

Examples: 19. Boolean rings (r* = r for every r € R).

20. R = End,(V), where V is a (possibly infinite-dimensional) vector
space over a field k.

21. Semisimple rings are von Neumann regular (this follows easily from
Example 20 and the Wedderburn theorem).

Lemma 4.15: If R is von Neumann regular, every f.g. left ideal is principal,

generated by an idempotent (an element e with e* = e). P

Proof: First of all, let us show every principal left ideal Ra is generated by
an idempotent. There is an element ¢’ € R with ad'a = a. It follows that
e = d'a is idempotent. Moreover, Ra = Re, for a € Re and e € Ra.

To show that an arbitrary f.g. left ideal is principal, it suffices, by induc-
tion, to prove Ra + Rb is principal. There is an idempotent e with Ra = Re.
Also, Ra + Rb = Re + Rb(1 — ¢): both a and b are in the right side; both e
and b(1 — e) are in the left side. As in the first paragraph, there is an idempo-
tent f with Rb(1 — ¢) = Rf ;moreover, f = rb(1 — e)forsomer e R.It follows
that fe = 0. We do not know whether ef = 0, so we adjust f.

3IfRisaringandI,,...,I, are “pairwise comaximal” two-sided ideals, i.e., I i+ I, =R
for all j # k, then R/(I; = [J(R/I;) as rings. In our case, it is easy to see Ni@()) = ().
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Define g = (1 — e)f. Then
g?=1-ofl~af=(l-ef —fo)f =(1—e)f’=(1—-9f =g,
ge =0 = eg, and Rg = Rf.

Therefore, Ra + Rb = Re + Rg. We claim that Re + Rg = R(e + g). Clearly
Re + Rg » R(e + g). For the reverse inclusion, note that re + sg =
(re + sg)(e + g)€ Rle + g) (since eg = 0 = ge). |

Theorem 4.16: A ring R is von Neumann regular if and only if every right
R-module is flat.

Proof: Assume R is von Neumann regular, and let B be a right R-module;
let 0 - K — F — B — 0 be exact, where F is free. By Theorem 3.55, it suffices
to prove KI = K n FI for every f.g. left ideal I. By Lemma 4.15, I = Ra
for some ae R. We need only show that if ke K and k = fa e Fa, then
ke Ka. But

k= fa= fad'a =ka'ae Ka.

Therefore B is flat.

For the converse, assume a € R. By hypothesis, the cyclic right R-module
R/aR is flat. Theorem 3.55 applied to the exact sequence 0 — aR — R —
R/aR — 0 gives

(aR)YI =aRNnRI=aRn 1]
for every left ideal I. In particular, if I = Ra, then aRa = aR n Ra and
aeaR n Ra=daRa.
There is thus some a’' € R with a = ad’a, and R is von Neumann regular. |

Here is a stupid argument that R semisimple implies R von Neumann
regular. If R is semisimple, every module is projective, hence flat, and so R
is von Neumann regular.

HEREDITARY AND DEDEKIND RINGS

We have seen how the assumption that every module is “special” forces
constraints on R. Let us now assume every ideal (or every f.g. ideal) is special.

Definition: A ring R is left hereditary if every left ideal is projective. A
Dedekind ring is a hereditary domain.*

* Recall that“domain” means “commutative integral domain”.
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Examples: 22. Every semisimple ring is left hereditary.

23. Every principal ideal domain R is hereditary, hence is a Dedekind
ring (for every nonzero ideal is isomorphic to R).

24. Small’s ring of triangular matrices (Example 5) is right hereditary
but not left hereditary. For the first example of this phenomenon, see
[Kaplansky, 1958b].

There are more examples after Corollary 4.26.

Theorem 4.17 (Kaplansky) If R is left hereditary, then every submodule
of a free module is isomorphic to a sum of left ideals.

Proof: Let Fbea free module with basis {x,:k € K}, and suppose the index
set K is well ordered. For each k € K, define
Fk = LI RX,';
i<k
therefore Fy =0 and Fy,, = U,«S «Rx;. Now let 4 be a submodule of F.
Each ae A n F,,, has a unique expression a = b + rx,, where b € F; and
re RIfg,:A n Fy, , — Ris defined by a +» r, then there is an exact sequence

0-ANF,»ANF . 21,0,

where I, = im ¢, is an ideal of R. Since I, is projective, this sequence splits:
AN Fey=(An F)®Cy, where C, = I,. We claim that A =][scx Cs,
which will complete the proof.

(i) A=<JCo. Since F={JF,,, each ae A4 (as any element of F)
lies in some F. ;. Let u(a) be theleast k with a € F,., ;. Clearly C = {(JC}) <
A. Suppose C # A, and consider {u(a):a € A, a ¢ C}. Let j be the least such
index, and choose ye 4 with y¢ C and u(y)=j Now u(y)=j says
yeAnF; ,s0that y=>b+ ¢, where be A n F; and ce C;. Therefore
b=y—ceA, b¢C (lest yeC), and u(b) <j, a contradiction. Hence
A=C=<{JCp.

(i) Uniqueness of expression. Suppose ¢; +---+c, =0, where
c;eCy,and k;, <k, <--- <k, Then

e+t =—ce(AnF )N G, =0.
It follows that ¢, = 0. Induction on n now gives ¢; = 0 for all i. |

Corollary 4.18: If R is left hereditary, every submodule of a projective
module is projective. .

Corollary 4.19:  Let R be a principal ideal domain.
(i) If Aisa submodule of a free module F, then A is free and

rank A < rank F.
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(11) If B is a submodule of a f.g. module B =(by,...,b,), then B’ is
f.g. and B’ can be generated by <n elements.

Proof: (i) Every nonzero ideal is isomorphic to R. In the notation of the
proof of Theorem 4.17, we have 4 =] [x.x Cs. Since C,=0o0rC,~R, we
have A free and rank 4 < card(K) = rank F.

(iiy Let F be free with basis {xi,...,x,}, and define ¢:F— B by
x;— b If A = ¢~ '(B), then ¢|A:4 — B’ is epic. By (i), 4 is free with some
basis {yi,.-., Vm} and m<n It follows that B’ is generated by
{q)(yl)’ vty q)(ym)} I

Corollary 4.20: If R is a principal ideal domain, every projective module is
free.

If R is Dedekind and A is a f.g. projective R-module, then Theorem 4.17
shows that A is a sum of finitely many ideals:

A=1,@® @I,

This decomposition is not unique: A = J @ F, where J is an ideal and F is
free of rank m—1 (indeed, J is the product ideal I, I,---1I,=
% anan ;e l; }) This latter decomposition is unique to isomor-
phism, and thls theorem is due to Steinitz [Milnor, 1971, p. 11].

Although Theorem C of Chase, cited earlier, tells us that products of
projectives may not be projective, let us actually see an example.

Theorem 4.21 (Baer): If {Ze;=Z:i=1,2,...} is a family of infinite
cyclic groups, then G = [|Ze; is not free (hence not projective).

Proof: By Corollary 4.19, it suffices to exhibit a subgroup of G that is not
free. Choose a prime p; define a subgroup S by '

S = {(m;e,) e G:for each k > 1, we have p*|m; for almost all i}.

For example, (a;p'¢;) € S for every a; € Z; it follows that card S = 2™. Were
S free, then its rank would be uncountable (for a countable sum of copies of
Z is countable). It would then follow that dim S/pS, as a vector space over
Z/pZ, is uncountable. We finish the proof by showing that dim S/pS < Nj.
Let us identify e; with (0,...,0,¢;,0,...) € S. We claim the cosets {¢; + pS,
i=1,2,...} span §/pS, which will suffice. If s = (me;) € S, then almost all
its coordinates m; are divisible by p. There is thus an integer N so that

s— ), me; =ps

i=1

for some s’ € S. In S/pS, the coset of s is thus a finite linear combination of
cosets of ¢;. ||
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Using the continuum hypothesis, Specker proved that
B = {(me;) € G:there exists N with |m;| < N for all i},

the subgroup of all bounded sequences, is free. Nobeling [ Fuchs, 1973, p. 173]
was able to generalize this result in two ways; first, the continuum hypothesis
need not be assumed; second, the index set of the product need not be
countable. The cited proofis an elegant one due to Bergman.

Corollary 4.18 characterizes left hereditary rings. In order to see this, we
first prove a lemma.

Lemma 4.22: A module P is projective if and only if every diagram with Q

/s
7
7/
/s
e
Q — QII 4\0

injective can be completed to a commutative diagram. The dual is also true.

Proof: 1If P is projective, the diagram can be completed with no hypothesis

on Q.

For the converse, consider the diagram

O A —— s g g >0;

we want a map P — 4 making the diagram commute. There is an injective Q
and a monic o:4 — Q. Imbed the diagram in

p

H
P I
©Q = S

N B

ol
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where Q" = cokeroi, = is the natural map, and p exists by diagram chasing.
By hypothesis, there is a map y:P —Q giving commutativity. Another
diagram chase gives imy < imo. |

Theorem 4.23 (Cartan—Eilenberg): The following are equivalent for a
ring R:
(1) R is left hereditary;
(ii) every submodule of a projective module is projective;
(i) every quotient of an injective module is injective.

Proof: (i)=(i)) Corollary 4.18.

(ii)=> (1) R itself is projective, being free, and hence its submodules, the
left ideals, are projective.

(iil) = (1) Consider the diagram with exact rows

P« P’ 0
|\
N
AN
| \\
l N
Q > Q" >0

where P is projective and @ is injective. By Lemma 4.22, it suffices to find
amap P’ — Q making the diagram commute. Now Q" isinjective, by hypothe-
sis, so there exists a map P — Q" giving commutativity. Since P is projective,
there is a map P — @ giving commutativity. The composite P'— P —Q is
the desired map.

(ii) = (iii) Dualize the argument just given, using the dual of Lemma
422, 1

Recall Theorem 3.23: every imjective module is divisible; recall
Exercise 3.14: every quotient of a divisible module is divisible. We conclude
that divisible modules may not be injective, i.e., the converse of Theorem 3.23
is false. If R is not left hereditary, there exists an injective having a non-
injective quotient.

Another consequence of Theorem 4.23, using Corollary 3.42: if R is left
hereditary, so is the matrix ring R,,. (This result may be proved without the
categorical Corollary 3.42.)

Let us show that the definition of Dedekind ring above coincides with a
more classical definition.

Definition: Let R be a domain with quotient field Q. An ideal I in R is
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invertible if there are elements a;,...,a,¢€1, 44, ..., . € Q with

1) gpI<Ri=1,...,n
(i) 1=Z?=1 q;4;.

Remarks: 1. Everynonzero principal ideal Ra is invertible: choose a, = a
and g, = 1/a.

2. If Iis invertible, then I is generated by a4, .. ., a,.

3. Define I™! to be the R-submodule of Q generated by gqq,.. ., ¢;
thenif/ isinvertible, 11 ™' = R =I"*I,where II"* = {Yay;io;e Ly;e I}

4. Afractionalideal is a f.g. nonzero R-submodule of Q. All the fractional
ideals form a commutative monoid under multiplication, with unit R. We
shall see, in Corollary 4.25, that every nonzero ideal in a Dedekind ring R
is invertible. It follows that the family of all fractional ideals forms an abelian
group (which turns out to be free with basis all prime ideals). One defines
the class group of R as the quotient group of this group by the subgroup
of all principal ideals.

5. One can show I™' = Homg(I, R).

Theorem 4.24: If R is a domain, a nonzero ideal I is projective if and only if
it is invertible.

Proof: If I is projective, it has a projective basis (Theorem 3.15): there
are elements {a,:k € K} < I and maps ¢,:I — R such that

(1) ifael almostall pa=0;
(2) ifael, thena=)(pa)a.

Ifbelandb # 0, define g, € Q by
g = @u(b)/b.
Note that g, does not depend on the choice of b: if &' €I and b" # 0, then
b'ow(b) = gu(b'b) = (b)) = by (b),
so that
@u(b)/b = (b)Y

It follows that g,/ = R for all k: if be I and b # 0, then g,b = [@(b)/b]b =
ox(b) € R. By condition (1), if beI and b # 0, then almost all ¢,(b) = 0.
Since g, = @(b)/b, there are only finitely many nonzero g,. Finally, condition
(2) gives, forbe I,

b= Z(q)kb)ak = Z(‘Zkb)ak = b(Z‘Zkak)-
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If we discard all g, for which g, = 0, there remain finitely many a, e I.
Moreover, if b # 0, we may cancel b from both sides of the above equation
to obtain 1 = ) q,a,. Therefore, I is invertible.

Conversely, assume [ is invertible, and let a4, ..., a,€1,g4,..., 9, €0Q
be as in the definition. Define ¢,:I - R by a+ g,a (wh1ch lies in R because
gl = R). Ifa eI, then

Z(q)ka)ak = quaak = aZQkak =a.

Therefore, I has a projective basis, hence is a projective module. ||

Corollary 4.25: A domain is a Dedekind ring if and only if every nonzero
ideal is invertible.

This corollary is the link to the classical notion of Dedekind ring
[Zariski-Samuel, 1958, p. 275].

Corollary 4.26: Every Dedekind ring is noetherian.
Proof: Invertible ideals are always fg. ||

Remarks: 1. It can be shown [Zariski-Samuel, 1958, p. 279] that every
ideal in a Dedekind ring can be generated by two elements.

2. The ring of integers in an algebraic number field is a Dedekind
ring [Zariski-Samuel, 1958, p. 283]. In particular, there are Dedekind
rings that are not principal ideal domains; the easiest example is

={a+b/-3:abeZ).

3. The polynomial ring R in noncommuting variables over a field is
left and right hereditary; it can be shown [Cohn, 1971, p. 80] that every
ideal in R 1s free. There are thus hereditary rings that are not noetherian.

We now generalize Theorem 3.24.

Theorem 4.27: A domain R is a Dedekind ring if and only if every divisible
module is injective.

Proof: If every divisible module is injective, then every quotient of an
injective is divisible, hence injective. Theorem 4.22 shows that R is hereditary,
and it is Dedekind since it is a domain.

Assume R is Dedekind. If D is divisible, we show that, for every nonzero
ideal I and every map f:I — D, there exists an extension g of f to R. Since I
is invertible, there are elements ay, ..., a,€ L, qy,..., g, € Q with Y .g;a; = 1
and ¢;/ = R. Since D is divisible, there are elements d; e D with fa; = ad;.
Ifael,

Ja=f (Z%aia) = Z(Qia)fai = Z(Qia)aidi = aZ(‘Ziai)di-
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If we set d = Y (q:a;)d;, then d e D and fa = ad for all a e I. Define g:R —» D
by r +> rd. Therefore D is injective, by Theorem 3.20. ||

Aslong as we are discussing projective ideals, let us note the following fact.

Theorem 4.28: If R is a unique factorization domain (UFD = factorial ring),
an ideal I is projective if and only if it is principal.

Proof: In a domain R, every nonzero principal ideal is isomorphic to R,
hence is projective. Conversely, assume I is projective and nonzero, hence
invertible. Choose elements a;, ..., 4, €1, 44,...,9,€Q with1 = Zqiai and
g.I = R. Write g; = b;/c;, and assume, by unique factorization, that b; and ¢;
have no nonunit factors in common. Since (b;/c;)a; € R, we must have ¢;
dividing a;, all i, j. Let ¢ = lem{c;}. We claim I = Rc. First,

c=cyba/c; =) (bc/ca; €1,

for bic/c; € R, therefore, Rc = I. For the reverse inclusion, ¢; divides a;
for all i, j implies ¢ divides a;, all j, whence a; € Rc for all j. 1

It follows that a Dedekind ring is a UFD if and only if it is a principal
ideal domain.

SEMIHEREDITARY AND PRUFER RINGS

Definition: A ring R is left semihereditary if every f.g. left ideal is projective.
A semihereditary domain is called a Priifer ring.®

Examples: 25. Every left hereditary ring R is left semihereditary (of course,
if R is left noetherian, the distinction vanishes).

26. Every valuation ring(i.e., a domain such that, given any two elements,
one divides the other) is a Priifer ring. (In such a ring, every fg. ideal is
principal; these special Priifer rings are called Bézout rings.)

27. Let X be a noncompact Riemann surface, and let R be the ring
of all complex-valued analytic functions on X. Helmer [1940] proved that
R is a Bézout ring.

28. Every von Neumann regular ring R is left and right semihereditary
(this follows quickly from Lemma 4.15).

29. The ring of all algebraic integers is a Bézout ring [Kaplansky,
1970, p. 72].

30. Chase, [1961] gives an example of a left semihereditary ring that
is not right semihereditary.

% Recall that “domain” means “commutative integral domain”.




128 4 Specific Rings

We remark that left semihereditary rings are left coherent, for fg. pro-
jectives are finitely related.

Theorem 4.29: If R is left semihereditary, then every f.g. submodule A of a
Jree module F is a sum of finitely many f.g. left ideals.

Proof: Let F have basis {x;:k € K}. Since 4 is f.g. and each generator of
A is a finite linear combination of x;’s, we see that A4 is contained in a free
summand of F generated by finitely many x,’s. We may, therefore, assume
F is free with basis {xy, . .., x,}. We do an induction on n that 4 is a finite
sum of f.g. ideals.

If n=1, then A is isomorphic to a fg. ideal. If n> 1, define
B=AnNn(Rx;®-'-®Rx,.,). Bach ae A has a unique expression a =
b+ rx,, where be Band r e R. If ¢p: 4 — R is defined by a+ r, then there
is an exact sequence

0-B->A451-0,

where I = im ¢ is a f.g. ideal of R. Since I is projective, this sequence splits
and A= B® 1. Since B is contained in Rx, @ - @® Rx, -, the inductive
hypothesis gives B, hence A4, a finite sum of f.g. ideals. ||

The reader has undoubtedly observed that the proofjust given is Theorem
4.17 stripped of its transfinite apparel. Albrecht [1961] proves that every
(perhaps not fg) projective module over a left semihereditary ring is a
sum of f.g. left ideals.

Theorem 4.30: A ring R is left semihereditary if and only if every f.g.
submodule of a projective module is projective.

Proof: Let A be a f.g. submodule of a projective module P. Now P is a
submodule of a free module F (even a summand). By Theorem 4.29, 4 is a
sum of fg. ideals, each of which is projective since R is semihereditary.
Therefore, A is projective.

For the converse, R itself is projective, hence its fg. submodules, the
fg. left ideals, are projective. Therefore, R is left semihereditary. ||

Let us now say a few words about Priifer rings. Note first that if R is
any domain and M an R-module, then its torsion submodule is defined by

tM = {me M:rm = 0 for some r e R, r  0}.

Because R is a domain, tM is a submodule. Moreover, M/tM is torsion-free,
ie., its torsion submodule is 0.
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Lemma 4.31: If R is a domain with quotient field Q, then every torsion-free
R-module A can be imbedded in a vector space over Q. If A is torsion free
and f.g., then A can be imbedded in a f.g. free R-module.

Proof: Imbed 4 in an injective module E. Since A is torsion free, 4 is also
imbedded in E/tE, which is torsion free and divisible. By Exercise 3.20,
E/tE is a vector space over Q.

Assume A is f.g. If one chooses a basis of E/tE, then each of the generators
of A is a linear combination of only finitely many basis vectors. Therefore,
we may assume A imbedded in a finite-dimensional vector space V, namely,
the subspace of E/tE spanned by the finitely many basis vectors just
mentioned.

Let V have basis {v;, ..., v,}. If 4 is generated by {a,, ..., a,}, then
each a; = Y ;(ri;/s;;Jv;, where r;;, s;€ R If 5 is the product of all s;;, then
{s"'vy,..., s 'v,} is independent in V, and the R-submodule B of V
generated by this set is free. Clearly 4 is imbedded in B. ||

Theorem 4.32: A4 domain R is a Priifer ring if and only if every f.g torsion-
free module A is projective.

Proof: If R is a Priifer ring, it is a domain, and so Lemma 4.31 shows 4
may be imbedded in a free module. By Theorem 4.30, 4 is projective.

Conversely, every submodule of R is-torsion free, so every ideal is torsion
free and every f.g. ideal is projective. ||

Theorem 4.33: If R is a Prilfer ring, then a module B is flat if and only
If it is torsion free.

Proof: Suppose Bis flat, and 0 » K — F % B — 0 is exact, where F is free.
By Theorem 3.55, K n FI = KI for every ideal I. In particular, this holds
when I is principal. Suppose b e B and rb = 0 for some r # 0. If x ¢ F and
¢x = b, then rxe K nrF =rK; hence rx = rk for some ke K. But F is
torsion free and r(x — k) = 0, so that x = k € K. Therefore b = px = 0, and
B is torsion-free.

Suppose B is torsion-free. By Corollary 3.49, it suffices to show every
f.g. submodule A of B is flat. Since R is Priifer, Theorem 4.32 shows A is
projective, so it is surely flat. ||

Remark: The first half of the proof shows that flat modules are torsion-free
for every domain R. Thus, projective generalizes free, injective generalizes
divisible, and flat generalizes torsion-free.
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Instead of assuming ideals are projective, what happens if we assume
they are flat? Flatness gives us nothing new if we assume rings are noetherian.

Theorem 4.34: A left noetherian ring R is left hereditary if and only if every
left ideal is flat.

Proof: If R is left hereditary, every left ideal is projective, hence flat,
Conversely, every left ideal is f.g. since R is left noetherian, By Corollary 4.3,
f.g. flat modules are projective, so every left ideal is projective and R is left
hereditary. |

In Theorems 9.24 and 9.25, we shall classify all (not necessarily noetherian)
rings in which every ideal is flat. It will be seen that this class contains all
left semihereditary rings and all right semihereditary rings.

QUASI-FROBENIUS RINGS

If we assume every left ideal of R is injective, it is easy to see that R is
semisimple. Let us now consider R itself as a module. It is no restriction
at all to assume R projective or flat; it is obviously a stringent condition to
assume R is injective (= self-injective).

Definition: A ring R is quasi-Frobenius if it is left and right noetherian
and R is an injective left R-module.

It can be shown that the asymmetry of the definition is only virtual: R
must be injective as a right R-module [Jans, 1964, p. 78]. It is also true
[Jans, 1964, p. 80] that quasi-Frobenius rings are left and right artinian.

Clearly semisimple rings are quasi-Frobenius; in particular, kG is quasi-
Frobenius when G is a finite group and k is a field whose characteristic
does not divide the order of G. Although there are other examples, as we shall
see, the most important example of a quasi-Frobenius ring is kG with no
restriction on characteristic k. This ring is important in the theory of modular
group representations.

Theorem 4.35: If R is a principal ideal domain and I = Ra is a nonzero
ideal, then R/I is quasi-Frobenius.

Proof: As an R-module, R/I is torsion and cyclic, say, with generator x.
An ideal of R/I has the form J/I, where J is an ideal containing I. If J = Rb,
then bc = a for some ¢ € R (since Ra = I < J); moreover, bx is a generator
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of J/I < R/I (for x = 1 + Ra). Consider the diagram
R/I

0 —> J/IC >R/I
Now f(bx) = sx for some s € R. Since cbx = ax = 0, we have
0 = ¢f(bx) = csx,

so that cs € Ra. Therefore ¢s = ra = rbc, for some r € R; cancelling c gives
s=rb, so that f(bx) = sx = rbx. Define g:R/I — R/I to be multiplication
by r. Our calculation shows that g extends f, whence R/I is self-injective.
Finally, R/I is quasi-Frobenius, for it is clearly noetherian. |

Remark: Exercise 9.24 generalizes this by allowing R Dedekind.

Corollary 4.36: The following rings are quasi-Frobenius:

(1) Z/nZ,wheren#0;
(i) k[x]/I, where k is a field and I is a nonzero ideal.

Remark: Compare this Corollary with Examples 17 and 18.

Theorem 4.37: Let R be left and right noetherian. Then R is quasi-Frobenius
if and only if every projective module is injective.

Proof: Assume R is quasi-Frobenius, and P is projective. Now P is a
summand of a free module F = []R. Since R is noetherian, Theorem 4.10
shows F is injective (since R itself is injective); thus P is injective.

For the converse, R itself is projective and hence injective, by hypothesis.
Thus R is quasi-Frobenius, since we are assuming R is noetherian. ||

Definition: A module is indecomposable if it is not the sum of two proper
submodules.

Definition: IfR = ULi, where each L; is indecomposable, then the L, are
called principal indecomposable modules.

It follows easily from the definition that every left artinian ring R has
such a decomposition, and hence has principal indecomposable modules.
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Theorem 4.38: If R is quasi-Frobenius, there is a bijection between minimal
left ideals and principal indecomposable modules.

Proof: First of all, we know that R is left artinian, so R does have a
decomposition into indecomposables.

If I is a minimal left ideal, let E(]) be its injective envelope in the injective
module R. Being injective, E(I) is a summand of R. If E(I) = A @ B, then
minimality shows either ] n 4 =0 or I ~ B =0, which contradicts E(I)
being an essential extension of I. Therefore E(I) is a principal indecomposable
module.

If E is a principal indecomposable module, then E contains a minimal
left ideal I (Exercise 4.3). Now E is injective, being a summand of R. Let
E(I) be the injective envelope of I contained in E. Since E is a summand of
E(I) and E(I) is indecomposable, we have E = E(I). Therefore, E is an
essential extension of I. If I' is another minimal left ideal in E, then I n I' =0,
contradicting E being essential. We conclude that I — E(I) is a bijection. [

This result takes on added interest when we observe that every simple
module over a quasi-Frobenius ring is isomorphic to a minimal left ideal
[ Curtis—Reiner, 1962, p. 401]. This fact can be used to show that f.g. injective
modules E over a quasi-Frobenius ring are projective (it is true that all
injectives here are projectives). The module E is a sum of indecomposables
E;, each of which contains a simple submodule. One may now repeat the
argument above to show each E, is isomorphic to a principal indecomposable
module, hence is projective.

Definition: Let R be a finite-dimensional algebra over a field k. Then R
is a Frobenius algebra if R =~ Hom, (R, k) as left R-modules.

Observe that the dual space Hom, (R, k) is a left R-module as in Theorem
1.15(1).

Theorem 4.39: Every Frobenius algebra R is quasi-Frobenius.

Proof: Every left or right ideal of R is a vector space over k, so finite-
dimensionality of R shows R is left and right noetherian. Theorem 3.44
applies to show Homy(R, k) = R is injective, so R is quasi-Frobenius. [

Lemma 4.40: Let R be a finite-dimensional k-algebra over a field k. If there
is a k-map f:R — k whose kernel contains no nonzero left ideals, then R is a
Frobenius algebra.

Proof: Define 6:R — Homy (R, k) by 6,(x) = f(xr). It is easy to check that
each 0, is a k-map and that 6 is an R-map: r'0, = 0,,,. Next, we claim 8 is
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monic. If 6, = 0, then
0=10,(x)= f(xr) forall xeR,

and Rrcker f. By hypothesis, r=0. Finally, if dim,R =n, then
dim, Hom(R, k) = n, being the dual space. Therefore, # must be epic, hence
an isomorphism. ||

We are now able to give the important example.

Theorem 4.41: If k is a field and G a finite group, then kG is a Frobenius
algebra, hence is quasi-Frobenius.

Remark: There is no restriction on the characteristic of k.

Proof: By Lemma 4.40, it suffices to exhibit a linear functional f:R —k
whose kernel contains no nonzero left ideals. Each r € R has a unique
expression
r=>3 mx, where m,ek
xeG
Define f: R — k by r—m;, the coefficient of 1. If r = Y 'm,x, then f(x~r) = m,,
so that Rr < ker f gives m, = O for all x ¢ G, whencer =0. ||

LOCAL RINGS AND ARTINIAN RINGS

Definition: A ring R is local if it has a unique maximal left ideal.

One must be aware of the context when reading about local rings, for
many authors assume local rings are commutative and noetherian as well.

Examples: 31. Every division ring is local.

32. Ifp is prime, then Z/p"Z is local, for any n.

33. Ifkis commutative local, the ring of formal power series k[ [x]] over
k is local.

34. If M is an injective indecomposable R-module, then Endg(M) is
a local ring [Lambek, 1966, exercise on p. 104].

35. Ifpisaprime and Q is the rationals, then Z, = {a/b € Q:(b,p) = 1}
is a local ring,

36. If R is a commutative ring and P is a prime ideal in R, then the
localization Rp = S™*R (where S = R — P) is a local ring [ Kaplansky, 1970,
p. 24]. Note that Example 35 is a special case of this example: take R =Z
and P = (p).
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Lemma 4.42: Let R be a local ring with maximal left ideal J.

(i) reRisinvertible (i.e., is a unit) if and only if r ¢ J;
) ifreld,thenl — risinvertible,
) if Aisa f.g. R-module with JA = A, then A = 0;
(iv) Jis atwo-sided ideal;
) R/J is a division ring.

Proof: ()° In any ring R, Zorn’s lemma shows that every proper left
ideal is contained in a maximal left ideal; in particular, if x € R is not
invertible, then x € Rx is contained in the unique maximal left ideal J. The
converse is trivial: if x € J, then x cannot be invertible, for J is a proper ideal.

(i) IfreJ, then 1l — r¢J and hence is invertible.

(i) Let {ay,...,a,} be a minimal generating set for 4 in the sense
that no a; may be deleted leaving a generating set. Since JA = 4, we have
a; =y ra, ried, alli.

i=1
Since 1 —r, is invertible, a, is a linear combination of the remaining g;,
violating minimality.

(iv) SinceJ is a left ideal, JR is a two-sided ideal. As J =« JR (for 1 € R)
and J is a maximal left ideal, either J = JR (and we are done) or JR = R.
This last equation violates (iii).

(v) RJJ is a ring because J is a two-sided ideal. Since every r outside
J 1s already invertible in R, by (i), every nonzero element in R/J is invertible,
ie, R/J is a division ring. ||

Remark: Lemma 4.42(iii) is a special case of Nakayama’s lemma (see
Theorem 4.47 for a better version). It is essential that the R-module 4 be
f.g. For example, let R = Z, (Example 35) and let A = Q. Here J = (p), the
principal ideal geperated by p, and it is easy to see pQ = Q.

Lemma 4.43: Let R be a local ring with maximal left ideal J; let A be an
R-module with minimal generating set {a,, . . ., a,}. If Fisfreeon{xy, ..., X},
@:F — A is defined by px; = a;, and K = ker @, then K = JF.

Proof: IfK ¢ JF,thereisanelement ) r;x; € K notin JF. By Lemma 4.42(i),
one of the coefficients, say, r,, must be invertible. But Zr,-al- = 0, so that

n
- ~1
a; = —r (Z riai)s
i=2

¢ We show only that r¢J implies r has a left inverse s; there is a standard argument
[Anderson and Fuller, 1974, pp. 165-166] that s is a two-sided inverse.
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contradicting the minimality of {a,, ..., a,}. |

Theorem 4.44: If R is a local ring, every f.g. projective module A is free.
Proof: Construct an exact sequence
0-K-»F->A4-0

as in Lemma 4.43, so that K < JF. Now projectivity of 4 gives F = K@ A4/,
where A’ = A. Hence JF = JK @ JA'. Now JK < K < JF, so Exercise 2.23
gives

K=JK® (K nJA).

Since KnJ4' <« K n A =0, we have K = JK; since K is f.g, being a
summand (hence an image) of the fg. module F, we have K = 0 (Lemma
4.42(iii) ). Therefore, 4 is free. ||

It follows from Exercise 3.4 and Lemma 4.42(v) that local rings have
IBN, i.e., the rank of a free module is well defined.

Endo [1961] proves that every f.g. flat module over a local ring is free;
Endo [1962] proves that every f.g. flat module over a (commutative) domain
is projective (he attributes this result to Cartier). Kaplansky [1958a] proves
that every summand of [[M,, where each M, is a countably generated
module over an arbitrary ring, is again of the same form (“countably
generated” means there is a set of generators of cardinality <¥g). It follows
immediately that, for any ring, every projective module is a sum of countably
generated projectives. If a ring R has every countably generated projective
actually free, therefore, then every projective R-module is free, In particular,
Kaplansky proves in the paper cited above that all R-projectives are free
when R is local or when R is Bézout.

We now show that f.g. modules over a local ring R have projective
covers, This is not true for arbitrary R-modules, for Bass’s Theorem E
above would imply R left perfect, contradicting the existence of local rings
that do not have DCC on principal right ideals (Example 35). Rings for
which every f.g. module has a projective cover are called semiperfect.

Lemma 4.45: If R is local with maximal left ideal J and if A is a fg. R-
module, then JA is a superfluous submodule.

Remark: See Exercise 3.31.

Proof: If B is a submodule of 4 with B + J4 = A, we must show that
B = A.Now A/B = (B + JA)/B = J(A/B). Since A/B is f.g., Lemma 4.42(iii)
gives A/B =0, whence B=A4. ||
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Theorem 4.46: If R is a local ring, every f.g. module A has a projective
cover.

Proof: Let us call an epimorphism essential if its kernel is superfluous.
We must find a projective P and an essential epimorphism ¢:P — 4. This
is precisely what is done in Lemma 4.43, for ker ¢ = JP and Lemma 4.45
shows that JP, hence any submodule of JP, is a superfluous submodule
of P. |

We now give a second, more complicated, proof of Theorem 4.46,
because this second proof will allow a generalization for artinian rings.

Second proof: By Lemma 4.45, the natural map n:4 — A/J A is an essen-
tial epimorphism. Now A4/JA is a f.g. R/J-module, ie., a finite-dimensional
left vector space over the division ring R/J; hence A/J = (R/J)", the sum of
n copies of R/J. Consider the diagram

Rn
e
L
S ¢
/s
A————A/JA >0

where ¢:R" — (R/J)" is the natural map on each summand. Each coordinate
map of ¢ is an essential epimorphism (Lemma 4.45 applied to R itself), so
Exercise 3.33 shows that @:R"— A/JA is a projective cover. Since R” is
projective (even free), there is a map ¢:R" — 4 making the diagram com-
mute: we = . Now kere < ker ¢, so kere is a superfluous submodule of R*
(since ker ¢ is). Finally, if a € A4, there exists x ¢ R" with na = ¢x = nex;
thus, ex —aekern = JA. Hence A =ime + J A, so that ¢ is epic because
JA is a superfluous submodule. Therefore e: R” — A is an essential epimor-
phism, ie., a projective cover. [}

One can axiomatize this proof if one can find an ideal to play the role
of J. Once we do this, we will be able to prove the existence of projective
covers when R is left artinian.

Definition: If R is a ring, its (Jacobson) radical J is the intersection of all
its maximal left ideals.

In a local ring, the radical is the unique maximal left ideal.

Theorem F: Let R be a ring with radical J.
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() ifrel, then 1 —r is invertible;
({i) J is a two-sided ideal in R.

If R is left artinian, then

(iii) R/J is a semisimple ring;
(iv) idempotents can be lifted: if & € R/J is an idempotent, then there is
an idempotent ec R withe + J =¢.

Proof: All proofs may be found in [Anderson—Fuller 1974]: (i) and (ii) on
p. 166; (iii) on p. 170; (iv) on p. 301 (in order to apply the result there, one
needs to know J is nil; even more is true: it is nilpotent, as proved on
p-172). |

Theorem 4.47 (Nakayama’s Lemma): If R is a ring with radical J and A
is a f.g. module with JA = A, then A = 0.

Proof: Exactly as the proof of Lemma 4.42(zi). |

Corollary 4.48: If R is a ring with radical J and A is a f.g. module, then
JA is superfluous.

Proof: Exactly as the proof of Lemma 4.44. |

Lemma 4.49: Let R be a left artinian ring with radical J. If @ is an idempo-
tent in R/J, there is a projective R-module P and a projective cover e: P — (R/J)e.

Proof: By Theorem F, we may lift the idempotent & to an idempotent
e € R. There 1s thus an exact sequence

0— Je—Re 5 (R/J)e— 0,

where 7:.re — e (one readily checks that kern= Je). Setting A = Re in
Corollary 4.48, we see that Je is a superfluous submodule of Re. Finally, e
idempotent in R gives Re a summand of R, hence Re is R-projective. ||

Theorem 4.50: If R is left artinian, every f.g. module A has a projective
cover.

Proof: The proof proceeds exactly as that for local rings. Let J be the
radical of R, and note that the natural map n:4 — A/JA is an essential
epimorphism (Corollary 4.48). Since R/J is semisimple, the R/J-module A/J
has a decomposition into simple modules: A/J =] |S;, and S, is isomorphic
to a minimal left ideal of R/J. Every ideal of R/J is a summand, and there
is an idempotent g e R/J with S; = (R/J)e,. By Lemma 4.49, there are
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projective covers g;:P; — S;, hence a projective cover e:[ [P, — A/JA (Exer-
cise 3.33). The proof is completed as in Theorem 4.46. |

Theorems 4.46 and 4.50 show that local rings and artinian rings are
semiperfect.

POLYNOMIAL RINGS

In the mid-1950s, Serre proved that if A = R[z;,...,t,], where R is a
field, then every f.g. projective A-module P has a f.g. free complement: there
is a f.g. free module F with P @ F free. Serre posed the problem: are projec-
tive A-modules free? If k = 1, then A = R[] is a principal ideal domain, so
projectives are free, by Corollary 4.20. In 1958, Seshadri proved that if B
is a principal ideal domain, then f.g. projective B[x]-modules are free; in
particular, setting B = R[t] gives an affirmative answer to Serre’s problem
when k = 2. There was much interest in this problem for k > 2; indeed, it
was one of the main reasons for the development of algebraic K-theory.
Remarkably, the problem was solved simultaneously, in January 1976, by
Quillen in the United States and Suslin in the Soviet Union. We first present
Vaserstein's version of Suslin’s proof; afterwards, we shall outline Quillen’s
solution. We remark that Bass [1963] proved that “big projectives” (ie.,
non-f.g. projectives) are free over these rings.

Definition: Let 4 be a commutative ring and let 4" be the free 4-module
of rank n. A unimodular column is an element o = (a,, -. ., a,) € A" such that
there exist be 4,i=1,...,n, with > 7, ab, = 1.

Definition: A commutative ring A has the unimodular column property if,
for every n, every unimodular column « is the first column of some n x n
invertible matrix over A.

This definition may be rephrased. Let GL(n, 4) denote the multiplicative
group of invertible matrices over 4, and let ¢, denote the column vector
having first coordinate 1 and 0’s elsewhere. Then « is the first column of an
invertible matrix over A4 if and only if

oo = Me,

for some M e GL(n, 4).
That a column o = (ay, . . ., a,) be unimodular is a necessary condition
that it be the first column of some M € GL(n, 4), for M is invertible if and
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only if its determinant, det M, is a unit in 4, and Laplace expansion shows
det M is a linear combination of the entries in the first column of M.
For the remainder of this chapter, all rings are commutative.

Theorem 4.51: If every f.g. projective A-module is free, then A has the
unimodular column property.

Proof: Ifa=(ay,...,a,) cA"is a unimodular column, there exist b; € 4
with Y a;b; = 1. Define ¢:A4" > A4 by (ry,...,r,)— Y rb;. Since o) =1,
there is an exact sequence

0-K—->A4"54-0,
where K = ker . As 4 is projective, this sequence splits, and
A" = K@ <ad.

By hypothesis, K is free (of rank n — 1). If {a5, . .., o} is a basis of K, then
adjoining « gives a basis of A™. Let {¢,, ..., ¢,} be the standard basis of 4",
ie, ¢ has all coordinates 0 except for 1 in the ith place (this agrees with
our earlier notation for &,). The transformation T: A" — A" with Te, =«
and Tg; = o; for i = 2 is invertible, and the matrix of T with respect to the
standard basis has first column o. |

In general, the converse of Theorem 4.51 is false. For example, the
reader may show that A = Z/6Z has the unimodular column property, yet
we know A has nonfree projectives.

Definition: A f.g. module P is stably free if there exists a f.g. free module F
such that P@® F is free.

Remarks: 1. Every stably free module is projective, being a summand of
a free module.

2. With this terminology, Serre’s theorem states that fg. projective
A-modules are stably free when 4 = R[t,, ..., t,] with R a field.

3. Kaplansky exhibited a stably free module that is not free over the
ring of all continuous real-valued functions on the 2-sphere {(x, y,2) € R®:
x? + y? + z% =1} (see [Swan, 1962]). This example may be modified to
exhibit the same phenomenon over 4 = Z[x, y,z]/(x* + y* + z> — 1). The
first algebraic proof of this is given by Kong [1977].

Eilenberg’s observation (Exercise 3.13) shows that we must insist that
the complement F be f.g. The next result shows that the notion of stably
free is of interest only when all modules in sight are f.g.
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Theorem 4.52 (Gabel): Assume P @ A™ = F, where F is free. If P is not
f-g., then P is free.

Proof: Let {¢;:i eI} be a basis of F. Since P is an image of F, the index
set I must be infinite. Consider the exact sequence

0-P->F5 450

If {e1,...,&n} is the standard basis of 4™, choose x; € F with ¢(x;) =¢;,
1 <j<m As each x; has only finitely many nonzero coordinates, they
collectively involve only a finite subset J < I. If we define F’ =] ],.; Ae,,
then ¢’ = | F'isepicand F = P + F'. Setting P' = P n F', there are exact
sequences

0P 5F % Am 50 and 0—->P —->P-P/F -0

Clearly the first sequence splits: F' = P’ @ A™ The second sequence also
splits, for

P/P'=P/PnF =P+F/F =F/F =[], e

Thus, P =~ P'@ P/P'. Since I — J is infinite, there is a free module F” with
P/P'= A™ @ F". Therefore

PEP’@P/P’EP’@(Am@F”)E(P’@Am)@F"EF’@F”,
and P is free. | ‘

Theorem 4.53:  If A has the unimodular column property, then every stably
free A-module P is free.

Proof: By induction on the rank of a free complement of P, it suffices to
prove P is free assuming P @ A is free: P@ 4 = A". Let = be the projection
of A" on 4 having kernel P, and let {,, . .., &,} be the standard basis of 4"
There exists o = (ay, . . . , a,) € A" with 1 = n(«) = Y am(e,); thus, « is a uni-
modular column. By hypothesis, o = Mg, for some M e GL(n, 4). Let
T:A"— A" be the corresponding A-homomorphism: Te; =a and Te; =a
for i = 2 (where aj, ..., a, are the other columns of M). If Te; € P for all
i>2 weclaim T"=T|<e;,...,8,>: {&s,...,8,> = P is an isomorphism,
proving P is free. Visibly, T’ is monic. If e 4", then f = Ty for some
y =y r&; hence B=T(re, + 5), where §=3"_,re. In particular, if
f € P, then

B—Té=rTe; =rimePna)=0,

whence f eim 7" and T’ is epic.
It thus suffices to show Té¢; € P for i > 2; in matrix terms, it suffices to
show the columns a,, ..., a, may be chosen to lie in P = ker z. Suppose
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n(e;) = A; for i = 2. By elementary column operations, for each i > 2, replace
o; by of = o; — L. The new matrix is invertible, has first column «, and, if
i> 2, then n() = (o) — Am(e) =0and o; e P. |}

Theorem (Serre): If R is afield, then fg. projective R[ty,. .., t, J-modules
are stably free.

Proof: Theorem 9.45. |

Corollary 4.54: If A = R[t,, ..., ], where R is a field, has the unimodular
column property, then f.g. projective A-modules are free.

Proof: Serre’s theorem and Theorem 4.53. |

Definition: If B is a commutative ring, a polynomial f{y) € B[ y] has virtaal
degree s if

f(J’)=boys+b1ys—l+"'+bs; b, e B.

Since we do not demand that the leading coefficient b, # 0, the degree
of f(y) may be smaller than its virtual degree (of course, f(y) has many
virtual degrees).

Theorem 4.55 (Suslin Lemma): Assume B is a commutative ring. Let s > 1
and consider polynomials in B[ y]:

fO)=y+ay ™+ +ag
g(y) = byt 4+ 4+ b

Then, for each j, 1 < j <'s, the ideal (f(¥), g(y)) in B[ y] contains a poly-
nomial of virtual degree s — 1 and leading coefficient b;.

Proof. Define
I = {leading coefficients of those h(y) € (£, 9)
having virtual degree s — 1};

it is clear that I is an ideal in B containing b, . We prove by induction on j
that I contains by, ..., b;, j < 5. Define g'(y) e (f,g) by

g(y)=ya(y) — b, f(y) = Z?=1 (biy1 — blai)ys_i~

By induction, I contains the first j — 1 coefficients of g'(y), the last of which
is b; — bya;_y. It follows that b;el. |

Observe that performing elementary row operations on a matrix
M e GL(n, 4) corresponds to left multiplication by a matrix N € GL(n, 4).
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Thus, if a column « can, after suitable row operations, be completed to an
invertible matrix, then o itself can be so completed: No = Mg, implies
a=N" 1M €1.

Theorem 4.56 (Horrocks): Let B be local, and let o = (ay,...,a,) be a
unimodular column over A = B[ y]. If some a; is monic, i.e., has leading co-
efficient 1, then o is the first column of an invertible matrix over A.

Proof (Suslin): If n=1 or 2, the theorem holds for any commutative
ring A; therefore, we may assume n > 3. We do an induction on s, the
degree of the monic polynomial g;, noting that the case s = 0 is trivial. By
our preceding remark about row operations, we may assume g, is monic
of degree s > 0 and the other polynomials a,, .. ., g, have degrees <s — 1.

Let m be the maximal ideal in B. Thus mA consists of those polynomials
each of whose coefficients lies in m. The column & € 4"/mA" is unimodular
over (B/m)[y], so that not all 4;, i > 2, lie in mA; assume a, ¢ mA4. Thus,
a, =byy* "'+ + by, and some b; ¢ m; since B is local, b; is a unit. By
Suslin’s Lemma 4.55, the ideal (a,,a,) in A contains a monic polynomial
of degree s — 1. Therefore, the elementary row operation of adding a linear
combination of a, and a, to a; produces a monic polynomial in position 3
of degree s — 1. One may now apply the inductive hypothesis. ||

Notation: If A = B[ y], where B is a commutative ring, and if a(y) = (a;(»))
is an n-rowed column over 4, then
GL(n, Ay(y) = {Ma(y):M € GL(n, A)}.
As the entries of M € GL(n, 4) lie in A = B[ y], they are polynomials in
y; one may thus write M = M(y).

Theorem 4.57: Let B be a domain, A= B[y], and a(y) = (a;(y)) a uni-
modular column over A, one of whose coordinates is monic. Then

a(y) = M(y)B,
where M(y) e GL(n, A) and B is a unimodular column over B.

Proof: Define
I = {be B:GL(n, A)a(w + bx) == GL(n, A)ax(w), all w,x e A}.
It is easy to see that I is an ideal in B: in particular, if b, b’ € I, then
GL(n, A)o(w + bx + b'x) = GL(n, A)a(w + bx) = GL(n, A)a(w),
whence b+ b'e L.
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Suppose I = B, so that 1el. Set w=y, b=1, and x = —y to obtain
GL(n, A)ay) = GL(n, A)a(0).

Thus, a(y) = Ma(0) for some M e GL(n, A); since § = a(0) is a unimodular
column over B, the theorem would be proved.

We may therefore assume I is a proper ideal of B, so that I < J for
some maximal ideal J. Since B is a domain, B is contained in the localiza-
tion B;. As B; is a local ring and a(y) is a unimodular column over B;[y]
having a monic coordinate, Horrocks’ Lemma 4.56 applies to give

a(y) = M(y)e;

for some M(y) = (m;;(y)) € GL(n, B;[ y]). Adjoin a new indeterminate z to
B;[y] and define a matrix

N(y,z) = M(y)[M(y + 2] ! € GL(n, B,[ y,2])

(the matrix M(y + z) is obtained from M(y) by replacing each of its poly-
nomial entries m;(y) by my(y + 2); if M(y)™" = (h;;(y)), then it is easy to
see that (h;(y + 2)) is the inverse of M(y + z)). Observe that the definition
of N(y,z) gives

N(»,0)=1,, the n x n identity matrix.
Since a(y) = M(y)¢,, it follows that a(y + z) = M(y + z)e,. Therefore
() N(y, 2)aly + 2) = N(y, 2)M(y + z)e; = M(y)e; = ().

Each entry of N(y,z) is a polynomial in B,[ y,z], hence may be written as
() + g(y, z), where each monomial in g(y, z) involves a positive power of z.
Since N(y,0) =1,, we must have f(y) =0 or 1, and we conclude that the
entries of N(y,z) are polynomials in B,[ y,z] containing no nonzero mo-
nomials of the form 1y' with i > 0 and 1€ B;. Let b be the product of all
denominators occurring in coefficients of the polynomial entries of N(y, z);
by definition of B;, we have b¢J and hence b¢ I Further, N(y,bz)e
GL(n, B[ y,z]) for we have just seen that replacing z by bz eliminates all
denominators. Equation (x) gives .

GL(n, B[y, z])a(y + bz) = GL(n, B[ y, z])a(y)-

For fixed w,xe 4 = B[y], define a B-algebra map ¢:B[y,z]—=4 by
o(y) = w and ¢(z) = x. Applying ¢ to the equation above gives

GL(n, A)o(w + bx) = GL(n, A)a(w),

and this contradicts b¢ 1. |}
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The reader surely appreciates how ingenious this elementary argument is!

The coefficient ring is seriously restricted in the next technical lemma,
which i1s the computation at the heart of the “Noether Normalization
Lemma”.

Lemma 4.58 (Noether): Let A= R[ty,..., ], where R is a field, and let
a € A have (total) degree o; set m = 6 + 1. Define

y=1
and, for 1 < i< k— 1, define

yi=ty—
Then a = ra', where r € R and o' is a monic polynomial over the polynomial
ring R[yis -+ Yem1]-

Proof: Firstofall, R[yy,..., Y- ]is a polynomial ring (ie., {yy,. .., Ve—y}
is an independent set of transcendentals), for the defining equations for the
y’s give an automorphism of 4 (with inverse t, — t, and t; > t; + 7" for
I<i<k-—1)

Denote the k-tuple (m*~1, m*~2, ..., m1) by y, and denote k-tuples
(ji>---»Ji) with each j; > 0 by (j). The dot product u - (j) is, of course,
mE T My F e

The polynomial a may be written

a = Z rU_)tJl'x Ca tl{k,
@
where r(; are nonzero elements of R. Replacing each ¢ as in the statement
gives

a= Z) ron YT ey eyt
¥

Expand each monomial for fixed (j) and separate the “pure” power of y
from the rest:

a=y, roy @ wa(yl’ s Ye—15 V)
@ @

where each mixed term f;; involves some y; to a positive power; moreover,
for each (j), the highest power of y is u - ().

Since m is greater than the (total) degree of a, each indexing k-tuple (j) =
(s --sJiy has 0 < j; < m for all i. It follows that () # (j') implies u - (j) #
u - (j"), for this is just the unique representation of a positive integer written
in base m. All the exponents u - (j) distinct implies all the terms rpyt @
distinct. If d is the largest y - (j), then d is the degree of a as a polynomial
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in y with coefficients in R[ yy, . .., yx-1]. Therefore,
a=ry"+ gy, Ye-1. V)

where r € R and g has degree in y strictly less than d Asr# 0 and Risa
field, we may define ' = y* +r " 1g(y1, .. ., Vee1r¥) |

Theorem 4.59 (Quillen~Suslin): If A = R[ty, ..., &], where R is a field,
then every f.g. projective A-module is free.

Proof: We do an induction on k, the case k = 1 holding because R[] is a
principal ideal domain.

By Corollary 4.54, it suffices to prove A has the unimodular column
property. Let a = (a;(¢4, . . ., t;)) be a unimodular column over 4; we may
assume a; # 0. By the Noether Lemma 4.58, a, = ra}, where r e R and
ay € R[y1, ..., Ye—1] is a monic polynomial (y; defined as in the Noether
lemmay). Since r is a unit (lest a; = 0), there is no loss in generality in assuming
a; = a4, ie., ay is monic. Theorem 4.57 thus applies to give

o= MB,

where M € GL(n, A) and f is a unimodular column over B=R[ yy,..., Yi—1]-
By induction, B has the unimodular column property, so that

B = Ne;
for some N in GL(n, B). Hence MN e GL(n, A) and
o = MNS]. I

Generalization of Noether’s lemma to more general rings enables one to
relax the hypotheses on R.

Quillen’s approach is more module-theoretic, and makes use of an
elementary idea used by Seshadri in his solution of Serre’s problem for k = 2.

Definition: If 4 is an R-algebra, an A-module P is extended from R if there
is an R-module P, and an isomorphism P =~ P, ®j A4.

Examples: 37. Every free A-module is extended from R.

38. If an A-module P is extended from R and S is a subset of 4, then
S7'P is extended from R (if P = P,®gA4, then S™'P = P®,S !4, and
associativity gives

STIP (P ®rA) @48 14 = Py ®zS™ 4.
39. If P~ P, ®x 4, the R-module P, may not be unique (if R = Z and

A = Q, then the Q-module Q is extended from Z:Q = Z ®, Q. However,
for any torsion group T, we also have Q =(Z @ T) ®, Q.
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40. There exist 4-modules that are not extended (if R is a field and A4 is
an R-algebra, then every R-module is free (being a vector space) and hence
every extended A-module must also be free.)

The uniqueness question: “If P is extended from R, is the module P,
unique?”, is easily settled for polynomial rings.

Definition: An R-algebra A (not necessarily commutative) is augmented if
there is an R-algebra map ¢:4 — R.

Since ¢(1) = 1, the augmentation ¢ must be epic. The kernel of ¢, called
the augmentation ideal, is a two-sided ideal in A.

Examples: 41. If4 = R[U], polynomials in a set of variables U, then A4 is
augmented with augmentation &: 4 — R given by f + constant term of f.
42, If G is a group, the group ring RG has an augmentation:

eQr,g) =1,

Lemma 4.60: Let A be a commutative augmented R-algebra with augmenta-
tion ideal I; let P be an A-module.

(1) If P=P,®zA, then Py =~ P/IP.

(1) If, in addition, P is projective or f.g., then so is Pg.
Proof: (1) Tensor the exact sequence 0 — I - 4 - R — 0 by P, to obtain
an exact sequence

Py®rl—>PyRrA—Py®zR—0.

The last term is Py, the middle term, by hypothesis, is P, and the image of the
first term is IP. We conclude that P, = P/IP.

(i) If P is fg, the formula P/IP = P, shows P, is also fg.; if P is 4-
projective, then Exercise 3.11 applies with R = 4/I to show that P, is
R-projective. |

The existence question: “Given an A-module P, when is P extended from
R?”, is quite difficult. In his solution of Serre’s problem, Quillen discovered
the following criterion.

Theorem (Quillen): Let R be a commutative ring, and let P be a finitely
related R[ t]-module. If the R [t]-module P, = P ® R _[t]is extended from R,
for every maximal ideal w of R, then P is extended from R.

Proof: [Roitman, 1979].

As in Suslin’s solution, one prefers polynomials with coefficients in a
local ring.
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Definition: If S is the set of all monic polynomials in R[¢], write
R(t) = S™1R[1].
The elements of R(f) may be regarded as rational functions

(@t™ + Qg 8" e Ag) /(8" + Dy T - 4 Do),

Definition: If P is an R[¢]-module, define
P(t) = ST'P = P Qg R().
There is an analogue of Horrocks’ lemma.
Theorem H: If R is local and P is a fg. projective R[t]-module such that
P(t) is a free R(t)-module, then P is free.
Proof: [Lam, 1978, pp. 114-116]. |
Assuming Quillen’s theorem and Theorem H, let us see how Quillen’s

solution reads.

Theorem 4.61 (Quillen): Le: U be a class of rings such that

(@) if Re N, then R(t) e A,

(i) If ReW and m is a maximal ideal of R, then R [t]-projectives are
Sree.

Then, for all k > 1 and for all R € U, f.g. projective R[t,, . . ., t |-modules
are extended from R.

Proof: We do an induction on k.

Assume k=1 and P is fg. R[¢]-projective. By condition (ii), R, [¢]-
projectives are free for every maximal ideal m of R. In particular, P,, =
P® R,[t] is free, hence is extended from R, (Example 37). By Quillen’s
theorem, P is extended from R.

Assumek > land Pisfg. R[t,, .. ., t J-projective. We establish notation:

Po=P[ty,...,t0)P; Py =P/(ts,..., t)P;

S = {all monic polynomials in R[¢;]},
which we view as a (multiplicatively closed) subset of R[¢y,. .., & ] Now
define

P =S7'"P=P@gpu,... 157 R[t;,...,t]
=P @y, ..., w ROz, 5 1,

where we have written ¢ in place of ¢;. Since R(f) € 9, by (i), induction says
the projective R(t)[t,, ...,  ]-module P’ is extended from R(t). As poly-
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nomial rings are augmented,
P = Plty, ..., )P Qrey RO[L2,- .-, il
Using Exercise 1.12 (with I=(t;,...,%)) and the definition P’ =
P®R®[ts,- .., t], we have
P/ty, ..., )P = P; Qg R(D)
From the initial step k = 1, we have
P, >~ Py ®zR[t].
Combining these isomorphisms gives
*) P =Py @rR(O[t2,- - -5 te)-
Now define B=R[t,,..., %] and S = {all monic polynomials in B[t]};
note that S™!B[t] = B(t). Since §; < S, Exercise 3.48 gives
P(t)=S"'P =S~ LS 1P) = S~ 1P,
But, by definition of $71,
PO)=S"'P' =P @rps..... S ROty ..., 1]

= P' ®rpyies, ..., a1 B(®)

= Py, @z B(®), by equation (=),

= (P, ®z B) @3 B(2).

Let m be a maximal ideal in B. Defining P, (t) = P(t) ®z B,., we apply
Lemma 3.77 to obtain

Pm(t) = (PO ®R B)m ®Bm Bm(t)'

Now (Py ®g B),,is B,,-projective because P, is R-projective; it is free because
B, is local; therefore, P, (t) is free. By Theorem H, P, is free, and so P, is
extended from B,, for every m (Example 37). Quillen’s theorem shows P is
extended from B = R[t,,.. ., ], and induction shows P is extended from

R 1

Theorem 4.62 (Quillen—Suslin): If R is a field, then every fg. projective
R[ty,..., t]-module is free.

Proof: Let Ube the class of all fields. If R € %, then it is easily seen that R(t)
is the quotient field of R[¢] consisting of all rational functions (for the leading
coefficient of a nonzero polynomial is a unit). To verify condition (ii) of
Theorem 4.61, note that R = R, and that R[¢] is a principal ideal domain.
Theorem 4.61 says that fg. projective R[¢y, ..., t;,]-modules are extended
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from R. As every R-module is a vector space, hence free, extended modules
are free. |}

Theorem 4.63 (Quillen—Suslin): If R is g principal ideal domain, then
every f.g. projective R[t,,. .., t,|-module is free.

Proof: Let U be the class of all principal ideal domains. Condition (i) of
Theorem 4.61 needs some standard commutative algebra: one shows that
R(t) e A by showing it is a unique factorization domain in which nonzero
prime ideals are maximal. Condition (ii) is not standard. Assume P is
R, [t]-projective, where m is a maximal ideal in R. Now P(t) = P ®g, 1 R(t)
is R, (t)-projective, hence R, (t)-free, for R, e (standard commutative
algebra) and R, (?) is a principal ideal domain (condition (i)). Since R, is
local, Theorem H gives P free. Now apply Theorem 4.61 to conclude that
projective R[ty, . .., t;]-modules are extended from R; since R[t;, ..., ]
is augmented, such modules are extended from projective, hence free,
R-modules, and so are themselves free. |}

Remarks: 1. Seshadri’s theorem would also prove condition (i) in
Theorem 4.63.

2. Theorem 4.61 applies to the class 2 of all Dedekind rings. In partic-
ular, our remarks after Corollary 4.20 show that if R is Dedekind, then
every f.g. projective R[ty, ..., t,]-module has the form 4 @ B, where A4 is
free and B is extended from an ideal of R.

3. Brewer and Costa [1978] have proved that the class % of all Bézout
rings in which nonzero prime ideals are maximal satisfies the hypotheses of
Theorem 4.61 (the ring of all algebraic integers is such a ring), thereby
proving f.g. R[¢,, ..., t;|-projectives are free for these rings.

4. Quillen applied Theorem 4.61 to the class U of all regular rings
(Le., rings of finite global dimension; see Chapter 9 for the definition) of
Krull dimension <2 (i.e., the longest chain of prime ideals has two steps:
Py < P, = P,)[Lam, 1978, p. 138].

5. Other examples of rings R for which projective R[ty,..., %]
modules are free are formal power series rings K[[x,, ..., x,]], where K
is a field [Lam, 1978, pp. 150-162]. This result was proved, independently,
by Mohan~Kumar and by Lindel and Litkebohmert.

6. Ojanguren and Sridharan [1971] exhibit a division ring D and a
nonfree projective D[ x, y]-module. Thus, the noncommutative version of
the Quillen—Suslin theorem is false.
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With this chapter we begin the proper study of homological algebra.
The group theoretic computations that we shall do will yield constructions
analogous to those for the singular homology and cohomology groups of
a topological space that we sketched in Chapter 1.

Let E be a (possibly nonabelian) group, A an abelian normal subgroup,
and G = E/A. We write E and its subgroup A4 additively, but we write the
quotient group G multiplicatively.

Definition: An extension of 4 by G is an exact sequence
0-A4A—-E->G-1.

Remark: The definition of extension makes perfectly good sense for any
group A, but we assume A abelian throughout.

Lemma 5.1: An extension of A by G determines a homomorphism 0:G —
Aut(4), where Aut(A4) is the group of all automorphisms of A.

Proof: Ifx €G,let ix e E be a lifting of x (i.e., Ax ~ x). Define 6,:4 — A4
by 0.(a) = Ax + a — Ax, noting that im 6§, < A since 4 is normal in E. The
function 0:G — Aut(4) sending x > 0, is well defined; this follows from a
short computation using the facts: (i) 4 is abelian; (ii) if A'x is a second lifting
of x, then A'x — Ax € 4. Finally, 6 is a homomorphism, for since the value
of 6 is independent of choice of liftings, we may choose A(xy) = ix + 1y. |

150
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We recall a definition from the previous chapter.

Definition: If G is a multiplicative group (perhaps infinite), the integral
group ring ZG is the ring whose additive group is the free abelian group with
basis G, and whose multiplication is determined by the multiplication of G
and the distributive laws.

A typical element of ZG is ) . . ¢ m,X, where m, € Z and almost all m, = 0.

Theorem 5.2: If 0 > A - E— G — 1 is an extension, then A is a left
Z.G-module.

Proof: 1In brief, G acts on A by conjugation. In detail, if x € G and a € 4,
define xa = 0.(a) = Ax + a — Ax. Since # is a homomorphism, la == a and
(xy)a = x(ya). We now define the action of an arbitrary element of ZG by

Qmx)a =y m.(xa). 1

It should now be clear why we write 4 additively and G multiplicatively.

There is a second way of writing conjugation. Suppose we had defined
0'.(a) = —Ax + a + Ax. The reader may check that 8":G — Aut(4) given by
x +> @ is an antihomomorphism: 8'(xy) = 6'(y)8'(x). This version of conjuga-
tion makes A into a right ZG-module, where ax = 6.(a).

Exercises: 5.1. Ifxe G, then @, =0,.-:.

5.2. Let A be a left ZG-module. Show that 4 can be made into a right
ZG-module by defining ax = x~'a. (If G is not abelian, 4 need not be a
(ZG — ZG) bimodule.) Conclude that ZG-modules can, at our pleasure, be
considered as either left or right modules. It follows that if A and B are
ZG-modules, we can always arrange matters so that 4 ®,; B makes sense.

5.3. Give an example in which G is abelian (so that ZG is commutative)
and a ZG-module A in which xa # ax (ie., the left and right structures do not
coincide). [If R is a commutative ring, one usually makes a left R-module
A into a right module by defining ar = ra; if 4 happened to be a right R-
module, however, there is no reason to expect that these two right actions
of R should be the same.]

5.4. The integral group ring functor is adjoint to the unit group functor:
there is a natural bijection

HomRings(ZG, R) = HomGroups(G: U(R) ),

where G is a group, R a ring, and U(R) the group of units (= invertible ele-
ments) in R.

This last exércise is the formal reason A is a left ZG-module in Theorem
5.2, for Aut(A4)is the group of units in End(4).
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5.5. If G and H are groups, then there is a ring isomorphism
Z(G x Hy=ZG®,ZH.

Definition: A left ZG-module A is trivial if xa = a for all x e G and all
aed.

Exercise: 5.6, The following are equivalent for the left ZG-module A4,
where 0 - A—>E—>G—1:

(i) A istrivial;
(i) A is contained in the center of E;

(iiy 0:G— Aut(4)is trivial, i.e,,0, =1 forall x e G. y

Suppose 4 is a left ZG-module, and 0 > 4 - E — G — 1 is an extension.
It may happen that the extension equips 4 with a left ZG-module structure
distinct from its original structure.

Definition: A left ZG-module A realizes the operators of an extension
0— A—> E— G- 1if the two left ZG-actions on A4 coincide:

xa =0.(a) = ix + a — ix, all aed, xeG.

The extension problem is: Given a left ZG-module 4, determine all
extensions of 4 by G that realize the operators.
From now on, we shall say “G-module” instead of left ZG-module.

Definition: An extension 0 > 4 — E 5 G — 1 is split if there is a homo-
morphism A:G— E with 7l = 1;; the middle group E is then called a
semidirect product.

Theorem 5.3: An extension 0> A— ES5 G- 1 is split if and only if E
contains a subgroup C = G (not necessarily normal) with A+ C = E and
AnC=0.

Remark: Such a subgroup C is called a complement of 4 in E.

Proof: 1If the extension splits, then define C = im . Since 7l = 14, 4 is
monic, so it is an isomorphism between G and C. Now im A is a transversal
of Ain E (ie, a complete set of coset representatives), so that 4 + C = E.
Finally, if a€ A, then ma = 1; if ae C, then a = Ax for some x € G, and
na = nAx = x. Thereforeifae A n C,thena= i1 = Q.

Conversely, each e € E can be written e = a + ¢, a € 4, ¢ € C; moreover,
this expression is unique because A N C = 0. Note that n|C:C— G is an
isomorphism, and define 1:G — E as (z|C)™*. |}
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Definition: Let 0— A — E G— 1 be an extension. A lifting is a function
A:G— Ewithnd = 1gand A1 = 0.

Exercises: 5.7. An extension is split if and only if it has a lifting that is a
homomorphism.
5.8. Show there is a split exact sequence

0-Z/3Z - S; > Z2Z — 1,

where S is the symmetric group on three letters. Show there is no projection
of §3 onto Z/3Z (compare Exercise 2.22).

59. If an extension 0—» 4 — E— G—1 is split and if 4 is G-trivial,
then E is isomorphic to the direct product of 4 and G.

Theorem 5.4: An extension 0> A — E— G — 1 is split if and only if
(i) there is a group E' whose elements are all ordered pairs (a,x)e A x G
with addition given by

(a,x) + (d,y) = (a + xa, xy);

(ii) there is a lifting A so that the function ¢ E — E' defined by a + Ax +>
(a, x) is an isomorphism.

Proof: Suppose the extension splits, and A: G — E is alifting that is a homo-
morphism. As in Theorem 5.3, every element of E has a unique expression of
the form a + Ax. We compute addition:

@+ Ax)+(@+Ay)=a+ix+a —Ax+AiAx+ Ay
=a+ (Ax + a' — Ax) + Axy
=g+ xa' + Axy.

It follows that E' is a group and ¢:E — E’ 1s an isomorphism.

Conversely, define a function 4,:G — E’ by x +> (0,x), and note 4, is a
homomorphism. But i; = ¢/, so that A = ¢ ~'], is a homomorphism and
the extension splits. |}

We now solve the extension problem in the sense that we construct all
possible addition tables for “middle groups” E. Suppose an extension
0->A4A—-E— G- 1lisgiven If ::G— E is a lifting (1 need not be a homo-
morphism!), then im 4 is a transversal of A in E. Since A1 = 0, every element
of E can be uniquely expressed as a + Ax. Both A(xy) and Ax + Ay represent
the same coset of 4, so we have

(%) Ax + Ay =[x, y] + A(xy)

for some element [x, y] € A.
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Definition: The function [ ]:G x G — A defined by formula (+) is called a
factor set.

Further, A realizes the operators (there is no other G-structure in sight),
so there is a second formula

(%) xa + Ax = Ax + a.

Theorem 5.5: Let A be a G-module. A function [ ]:G x G— A is a factor
set if and only if

Q) [x1]=0=[1,x];
() x[y,z] —[xy,z] +[xyz] — [xy] =0, AN

forallx, y,zeG.

Proof: Suppose [ ] is a factor set. The first equation follows from (x) and
the assumption A1 = 0; the second follows from the associative law in E.
For the converse, we must construct an extension of 4 by G (in which 4
realizes the operators), and we must then choose a lifting A so that [ ] satisfies
(#). Let E be the set of all ordered pairs (¢, x) € A x G with addition defined by

(@,%) + (@, ) = (a+ xa + [% y], ).

(Compare this with the addition in the semidirect product.) Formula (ii)
gives associativity, the identity is (0, 1), and

—(@,x) = (~x"ta—x"x,x"],x71),

so that E is a group. Define n:E — G by (g, x) +> x; clearly = is onto with
kernel {(a,1):a € A} that we identify with A. Thus0>A4 >E5 G—1lisan
extension. If we define Ax = (0, x), then it is easy to check that 4 does realize
the operators, viz, formula (#x) holds, and [ ] satisfies formula («). Nl

Definition: Z?(G, A4) is the abelian group of all factor sets under pointwise
addition.

. Observe that the zero of Z2(G, 4) is the factor set that is identically zero,
and it corresponds to the semidirect product.
The definition of factor set arose from considering an extension and it
depends on a choice of lifting A. Changing 4 should still give the same
extension.

Theorem 5.6: Let 0> A—>E—>G—1 be an extension, and let . and
A':G— E be liftings. If [ ] and () are the corresponding factor sets, then there
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is a function { >:G — A satisfying

(i <1>=0;
() (o y) — [xy] =x{y> = {xy> +{xD forall x, y e G.

Proof: Forany x € G, both 1x and A'x lie in the same coset of 4, so there is
an element {x} € A with

{xy = A'x — Ax.
Since A1 = 0 = A'1l, we have (1> = 0. The main formula is derived as follows:
Ax+ Xy =<xp +Ax + <y + Ay
= (x> +x{yp + Ax + Ay (4 realizes the operators)
= (x> +x{y> + [x, y] + Axy
= {{x> + x> + [x,y] — {xpd} + Axy.

It follows that (x, y) = {x)> + x{y¥> + [x, ¥] — {xy), and this is formula (ii)
since each term lies in the abelian group 4. |

Definition: B?(G, A) is the set of all functions f;G x G — A for which there
is a function { >:G — A4 with (1> = 0 such that

J, y) = x{y) = {xyp + <%0

The elements of B%(G, A) are called coboundaries,

Theorem 5.7: BX(G, A) is a subgroup of Z*(G, A).

Proof: A computation is again left to the reader. In particular, one shows
that coboundaries satisfy the two properties of Theorem 5.5 and hence are
factor sets, || '

Definition: ¢(G, 4A) = ZXG, A)/B(G, A).

We summarize our results.
Corollary 5.8: Two factor sets arising from an extension via two choices of
liftings determine the same element of e(G, A).

We have been led to the following equivalence relation.

Definition: Two extensions 0> 4A>E~-G—->1land 04 ->E —->G—1
are equivalent if there are factor sets [ Jand () of each with [ ] — () € BX(G, A).
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A semantic point: equivalence is a relation among extensions and not
merely among factor sets: if [ |* and ()" are two other factor sets of these
extensions, then [ ]' — ()’ € BG, A) also, as the reader should check.

Theorem 5.9: Two extensions of A by G are equivalent if and only if they
fit in a commutative diagram":

0 > A E G 1
14 14 16
0 >A E’ G 1

Proof: If the extensions are equivalent, then the construction of Theorem
5.5 allows us to regard E as all a + Ax with addition

(a+Ax)+ (@ +Ay) =a+ xa’ + [x,y]—i—bcy.

Similarly, we may regard E’ as all a + A'x (denote the factor set here by
(x, y)). We are told that

[x, y] = (x,9) = x{y> = {xeyd + D

Define ¢:E—E' by a+ Ax+>a+ (x> + A'x. It is obvious the diagram
commutes, and a dull computation shows that ¢ is a homomorphism.

Conversely, suppose 1: G — E is a lifting determining a factor set [ ]. By
commutativity of the first square, [x, y] € 4 gives ¢[x, y] = [x, y], so that
e[ ]=1[] By commutativity of the second square, pi:G — E' is also a
lifting, and, applying ¢ to the defining equation

Ax + Ay =[x,y] + Axy

shows that ¢[ | is the factor set determined by @A. If () is any factor set of
E’, however, we know that () is equivalent to ¢[ |, by Corollary 5.8. Since
@[ ] =[], the two extensions are equivalent. ]

Remark: Diagram chasing shows that ¢ must be an isomorphism,
Although the equivalence relation is defined in a natural manner, it can
happen that there are inequivalent extensions of 4 by G with isomorphic
middle groups. If p is a prime, we shall see later that e(Z/pZ, Z/pZ) = Z/pZ.
If 0»Z/pZ — E - Z/pZ — 1 is an extension, then E has order p?, hence is
abelian [Rotman, 1973, p. 84]. It follows easily (one ought not invoke the

! One usually defines equivalence of extensions in terms of this diagram; we have chosen
to give the definition in terms of factor sets because it arises directly from calculations.
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Fundamental Theorem of Finite Abelian Groups) that E = Z/p?Z or
E = Z/pZ & Z/pZ. There are thus only two middle groups E, but there are p
equivalence classes of extensions. Here is an explicit construction of two
such inequivalent extensions. Let p be an odd prime, let A be cyclic of order
p with generator g, and let E be cyclic of order p? with generator x. Define
i:A— E by ia = px; define j: 4 — E by ja = 2px. Suppose these definitions
lead to equivalent extensions, Le. there is a commutative diagram

1 T

0 A E EJiA 0
1 B 1
0 * A E————— E/jA 0

Note that i4 = jA, so we may take the same map =:E — E/i4A in both
extensions. Now commutativity of the first square shows that § is multiplica-
tion by 2, but this is not compatible with commutativity of the second square.

Corollary 5.10:  If e(G, A) = 0, then every extension
0A->E->G-1

is split, and E is a semidirect product.

Proof: By Corollary 5.8, any given extension is equivalent to the “obvious”
extension 0> A— E'—>G—1 in which E’' is a semidirect product. By
Theorem 5.9, there is an isomorphism ¢:E — E' showing that E = E' and
that the given extension is split. |}

The Schur—Zassenhaus lemma (Theorem 10.27) gives a condition
guaranteeing that (G, 4) = 0: if G and A are finite groups whose orders are
relatively prime. The theorem goes on to say that if C and C’ are complements
of 4 in E, then C and C' are conjugate. Let us examine this.

Definition: A derivation (or crossed homomorphism) is a function { >:G— 4
with

{xyd = x{yp + {xD.

The set of all derivations, Der(G, 4), is an abelian group under poiﬁtwise
addition.

If A is a trivial G-module, then Der(G, A) = Hom(G, A4).
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Exercise: 5.10. Let A be a semidirect product of A by G, andlet 1:G— E
be a lifting.

(1) Ax = ({x}>,x) for some {x) € A4,
(i) 1 1is a homomorphism if and only if { ) is a derivation.

Definition: An automorphism ¢ of E stabilizes an extension 0 > A - £ —
G — 1 1f the following diagram commutes:

0 A >E G >1

14 ¢ 1s

0 > A > E G > ]

Exercise: 5.11. Given an extension 0 > A — E— G— 1, the set of all
stabilizing automorphisms of E, denoted s(E), is a subgroup of Aut(E).
(Of course, s(E) depends on the choice of extension having middle group E.)

Theorem 5.11: Let 0> A—>E—>G—1 be an extension. There is an
isomorphism s(E) = Der(G, A).

Proof: Let 1:G — E be a lifting. Then E consists of all a + Ax, so that if
@ € Aut(E) is stabilizing, then ¢(a+ Ax)=a+ (x> + Ax for some
{ >:G — A. A short computation (using the fact that ¢ is a homomorphism)
shows that { > is a derivation.

We claim that the derivation { ) does not depend on the choice of
lifting 4. If A':G — E is another lifting, then ¢(a + A'x) = a + [x] + A'x, and
[x] = @A'x — i'x € A. Therefore,

—~{xy + [x] = Ax — @Ax + pA'x — A'x
=Ax+ p(—Ax+ AIx)— A'x=0

since —Ax + i'x € 4, hence is fixed by ¢. The function &:¢ > { > is thus
well defined, and is easily seen to be a homomorphism.

To construct a function inverse to &, associate to { > e Der(G, 4) the
map ¢:E — E defined by ¢(a + ix) = a + (x> + Ax. One checks easily that
@ is a stabilizing automorphism and that ¢ is independent of the choice
of . |

Recall that an automorphism of a group E is imner if it is conjugation
by some element of E.
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Theorem 3.12: Let0 — A — E— G — 1 be a split extension, and let ,:G— E
be a lifting that is a homomorphism. A function ¢ E — E is an inner stabilizing
automorphism if and only if

pla+ AxXy=a+ ap — xag + ix
for some fixed a, € A.
Proof: Suppose ¢ is as displayed. Then ¢ is conjugation by —a,, for
—ag + a4 Ax + ag = —ay + a + xay + Ax.

It is clear that ¢ is stabilizing.
Conversely, suppose ¢ is stabilizing and is conjugation by ay + Ax,. Then

ola+ Ax) = (ag + Axo) + a + Ix — (ap + Axo)
= a4+ Xoa + Axog + Ax — Axo — ag
= dy + Xoa + Axoxxs ! — ag
= dy + Xoa — XoXXg 'ag + Axgxxg!
=a+ {(x) + Ax,
since ¢ is stabilizing. It follows that xoxxg ! = x, so that
e(a + AxX) = ag + Xpa — Xap + Ax.
Furthermore, when x =1,
a=¢(a) = ay + xpa — ag,

so that xoa = a, and we have the desired formula. ||

Definition: A principal derivation (or inner derivation) is a function f:G— 4
of the form

f(x) = xay — ay,
where g, € 4 is fixed. .

The set of principal derivations, PDer(G, 4), is a subgroup of Der(G, A).
Definition: stab(G, A) = Der(G, 4)/PDer(G, A).
Theorem 5.13: Let E be a semidirect product of A by G, and let C and C’
be complements of A in E. If stab(G, 4) = 0, then C and C' are conjugate.

Proof: Since E is a semidirect product, there are liftings A, I’ of G that
are homomorphisms and im A = C, im 1’ = C'. It follows that the factor sets
[ Jand [ ] they define are identically zero. Theorem 5.6 provides a function




160 5 Extensions of Groups

{>:G— A with
0= [x,y] - [x’y], = x<y> - <xy> + (xD.

It follows that { > is a derivation. Since stab(G, A) =0, { ) is principal,
so there is an element a, € A with {x} = xaq — ay. But {x> = A'x ~ Ix.
Therefore,

A'x — AX = xay — ao, and AX =ay — Xay + Ax =ao + A'x — ay.
Since C =im A and C' =1im 1, ao conjugates C' into C. |

Let us give another consequence of the vanishing of stab(G, 4). For a
field k, we consider kG-modules 4; of course, each such module is a vegtor
space over k.

Theorem 5.14: If stab(G, 4) = 0 for every kG-module A, then kG is semi-
simple.

Proof: By Theorem 4.13, it suffices to show that every exact sequence of
kG-modules

() 0-USVIWS0
splits, i.e., there is a kG-map o: W — V with o = 1.
Consider the exact sequence
0 - Hom(W, U) 5 Homy(W, V) % Hom,(W, W).
First of all, an easy computation shows that each of these Hom’s is a kiG-
module if we define xf, for x € G, by
Xfrw b= xf(x " 1w).

Furthermore, another brief calculation shows f e Homy(W, V) is a G-map
if and only if xf = f for every x € G.
Since every exact sequence of vector spaces splits, there exists a k-map
s:W — V with ns = 1. For every x € G, we claim 7 o (xs — 5) = 0:
[mo(xs — s)]w = r[(xs)w] — (ms)w
=n[x(s(x"w))] ~w  (since ms = 1)
= xus(x " iw) — w (since = is a kG-map)
=w—w=0 (since s = 1y).
Therefore, xs — s e kerm, = im i, for every x e G. Define

©:G - Homy (W, U)
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by
o(x) =i (xs — s),
Using the fact that i is a kG-map, we see that ¢ is a derivation:
x0(y) + @(x) = xi"1(ys ~ 5) +i (xs—3)
=i Yxys — x5+ x5 — 5) = @(xy).
Since stab(G, Hom, (W, U)) = 0, there exists 1 € Hom, (W, U) with
@(x) = xh — h, all xeG.
Recalling the definition of ¢, we obtain
iTYxs—s)=xh—h, all xegG,
and hence
x(s — ih) = s — ih, all xeG.

If we define o € Hom, (W, V) by o =.s — ih, then the equation above tells us
that o is a kG-map. Also,

o = 7(s — ih) = ns — wih =15 = 1y,
so that the original sequence () of kG-modules splits. |}

Obviously, Theorem 5.14 is related to Maschke’s theorem: if G is a finite
group and k is a field whose characteristic does not divide the order of G,
then kG is semisimple. Indeed, these hypotheses on G and k do imply the
vanishing of stab, thereby proving Maschke’s theorem (see Theorem 10.28).

Let us summarize the formulas that have arisen.

Factor set: x[y,2] =[xy, 2] + [x,yz] —[x,y] = 0;
Coboundary: FOey) = x{y> — {xy> +<{xp;
Derivation: x{yy = Lxyy +{x> = 0;

Principal derivation: f(x) = xa — a.

We can continue this one step further. Factor sets are certain functions
of two variables G x G — A; derivations are certain functions of one variable
G — A. Next in line are functions with no variables, i.e., constants in A4;
let us regard a constant in 4 as a function from a singleton set, with unique
element [ ], into 4. Now the definition of free G-module (more formally,
Exercise 3.2) says that the group of all functions G x - - x G (n times) — A
is the same as Homg(F,, 4), where F, is the free G-module with basis
G x -+ X G (n times). A moment’s reflection shows that we have been
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applying the contravariant functor Homg( , 4) to
FsB3F,3F 3 F,,

where F,, is the free G-module on the single generator [ ], and

‘ di[x]=@x—-1[]

do[x,y] = x[y] — [xy] + [x],

ds[x,y,z] = x[y,z] = [xy, 2] + [x,yz] =[x, ¥].
After all, look at the induced sequence
Homg(F3, 4) & Homg(F, 4) & Homg(F,, 4) & Homg(Fo, 4). |

We see that ker d% consists of all factor sets (not quite, for we must also take
account of the identity [x, 1] = 0 = [1,x]), im d% consists of all coboundaries,
ker d% consists of all derivations, and im df is all principal derivations. What is
ker d§? Note that since Fy = ZG, we have Hom(F,, 4) = Homy(ZG, 4) =~ A.
Thus ker df is a submodule of 4. Writing these isomorphisms explicitly gives

kerdf = A°={aeA:xa=a,  all xeG}.
Definition: A% is the submodule of fixed points of 4.

Exercises: 5.12. A® is a G-trivial submodule of 4; A% is the (unique)
maximal G-trivial submodule of 4.

5.13. “Fixed points” is a functor on G-modules: on an object A, its
value is A%; on a G-map f:4 — B, its value is the restriction f]A%

5.14, Assume E is a semidirect product of 4 by G (so that we may
assume G is a subgroup of E), If 4 is a G-module as in Theorem 5.2, then
A% is the subgroup of A consisting of all a € 4 that centralize G, ie.,

A% ={aecA:[a,x] =axa™'x"' =1for all x € G}.

5.15. Let B and 4 be G-modules. Show that Hom,(B, 4) is a G-module
if, for x € G and f € Hom,(B, 4), one defines

(x)®) = xf(x"'b), all beB.
-5.16, 'With the notation of Exercise 5.15, show that
) Homy(B, A)° = Homg(B, A).
(This is the same computation as in the proof of Theorem 5.14.)
Theorem 5.15: Let Z be the integers considered as a G-trivial module. Then

the maps t :Homg(Z, A)— A® defined by f > f(1) constitute a natural
equivalence of functors.
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Proof: There is a list of items to verify, and each verification is routine.
We merely note that f(1) € A% for xf(1) = f(x1) since f is a G-map, and
f(x1) = f(1) since Z is G-trivial. ||

In Example 42 of Chapter 4, we defined the augmentation map £:ZG - Z
given by Y m.x+> ) m,; the map ¢ is actually a ring map, and its kernel
g is called the augmentation ideal. Of course, g is a two-sided ideal in ZG.

Theorem 5.16: If Z is G-trivial, then
Fy8F,8F %F, 520
is an exact sequence of G-modules.
Proof: Weleave this as a rather uninspiring exercise for the reader. ||

It is quite tempting to continue the sequence of free modules past F;.
1t is even clear how: the final result should be a free resolution of Z. Honest
things do appear. The next step F, — F; yields “obstructions” which tell
whether certain types of extensions with nonabelian kernel exist [ MacLane,
1963, pp. 124-131]. We shall return to this resolution in a later chapter.
At this point, the reader has seen that group-theoretic problems (surveying
extensions and conjugacy questions) suggest constructing a G-free resolution
F, of Z and applying the functor Homg( , 4). Anticipating some definitions
of the next chapter, the “complex” Homg(F,, 4) has zeroth cohomology
group A%, first cohomology group stab(G, 4), and the second cohomology
group is e(G, A) (this last remark requires more work since the functions
[, ]:Gx G- A in Homg(F,,A) need not satisfy the identity [x,1]=
0=1[1x]).

Before leaving groups, we take the topologists’ hint of applying &, 4
to the sequence

Fs8F,5F, 3F, 520
Observe that the free modules in the sequence are left G-modules. As we
remarked earlier (Exercise 5.2), we may regard them as right G-modules

by defining, for be F,, bx = x'b, so that the tensor products F, ®s A4

make sense. Thus, consider
Fy®A225 F, @4 225 F @4 425 Fo@s 425 Z®g 4 0;

what are the kernels, images, and quotients?

Theorem 5.17: Cokerd, ® 1 = Z ®; A.

Proof: The sequence
Fi3F 570
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is exact, so that right exactness of ®g A gives exactness of
4,®1

FI®A—Fy®@A-ZRA-0,
whence cokerd; @ 1 =Fy ® A/im(d, ® 1) = Z Rz A. |

Theorem 5.18: Z ®¢ A = A/gA, where g is the augmentation ideal of G.

Proof: Exactness of 0 » g —» ZG 5 Z — 0 gives exactness of
§®cA>LGReA>ZR®s A—0.
Now ZG ®g A = A and, under this isomorphism, im g ® A4 goes into g4. ||

Theorem 5.19:  As an abelian group, g is free with basis {x — 1:x € G}.

Proof: An element u =) m.x ekere if and only if Y m, = 0. Therefore
u=u~— () m)l =)ymix—1),s0 that g is generated by the x — 1.

Suppose ) m.(x — 1) =0. Then Y m.x ~ (I m)1 =0 in ZG, which, as
an abelian group, is free with basis G. Hence, each m, = 0. ||

Definition: A; is the maximal quotient module of 4 that is G-trivial.

Corollary 5.20: Ag = A/gA = Z ®; A.
Proof: Tt is clear that A; = A/S, where S = {xa — a:x € G,ac A}. But
xa—a=(x~1)a and S =g4. |

Example: Suppose E is a semidirect product of 4 by G. We may consider
G as a subgroup of E, and we inquire about [ G, 4], the subgroup generated
by commutatorsa + x — a — x,a€ 4, x € G. Now

a+x-—a——'x=a——xa==(1 — x)a.
Therefore Ag = A/[G, A].
Later, we will show that if 4 = trivial Z, then
kerd, ® 1/imd, ® 1 = G/G,
where G is the commutator subgroup of G. The next quotient
kerd, ® 1/imd; ® 1

also has group-theoretic significance: it is called the Schur multiplier.

Again anticipating the next chapter, tensoring the G-free resolution by
a module 4 gives a complex whose zeroth homology group is dg;if 4 = Z,
then the first homology group is G/G', and the second homology group is
the Schur multiplier (we shall discuss this in more detail in Chapter 10).
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Before we leave groups, let us observe that the hybrid Der(G, 4) (Gis a
group and A 8 a G-module) may be viewed as an ordinary Hom between
two G-modules.

Theorem 5.21: The maps t,:Homg(g, A) — Der(G, A) defined by f+>{ >,
where {x) = f(x — 1), constitute a natural equivalence of functors

Homg(g, ) = Der(G, ).

Proof: One checks easily that { » defined in the statement is a derivation,
so that t, is a well-defined homomorphism. We construct its inverse. If
{ > e Der(G, 4), define a function f by f(x ~1)=<x>e 4. Since g is a
free abelian group with basis {x — 1:x € G}, f can be extended to a Z-
homomorphism f:g— A. That f is a G-map follows from ¢ > being a
derivation. The reader may show the isomorphisms t, define a natural
transformation, hence constitute a natural equivalence. |

It is not difficult to prove directly that the functor Der(G, ) preserves
inverse limits, so that Theorem 3.38 of Watts asserts the existence of some
G-module B with Homg(B, ) = Der(G, ). However, that general theorem
does not identify B as the augmentation ideal g. A similar remark can be
made about Theorem 5.15.
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In this chapter we give the proper context in which to view the group-
theoretic constructions of the previous chapter. Chapter 1 gives a rapid
description of homology as it arises in algebraic topology; Chapter 4
illustrates the interplay between constraints on a ring R and the behavior
of special R-modules (projectives, injectives, and flats). The basic idea now
is to study the interplay between constraints on a ring R and the behavior
of arbitrary R-modules; this is done by replacing each R-module by a
resolution of it comprised of special R-modules. Happily, this idea can
be made to work using the same elementary homological constructions
occurring in algebraic topology.

HOMOLOGY FUNCTORS

Throughout this chapter, “module” means “left R-module”, where R
is a ring fixed once for all, and “map” means “R-map”. Also, all functors
are additive. :

Definition: A complex (or chain complex) A is a sequence of modules
and maps

dnst d
A= o4, —— A4, 34,.,>, nelk

>

166
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with d,d,., = 0 for all n. The maps d, are called differentiations. If it is
necessary to display the differentiations, we will write (A, d) instead of A.

Note that the condition d,d, ., = 0 is equivalent to

imd,,, < kerd,.
%

Examples: 1. Every exact sequence is a complex, for the required in-
clusions imd, ; < kerd,, all n, are even equalities imd, +; = kerd,.
2. If X is a topological space, then

S(X) =+ = 5(X) B S,y (X)~ -+

constructed in Chapter 1 is a complex; S(X) is called the singular complex
of X.

Recall that the singular complex has its terms S,(X) defined only for
n> —1. Since the definition of complex requires a module for each index
neZ, one defines S{(X) =0 for all negative n (this forces d, =0 for all
negative n). Of course, this device of addings O’s is always available.

3. Let A be a module and k € Z be a fixed integer. If we regard 4 as
the kth term and all other terms 0, then we have a complex concentrated
in degree k.

4. If A is a module, every projective resolution P of A

P=:--->P ->Py>4-0

is a complex (add necessary O’s to the right).
5. If Ais a module, every injective resolution E of 4

E=0—>A—>EQ—)E1—)E2_)~~"

is a complex (add necessary O’s to the left). We have used a convenient
notation. The indices of a complex must decrease as .one goes to the right;
this is easily arranged by changing the sign of the index, and has been
indicated by raising the index. One would conform to the original definition
if he wrote

E=0-A4->E;—-E_|»E_,—>- .

The main reason one defines a complex so that the indices range over all
neZ is that “positive” (e.g.,, projective resolutions) and “negative” (e.g.,
injective resolutions) complexes may be treated simultaneously. There are,
however, some interesting complexes (“complete resolutions™ arising in the
homology of finite groups) which are doubly infinite [Cartan—Eilenberg,
1956, Chapter XI1].
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6. IfA isacomplex and F is a functor, then
F(A) =+ > F(A) = F(d,-1) >
is also a complex. In partlcular if A is an exact sequence, then F(A) is a
complex (which is usually not exact). &
7. A similar construction is available for a complex A and a con-
travariant functor F. Reversing the direction of arrows causes two minor
notational problems:

FA)="">FA,-)—> Fd,)—> .

The problem of increasing indices is solved as in Example 5: change sign
and raise. Thus, define B™" = F(4,) and the sequence becomes :

FA)=---—- Bt o, gon ...

The second problemis that the map B~"*! — B~ " should haveindex —n + 1.
Define

Fdn

A"l = R4,
(change sign and add 1). With these conventions, F(A) is a complex
F(A) = F(4,_1) —">F(4,) >
— - gTrtl AT B L

Definition: If A and A’ are complexes, a chain map f:A — A’ is a sequence
of maps f,:A4,— A4, all n e Z, such that the following diagram commutes:

dn+ 1 dn

T Apsy * A, W
Soet S Jae1
s Apyy - A, - Aoy —> -
d’l+1 dll

Exercises: 6.1. Construe the ordered set Z as a category with objects
the integers n e Z and exactly one morphism n — n + 1 for each » (this is
a special case of Chapter 1, Example 7). Prove that a complex A is a functor
Z — 9, and that a chain map f:A — A’ is a natural transformation.

6.2. Define Comp (or R-Comp) as the class of all complexes and chain
maps (with the obvious composition). Prove that Comp is a pre-additive
category (the Hom’s are abelian groups and distributivity laws hold).
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In exercises below, it will be seen that almost every construction available
in IR is also available in Comp. Since we are more interested in homology
than in complexes, however, let us first give the important definition.

Definition: If(A,d) is a complex, its nth homology module is
H,(A) =kerd,/imd,. .

We observed earlier that d,d, ., = 0 means imd, ., < kerd,, and so the
quotient module does make sense. Every ingredient has a name; see Chapter 1
for the etymology.

Definition: The elementslof A, are called n-chains, the elements of ker 4,
are called n-cycles, and the elements of imd,., are called n-boundaries.
One writes
kerd, = Z,(A)= Z,,
imd,,+1 = Bn(A) = Bm

and thus
H,(A) = Z,(A)/By(A).

As H, is really a functor, its definition is still incomplete, for we must
define its action on morphisms (=chain maps).

Definition: If f:A — A’is a chain map, define
H,(f):H,(A)— H,(A")
by
z, + BJA) > fz, + B,(A").

H,(f)is called the map induced by f, and it is usually denoted f,, (the subscript
n being suppressed).

Theorem 6.1: For each n, H,: Comp — ;I is an additive functor.

Proof: We only show that f, is well defined; the other verifications are
also routine and are left to the reader.

Assume f:(A,d) - (A, d') is a chain map; thus (omitting indices), fd = d'f.
If z, is an n-cycle, then dz, = 0; it follows that d'fz, = fdz, = 0 and so fz,
is also an n-cycle. If b, € B,(A), then b, = da for some a; hence fb, = fda =
dfa e B(A"). As f, preserves cycles and boundaries, it follows easily that
the formula for f, does give a well-defined map. |




170 6 Homology

Exercises: 6.3. A complex A is an exact sequence if and only if H (A) =0
for every neZ. (For this reason, exact sequences are often called acyclic
complexes.)

6.4. Let T:x9 — ;I3 be an exact (covariant) functor. For each ne Z
and every complex A of R-modules, prove that H,(TA) = TH,(A) (where
TA is defined as in Example 6). If T is contravariant exact, prove that
H_,(TA) = TH,(A) (where TA is defined as in Example 7).

6.5. Let (A,d) be a complex with zero differentiation, ie., d, =0 for
all n. Prove that H(A) =~ A, for all n.

6.6. A chain map f:A — A’ is an isomorphism in Comp if and only if
each f, is an isomorphism.

6.7. If {A*:k € K} is a family of complexes, where

koo, AR B gk
A“ _)An_)An—l_)

?

then the sum | [A* is defined as the complex
HAR="'_’HA5"%"HA5—1_’""
k k

Prove that H,(] [A¥) =] [, H(A¥) for every n e Z.
6.8. If K is a quasi-ordered set, define the direct limit of complexes,
lim AF If K is directed, prove that

H,(imAY ~lmH,(A9, al neZ
— —
(Hint: Use Theorem 2.18.)
We remark that Exercise 6.8 may be false when the index set K is not

directed; for example, the functors H, need not be right exact.

Definition: A complex (A,d) is a subcomplex of (A’,d") if each A4, is a
submodule of 4, and d, = d,| A, for all n. In this case, there is a quotient
complex

AVA = M)A A A
where d,:a, + A, d.a, + A, 4.

One should observe that A is a subcomplex of A" precisely when the
inclusions i,: 4, — A, constitute a chain map. Equivalently, A is a subcomplex
of A"if it is a sequence of submodules 4, of 4, with d(4,) = A,-,, all n.

Exercises: 69. If f:A — A’is a chain map, define complexes ker f, im f,
and coker f in the obvious way: for example,

ker f =---—kerf,Bkerf,_, —- -,
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where d, is the restriction of the differentiation 4,— A,-;. Prove that
A/ker f =~ im f.

6.10. DefineA’ 5 A% A”tobe exactif im f = ker g. Prove this sequence
of complexes is exact if and only if the sequences of modules

4,0 4, Ay
are exact for every n e Z.

At this point, the reader should be comfortable with complexes, and
he should regard them as generalized modules. The next natural question
is what homology functors do to short exact sequences of complexes. They
are, In general, neither left nor right exact (we shall see they are half exact:
if0—»A"> A— A" - 0is exact, then H,(A') > H,(A) > H,(A") is exact).

The proof of the next lemma is a routine diagram-chase, but we give
the details because of the importance of the result.

Theorem 6.2 (Connecting Homomorphism): Let 0— A’ > A5 A” - 0 be
an exact sequence of complexes. Fer each n, there is a homomorphism
0n:H,(A")— H,_4(A")
defined by
Z" 4+ BJ(A) > i d,p 2" + B,_,(A).

Proof: Consider the commutative diagram with exact rows:

0> 4 > A, A~ 0
@ d a
0—Au-y Apey »Ai-1 -0

i

Suppose z" € A, and 4"z’ = 0. Since p is epic, we may lift 2’ to a, € 4,
and then push down to da, € 4,_ . By commutativity,
da, eker(4,-, = A]_,) = 1mi.

It follows that i~!da, makes sense, ie., there is a unique (i is monic)
ay—y € A,_y with ia,_ | = da,.

Suppose we had lifted z” to @, € A,. Then the construction above yields
a,.1 € A1 with i@, | = da,. We also know

a, — d, ekerp = im(4,— A4,),
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so there is X, € A}, with a,_, — @,_, = d'x, € B,_,(A"). There is thus a well
defined homomorphism

ZA") > Ay-1/B,1(A).

It is easy to check that this map sends B,(A”) into 0 and also that
i“ldp~'z'=a,_, is a cycle. Therefore the formula does give a map
H/A")— H,_,(A), as desired. ||

Definition: The maps 0,:H, (A")— H,_,(A") are called connecting homo-
morphisms.

Theorem 6.3 (Long Exact Sequence): If0— A’ A5 A” 0 is an exact
sequence of complexes, then there is an exact sequence of modules

s HA) S H(A) B H (A S H,_(A) 5 Hoo(A) > -

Proof: Again the argument is routine and again we supply details. There
are six inclusions to verify; the notation is self-explanatory and we omit
subscripts.

(1) imi, < kerp,.
Puly ={(pi)y =0, =0.
(2) kerp, < imi,.
If pu(z+ B) = pz + B” = B"”, then pz = d"”a". But p epic gives 2’ = pa
for some q, so that pz = d”pa = pda, and p(z — da) = 0. By exactness, there

is @’ with ia’ = z — da. Note that a' e Z, for id'a’ =dia’ =dz — dda= 10
(z 1s a cycle). Since i is monic, d'a’ = 0. Therefore

il +B)=id+B=z—da+ B=z+ B.
(3) imp, < kerd.
Op.(z+ B)=0(pz+ B") = x' + B,

where ix' = dp~?! pz = dz = 0 (this computation is correct modulo B since
0 is independent of all choices). Since i is monic, x' = 0 and dp,, = 0.

(4) kerdcimp,.
If §(z" +B")=DB', then x'=i"'ldp~'z" e B". Hence x = d'd. Now

—~1,

ix'=ida =dia =dp~'z",sothat d(p~ 'z’ —id)=0and p~ 'z’ —id € Z.
Therefore

p*(p—lzl/__ l-a/ -+ B) — pp‘—lzu . pl'a/ -+ B//= 2" -+ B”-
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(5) im0 < keri,.
i,0(z' + B")=ix'+ B,  where ix'=dp~'z"eB.
(6) keri, < imd.

Suppose i,(z + B') = iz’ + B = B, so that iz’ = da. Then d"pa = pda =
piz = O and pa € Z". But 8(pa + B") = x' + B/, where ix' = dp™ ' pa = da =
iz mod B. Since i is monic, x' = z" and d(pa + B") =7+ B'. }

Theorem 6.3 is often called the Exact Triangle because of the mnemonic
diagram

H(A") —-————->H(A)

N,

H(A//

Theorem 6.4 (Naturality of 3): Consider the commutative diagram of com-
plexes with exact rows:

0> A———A—TL A

0—-C 7 >»C PR Cc' -0
Then there is a commutative diagram of modules with exact rows:

Ly Py a
o> H(A) > H (A) ——— H(A") ———— H,_(A) = - -
S 9s by Sy

- o Hy(C) ——— H(Q) ———— H,(C") —5— H,,(C)~> -
Proof: Exactness of the rows is Theorem 6.3. The first two squares com-
mute because H, is a functor. A routine but long chase gives commutativity
of the square involving connecting homomorphisms. ||

If one were to choose several results to call Fundamental Lemmas of
Homological Algebra, then he would include the last three theorems on his
list. He should also include Theorems 6.5, 6.8, 6.9, and 6.20.
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There is a valuable reformulation of the construction of the connecting
homomorphisms, which yields another proof of the Long Exact Sequence.

Theorem 6.5 (Snake Lemma): Consider the commutative diagram of mod-
ules with exact rows: '

A/ > 'A”_’ O

O - C/ - > > C//

There is an exact sequence

kera— ker f— kery 5 coker o — coker § — cokery,

-1

where 8:a” > i 'fp~'a” + ima.
Moreover, if A’— A is monic, then ker a— ker f is monic, and if C—>C”
is epic, then coker B — cokery is epic.

Proof. The only nonobvious thing is that ¢ is well defined, and this has
already been demonstrated. ||

Exercises: 6.11. Consider the commutative diagram of modules with
exact rows (we are focusing on a portion of an exact sequence of complexes
0->A>A-> A" - 0):

0— A4, >A, A 0
g, dy dy
04—, Aoy A1 >0

Show there is a commutative diagram with exact rows:

A/imd, ., ——— A, fimd, ., ——— 4;/imd;,,~> 0
A A A

0-2, (A) ———— 2Z,_(A) ——— Z,_,(A")

where, e.g., A':a, + imd,, | > d.a,.




Homology Functors 175

6.12. Give a second proof of the Long Exact Sequence by applying the
Snake lemma to the diagram of Exercise 6.11.

6.13. (Mapping Cylinder) Let f:(A,d)— (A',d’) be a chain map. For
each n, define

Mn = An—l @ A;u
define A,:M,— M,_, by
An:(an—laa:l)H (__dn—lan—ladr:a:l +f;l-1an—1)'

Prove that M as just defined is a complex (it is called the mapping cylinder
of f and is usually denoted M(f)).

6.14. If Ais a complex, let A* denote the complex obtained from A by
increasing all indices by 1:

(A+)n = An— 1-
Show that H,(A*) = H,_,(A).
6.15. (i) If f:A— A’is a chain map, there is an exact sequence
0> A SM() DAY 0,

where i,: A, — A, @ A, is given by a, — (0,d}), and p,: A, ® 4, > A,
is given by (a,-1,ap) > dp_y-
(iiy The corresponding long exact sequence is

Tt Hyyg(A) > Hyy i (M(S)) — Hy(A) S H(A) > HM(f)) >

(iif) The connecting homomorphism ,:H,(A)— H,(A") is f,, the map
induced by f.

(iv) f, is an isomorphism for each n if and only if M(f) is acyclic.

6.16. (3 x 3 Lemma): Consider the commutative diagram of modules:

0 0 0
0 A —" s 47—
0 B B » B0
0-C C »C7 >
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If the columns are exact and if the bottom two (or the top two) rows are
exact, then the top row (or the bottom row) is exact. (Hint: Either use the
Snake lemma or proceed as follows: first show that ae’ = 0, then regard
each row as a complex and the diagram as a short exact sequence of com-
plexes, and apply Theorem 6.3.)

Remark: The 3 x 3 Lemma is often called the 9-Lemma.

6.17. Let 0> A’'— A — A" 0 be an exact sequence of complexes. If
A’ and A" are acyclic, then A is acyclic. (Hint: Theorem 6.3).

Let us pause before pursuing our main goal: the construction of “derived
functors”.

Lemma 6.6 (Mayer—Vietoris): Consider the commutative diagram of
modules with exact rows:

Pr O

in
- A, > B, > C, > Apoq >»B,_, >»Cpy— -
a”l ﬂnl 'ynl O e 1j ﬂrr« 1} V- Il
AL ; > B, p > C, > Aoy > B, »Choy

If every y, is an isomorphism, there is an exact sequence

N IS RTINS LN e A A B B
—> 4y, n@ n n n—1"" n—l@ n—1">Dp17>"" "

Proof: This, too, is automatic; we merely define the maps in more detail.
The map A4,— A, @ B, sends a, — (x,a,,i,a,) and the map A, B,— B,
sends (a,, b,) 7 judn — Bubn- |1

This last lemma is useful in algebraic topology. If Y is a subspace of a
space X, then every continuous map A,— Y (where A, is the standard
n-simplex) may be regarded as a continuous map A, —» X. In this way, we
obtain an exact sequence of complexes (where S(X) is the singular complex
of X)

00— S(Y) - S(X) - S(X)/S(Y)— 0.
By definition, the nth relative homology group of X mod Y is
H(X,Y)= H,(S(X)/S(Y)).

If Y=, then H(X, ) = H,(X) as defined in Chapter 1. Algebraic to-
pology considers the category whose objects are all pairs (X, Y), where Y is
a subspace of X (perhaps empty) and whose morphisms f:(X, Y)— (X', ")
are all continuous maps f:X — X' for which f(Y) < Y.
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Assume X is a topological space with subspaces X; and X,. Using
Theorems 6.3 and 6.4, we have a commutative diagram with exact rows

S H(X,nX)— H(X ) H (X1, X10X2)— H, (X, n X3)—

. l l

o H(X)— H (X 10 X)— H(X 10X, X)) —H,(X5) >

where all arrows other than connecting homomorphisms are induced by
inclusions. Now the Excision Axiom is the theorem stating that if X =
X, uX,=X%u X9 (where X? is the interior of X)), then the maps
H(X,,X,nX,)>H(X, v X,,X,)are isomorphisms for every n. Lemma
6.6 now applies, for every third vertical arrow is an isomorphism.

Theorem 6.7 (Mayer—Vietoris): Let X, and X, be subspaces of X with
X = X% U X3. There is an exact sequence

o Hy(Xy 0 X)) - Hy(X,) @ H(X5) > Hy(X) > Hpo (X Xp) >0
Proof: We have sketched the proof in the paragraph above. We remark

that Lemma 6.6 allows one to be more precise; explicit formulas for the
maps in this exact sequence are given. |1

It is an important fact in topology that homotopic continuous maps
induce the same homomorphisms in homology. We extract the (simple)
algebraic part of this result.

Definition: Let f:A — A’ be a chain map; f is nullhomotopic if there are
maps s,: A4, = 44 such that

Jo=dps1Sn + Sp—1d,, all n.

dyiy d,

C o Ay > A, > Ay o -
Sn f"' Sp-1
C o Auyg > A, 7 >Ap >
»

dyis
If f and g are chain maps A — A’, then f is homotopic to g if f — g is null-
homotopic. The maps {s,:n € Z} form a homotopy.

It is easy to see that homotopy is an equivalence relation on Hom(A, A",
the group of all chain maps A — A",
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Theorem 6.8: If f and g are homotopic chain maps A — A, then
e =95 HLA) > H(A)  foral nelZ.

Proof: We omit subscripts. If z is an n-cycle, then
fz—gz=d'sz + sdz.
Since dz = 0, we have fz —gze B(A") and so f, =g,. |

Exercises: 6.18. Theorem 6.8 is true if the maps s, are merely Z-maps.
6.19. A complex A has a contracting homotopy if its identity map 1, is
nulthomotopic. (This is the algebraic analog of a contractible topological
space.) Prove that if A has a contracting homotopy, then A is acyclic.
620. If f and g are homotopic chain maps A — A’ and if F is an addi-
tive functor, then Ff and Fg: FA — FA' are also homotopic.

DERIVED FUNCTORS

Given a functor T between categories of modules, we construct a se-
quence of new functors, called derived functors, as suggested by our study
of group extensions. Here is a rough sketch of how to evaluate these functors
on a module M: choose a resolution of M, apply the functor T, and take
homology of the resulting complex. It is clear, even from this brief descrip-
tion, that we are obliged to compare different resolutions in order to prove
independence of the choice.

Notation: Let X be a complex of the form
X="">25X»Xo>M-0.
The complex obtained by suppressing M is
Xu=""">2X,-X¢-0
and is called the deleted complex of X.
Similarly, we define the deleted complex Yy of the complex
Y=0-N->Y' Yl

by suppressing N.
Deleted complexes arise in practice from either a projective or injective
resolution of a module. If we suppress M from a projective resolution

c 5P Py M0,
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we really have not lost any information, for M = coker(P, — P,). Further-
more, if we regard projective resolutions as generalizing the notion of
generators and relations, then suppressing M is a rather natural thing to do,
ie, we retain the generators and relations (as is the usual procedure in

group theory).

Theorem 6.9 (Comparison Theorem): Consider the diagram

d d g
- X, i X, — X, > A >0
| | |
| | I
! E {
I | | /
| | |
4 + i
- X3 7 > X 7 > X o - > A’ >0

where the rows are complexes. If each X, in the top row is projective and if
the bottom row is exact, then there is a chain map J:X, — X!y (the dashed
arrows) making the completed diagram commute.

Moreover, any two such chain maps are homotopic.

Remark: The dual theorem is true and the proof is similar; the sequences
go to the right, the top row is assumed exact, and each term in the bottom
row (save the first) is assumed injective.

Proof: (i) The existence of f. We do an induction on n. If n =0, we
have the diagram
Xo

fe

’

€

X, > A >0

Since ¢ is epic and X, is projective, there is a map f: X, — X}, with
&fy = fe.

For the inductive step, consider the diagram’

oy d,
Xn+1 Xn >Xn—1
I fa-1
’
n+1 7 X, > X1
n+1
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If we show that im f,d,,, = imd,, ,, then we will have the diagram

Xn+l

Fes

dois
he r
——
n+1 imdy 4, 0

and projectivity of X,,, will provide a map f,,:X,+1— X+, with
d! 1 for1 = fadus 1. To check the inclusion, note that exactness of the bottom
row in the original diagram gives imd,,, = kerd,, so it suffices to prove
difoldyr1 =0.But dpfduy s = foo1dud,s 1 = 0.

(i) Uniqueness of f to homotopy. Assume h:X,— X/ is a second
chain map satisfying ¢'hy = fe. We construct a homotopy s by induction.
Begin by defining s_: X _; —» X, as the zero map (there is no choice. here
since X _; = 0). For the inductive step (and also for s,), we shall show that

in(hys1 = far1 = Salhar 1) < Imdyy o3
this will give the picture

Xos1

Boiy = Foer = Sulnss

d
Xpiy —>imd,, ,——0

and projectivity of X,,, will give a map 5,4 1:X,+; — X, » satisfying the
desired equation. To verify the inclusion, the exactness of the bottom row
in the original diagram gives imd,, , = kerd,, ;, so it suffices to show

dos 11— Jor1 — Spdns1) = 0.
But the left side is

diy1(Pysy “]:.+ D)= dpy18d, e 1=4d, . 1My __f—n+ )= (= j:.‘ Sp— 1) ps 1
=dr:+1(hn+1 "']:n+ 1)“(hn ‘j:.)dn+1,

and this is zero because h and f are chain maps. ||

Definition: If :X, — X/, is a chain map for which
fe=¢To
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(notation as in the Comparison Theorem 6.9), then we say f is a chain
map over f.

Given a functor T, we now describe its left derived functors L,T. For
each module A4, choose, once for all, a projective resolution of 4, and let
P, be the corresponding deleted complex; form T(P,) as in Example 6 and
take homology.

Definition: For each module A4,
(L,TY)A = H(TP,) = ker Td,/im Td,. ,.

To complete the definition of L,T, we must describe its action on
f:A— B. By the Comparison Theorem 6.9, there is a chain map f:P, — Pg
over f. Define

L. T)f:(L,T)A— (L,T)B
by
(LT)f = H{T]) = (Tf ),
ie., if z, e ker Td,, then
(L.T)f:2, + im Td, > (If,)2, + im Td,, ;.

Let us draw a picture:

— » P, > A >0
| f
I |
L |
1} ]Z)ll s
I I
I ]
v v
— »P, > B >0

First, fill in the dashed arrows; second, apply T to this diagram; finally,
take the maps induced by T7 in homology.

Theorem 6.10:  Given a functor T, then L, T is an additive functor for every n.

Proof: We will only show (L,T)f is well defined, where f:4— B, and
leave the remaining verifications to the reader. Assume h:P,— P, is a
second chain map over f. The Comparison Theorem says f and h are
homotopic, so that Tf and Th are homotopic (Exercise 6.19), and Theorem
6.8 says that Tf and Th induce the same maps in homology. ||

Definition: If T = ®gB, then we define L,T = TorX(, B). In particular,
Torg(4, B) = ker(d, ® 1)/im(d, ., ® 1),
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where

----»Pzi%PliiPo—»A—»O

is the projective resolution of A that we chose once for all.

Let us now deal with the dependence of L,T on the fixed choices of
projective resolutions. Had we begun with other choices - - — P, > P, -
P, — A— 0 of projective resolutions (one for each module A), we would
have obtained functors we temporarily denote L,7. Our next project is to
show L,T and L, T are essentially the same.

Theorem 6.11:  For any functor T, the left derived functors L,T and L, T are
naturally equivalent. In particular, for each A,

(L, T)A = (L, T4,
i.e., these modules are independent of the choice of projective resolution of A.
Proof: Consider the diagram

- —>P2—>P1—>P0—>A————————>O
14

+ > P, Py Py A0

where the top row 18 the chosen projective resolution of 4 used to define
L,T, and the bottom row that used to define L,T. By the Comparison
Theorem, there is a chain map i:P, — P, over 1, (unique to homotopy)
and, applying T gives a chain map Ti:TP,- TP, over 1;,; this latter
chain map induces maps (one for each n)

T4 = (Ti) (L, T)A— (L, T)A.

We claim each 7, is an isomorphism (thereby establishing the second
sentence of the theorem). To obtain the inverse of t,, turn the above dia-
gram upside down so that the hatted row is now on top. The Comparison
Theorem gives a chain map j:P, — P,. The composite ji:P, — P, is thus
a chain map over 1,4; since 1,:P, > P, is also a chain map over 1,, the
Comparison Theorem says ji and 1p are homotopic; therefore 1 = (ji), =
Juiy- Similarly, i, j, = 1, so that i, is an iSomorphism and hence ©, = (Ti),
is an isomorphism.
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Let us nowprove the isomorphisms t, constitute anatural transormation:
if f: A — B, we must show commutativity of

(L,T) A ———— (1, T)A

(L,T)B————>(L,T)B
To evaluate clockwise, consider the picture

-—>P1—>P0—>A———————-—->O

v

. —>Q1—>Qo—> B——0

Applying the Comparison Theorem yields a chain map P,— Qp over
f1, = f. Going counterclockwise also gives a chain map P, — Qp over
15f = f, so these two chain maps are homotopic. Now apply T to obtain
homotopic chain maps TP, — TQj over Tf; the induced maps are equal, by
Theorem 6.3. |

Corollary 6.12: The definition of TorR(A4, B) is independent of the choice
of projective resolution of A.

Corollary 6.13: Let---— P, % P 4 P, 5 A — 0 be a projective resolution,
and define K = kere and K, = kerd, for n > 1. Then if T is covariant,
(Lpy  TA=(LT)Ky = (L,1T)K; = - (L T)K,_;.
In particular,
Tor, . 4(A4, B) = Tor,(K,y,B) = - - - = Tor,(K,..,, B).

Proof: 1Ttisclearthat---— P, - P, — K, — 0 is a projective resolution of
K, . Since the indices are no longer correct, define

Qn—lan and An‘--l.-‘:‘dn: nZl’
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the resolution now reads
0,25 0y -2 00— Ko~ 0.
By definition,

(L. T)Ko = H(TQx,) = ker TA,/im T4, ,
= ker Tdn+1/im Tdn+2 = Hn+1(TPA) = (Ln+1T)A'

The remaining isomorphisms are obtained by iteration. [

We still have to grapple with the following question. Suppose we begin
with the functor A ®; and coustruct its left derived functors; if we denote
these functors Torx(4, ), then is TorX(4, B) = Tori(4, B)? There is no
misprint. We ask whether the value of TorX(4, ) on B is the same as the
value of TorX(, B) on A. Equivalently, is H, (P, ® B) = H, (A ® P5)? Before
we worry about this (by the way, the answer is “yes”, Theorem 7.9), let us
construct right derived functors. The recipe is almost the same as for left
derived functors, so that our sketch of the comstruction should serve as a
review of what we have just done. There will be two definitions, depending on
the variance of T (a similar dichotomy exists for left derived functors, but we
shall not discuss L,T for contravariant T).

For each module A, choose, once for all, an injective resolution
0»>A—E*SE'S E2 ... Note that we have already used the con-
vention of raising indices (Example 5) to avoid negative indices. Let E, denote
the corresponding deleted resolution.

Definition: If T'is covariant, its right derived functors R"T are defined on a
module A4 by

(R"T)A = HY(TE ,) = ker(Td")/im(Td"~1).
The reader may lower all indices and observe that
(R"TA = H_(TE,) = ker(Td_,)/im(Td_, ).

The definition of (R"T)f, for f: A — B, is just as for left derived functors. The
dual of the Comparison Theorem asserts the existence of a chain map

F:E, — Eg, unique to homotopy, and so a unique map is induced in homol-
ogy HY(TE,) —» H T Eg).

Theorem 6.14: If T is covariant, each right derived functor R"T is an
additive functor whose definition is independent of the choices of injective
resolutions.

Proof: Dual to the proof of Theorem 6.11. |
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There is an easy explanation for the adjectives “left” and “right” modifying
“derived functors”: given T, the complexes TP, go to the left, while the
complexes TE, go to the right.

Definition: If T = Homg(C, ), then
' R"T = Ext}(C, ).
In particular,
Ext’(C, 4) = kerd”, /im d"*,

0 » - . - »
where 0 A4 —E° % E' % E2 o - - is the chosen injective resolution of A.

Corollary 6.15:  The definition of Ext}(C, A) is independent of the choice of
injective resolution of A.

Corollary 6.16:  Let 0> A4 5 E° SESE - bean injective resolution
and define L° = ime and L" = im d"~* for n > 1. Then if T is covariant,

(RP*IT)A = (R"T)L° = (R"'T)L* 2 - - - = (R'T)L" 1.
In particular,
Ext"*}(C, d) = Ext"(C, 1% = - - - = Ext(C, L"™Y).

Finally, let us define R"T when T is contravariant; since we want the
functored complex to go to the right, the following definition is forced on us.

Definition: If T is contravariant, then
(R"T)C = ker Td,,,/im Td,,

where -+ — P, 4 P 4 P, — C — 0 is the projective resolution of C chosen
once for all.

The reader should look again at Example 7 to convince himself that the
indices are, indeed, correct. We also let the reader provide the definition
(R"T)f for f:C - C'.

Theorem 6.17 If T is contravariant, then each R"T is an additive con-
travariant functor whose definition is independent of the choices of projective
resolutions.
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Definition: If T = Homg(, 4), then R"T = Ext"(, A). In particular,
Ext%(C, A) = kerd, , 1+/im d,.,

where -+ - — P, 4 P 4 P, — C — 0 is the chosen projective resolution of C.

Corollary 6.18: The definition of Exty(C, A) is independent of the choice of
projective resolution of C.

Corollary 6.19: Let:---— P, 3 P,y 4 Py 5> C — 0 be a projective resolution,
and define K, = ker e and K, = ker d, for n > 1. Then if T is contravariant,

(R T)IC =2 R"T)Ky = (R'T)K, = - = (R*T)K, _;.
In particular,
Ext"1(C, A) = Ext"(K,, A) = - - - = Ext{(K,_, A).

As for Tor, we ask whether the value of Ext}(C, ) on A is the same as the
value of Exth(,A) on C; the answer is “yes” and is Theorem 7.8.

In summary, one chooses a resolution X of each module and the question
of whether it is a projective or injective resolution is dictated by whether one
wants T X to go left or to go right.

Résumé: L,T; T covariant; use projective resolutions.
R"T; T covariant; use injective resolutions.
R"T; T contravariant; use projective resolutions.

The reader may wonder why we have not considered left derived functors
of Hom or right derived functors of tensor. The reason is that we want to
use derived functors of T to mvestigate T, and this investigation is most
fruitful when either LoT = T or R°T = T. For any covariant functor T,
however, we shall see that L,T is right exact and R°T is left exact, so that
L, Hom, for example, conveys no obvious information about Hom.

Let us glance back at Chapter 5 to see that derived functors did appear
there. Since some subtle points are needed, however, we defer a detailed
discussion to Chapter 10. Let G be a group and let R = ZG be.its group
ring. As in Chapter 5, regard Z as a trivial G-module, i.e., x - n = n for all
x € G and n € Z; furthermore, recall we constructed the first few terms of a
projective (even free) resolution of Z:

Fy>Fy,3F, % F, 17 0.

If Ais a G-module and T = Homg(, 4), then we calculated (R"T)Z for
n=0,1,2, and observed fixed points, derivations, and factor sets. If
T = @®gA, then we gave a brief account of (L,T)Z forn =0, 1.
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Lemma 6.20 (Horseshoe Lemma): Consider the diagram

v M

13 44

P Py
di dy

v v

’ ys

P Py
e &

v v

0 >4 > A > 4" >0
i P
v v
0 0

where the columns are projective resolutions and the row is exact. Then there
exists a projective resolution of A and chain maps so that the columns form an
exact sequence of complexes.

Remark: The dual theorem is also true. The Lemma is so named because
one is given a horseshoe and is required to fill it in.

Proof: By induction, it suffices to complete the 3 x 3 diagram

0 0
A4 -

K% K5

P, Pg

3 4

> ’ 3 N 1 5

0 > A ; > A 74 0

0 0

where the rows and columns are exact and Py, Py are projective. Define
Py =Py @ Py, ig: Py — Po by x"+— (x',0), and po; Py — Pg by (X', x") > x".
It is clear that P, 1s projective and that

iy Po
0— Py — Py—Py—0
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18 exact. Since Py is projective, there is a map o: P — A with po = ¢'. Define
g:Py— A by

g:(x, x> ig'x" + ox".
It is an easy verification that, if K, = kere, the resulting 3 x 3 diagram
commutes. Exactness of the top row is the 3 x 3 Lemma, Exercise 6.16. ||

Theorem 6.21: Let 0— A’ — A — A" — 0 be an exact sequence of modules.
If T is a covariant functor, there is an exact sequence
oo LTA' > L TA—LTA" 5L, TA -
> L,TA — LoyTA— L,TA" - 0.

Proof: let---—P;—»>P,—-A4"-0 and --+— P{—-P;j—A"—0 be the
chosen projective resolutions of A’ and of 4”. We are now in the situation of
Lemma 6.20, so there is a projective resolution of 4, - - - — P, = Py — 4 — 0,
that we may fit in the middle. Upon deleting, there is an exact sequence of
complexes

0——>Pﬁ4;——>PA——>P:;~—->0.
Applying T gives another exact sequence of complexes
0 TP, - TP,— TPt —0,

for each row 0— P, — P, - P; — 0 is split and Exercise 6.10 applies. (In
general, the exact sequence of complexes is not split, for there is no reason
why the splittings P, — P, should constitute a chain map P — P ,.) There
is a long exact sequence

++ = H(TPly) > H(TP ) » H(TP4) S H, (TPy)—> - -,
Le., an exact sequence
o> L,TA - L,TA— L,TA" —» L,_;TA —---.

Notice that we have L, T4 instead of L, T4, for the projective resolution of A
constructed with the Horseshoe Lemma need not be the projective resolution
originally chosen. This is no cause for concern; Theorem 6.11 says that L,T
and L, T are naturally equivalent. We may thus replace L,T by L,T, adjust
maps by isomorphisms, and obtain an exact sequence

- > L,TA' > L,TA—L,TA"— L,_TA' —---.

Finally, the sequence does terminate at 0, for L,T = 0 for negative n:
indeed, every P,, hence every TP,, is O for negative n. |}
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Corollary 6.22:  For every covariant functor T, the derived functor LyT is
right exact.

Proof: We have just seen that exactness of 0 - A4'— 4 — A" — 0 yields
exactness of LyTA'— L,TA— L,T4A" - 0. |

We need an elementary (three-dimensional!) diagram lemma.

Lemma 6.23: Consider the commutative cube (all faces commute)

S e ~K
// -
// ///
L7 —wm — > L
[ ——

Al

B! ———————> B

in which L', K', L, K are kernels of obvious arrows. Then the dashed arrows
exist and every new square commutes.

Proof : Existence of the dashed arrows is easy: for example, Exercise 2.7
provides a unique dashed arrow making the diagram below commute:

0 > K >C >A
§

i
|
|
|
|
|
v
0 > [, > D > B

It only remains to prove commutativity of the (top) dashed square. We
leave this to the reader, with the hint to compose K'— L'— L and
K’'— K — L with the map L— D. After showing these coincide, one may
cancel L — D because it is monic. ||

The following lemma generalizes the Horseshoe Lemma 6.20;-it asserts
one may construct projective resolutions over a certain commutative
diagram.




190 . 6 Homology

Lemma 6.24: Assume we are given a commutative diagram of modules with

exact rows
5

0- > A'——— 4 — 4" >0
f f /
0 > B’ 5 >B n — B >0

projective resolutions P', P, Q', Q" of the corners A', A", B', B", respectively,
and chain maps F':P' — Q' over f' and F":P" — Q"' over f".

Then there exist projective resolutions P of A and Q of B and a chain map
F:P — Q over f giving a commutative diagram of complexes with exact rows

0 > P’ > P > P >0
F F F”
0 > Q' >Q > Q" > ()

Remark: The dual theorem with injective resolutions is also true.

Proof: By induction on n, it suffices to complete the following three-
dimensional diagram,

/K’ —————— —»—/1{----—-—-»:}"
e PR -
H # o #
1 NS SN T 2
P
P'———-r———»;P ————— ————P"
g T
F'7 e’ 1 , s y
‘ 1/ Y/ " ' "
Q ——-—o-- Q- QN e
.
o k' ; Y ¢
L e ol n
A ; : A 3 A
/ ; */t (24
B’ B B

where P and Q are projectives to be constructed, all dashed arrows must be
constructed, and each three-term row and column is a short exact sequence
(ie., certain zeros have been omitted). The modules L, K, . . . are kernels as
defined below.
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Define P=P @ P’ and Q = Q' @ Q"; define P'— P by x' > (x,0) and
P— P by (x,x")~ x"; similarly, define Q' »Q and Q@ — Q". For any
choice of y: P — Q' (to be constrained later), define F:P - Q by

F:(xl, x//) — (F/x/ + ))X“, F”x” .

With these definitions, the “P-Q level” is a commutative diagram with

exact rows.
Define e: P — A by

e(x,x")=ie'x + ox",

where o: P — A satisfies so = ¢” (o exists since P" is projective). Similarly,
define :Q — B by

ey, y") =jey + v,
where 7: Q" — B satisfies tt = ¢". This gives commutativity of front and rear

walls: the Five Lemma now shows e and ¢ are epic.
A short computation shows that fe = ¢F if y satisfies

j&y= —tF" + fo.
To see that y can be so chosen, consider the diagram with exact row
P/I

—1iF" + fo

’ Y > B
Q———B———3B

Now t(—tF" + fo) = —&'F" + f"so = —&'F" + f"¢' = 0, so that
im(—tF" + fo) = kert = imje'.

Projectivity of P" guarantees the existence of a desired map y: P’ — Q'. We
have proved cominutativity of the bottom cubes.

The modules L, K, etc,, are, by definition, kernels of the obvious arrows.
Applying Lemma 6.23 to each cube supplies the needed dashed arrows and
guarantees commutativity. Finally, the row of K’s and the row of L’s are
exact, as two applications of the 3 x 3 Lemma show (one in each plane). ||

There is a good reason why this last proof resembles that of the Horseshoe
Lemma 6.20: that lemma holds in greater generality than for complexes of
modules; it holds for complexes whose terms are objects in suitable “abelian”
categories. In particular, the category € with objects all module maps and
with morphisms all ordered pairs of maps giving commutative squares, is
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such a category, and the 2 x 3 diagram of the hypothesis is just a short exact
sequence in €.

Theorem 6.25: The connecting homomorphisms are natural, i.e., given a
commutative diagram with exact rows

0 >A’ ;A >A" ;0
f S S
0 > B’ >B > B’ >0

then the following diagram commutes for alln > 1:

LT4" —— L, T4

L,TB'—————— [, ,TB

Proof: Erect the chosen projective resolutions on the four corners; call
them P, P”, Q’, Q", and use the Comparison Theorem 6.9 to construct chain
maps F:P. — Qp over f' and F":P. — Qj. over f”. By Lemma 6.24,
there are projective resolutions P of 4 and Q of Band a chainmap F:P, — Qp
over [ giving a commutative diagram of complexes with exact rows

0 > P, > P, > Py >0
F F F
0 > Q. >Q, >Ql — 0

This diagram remains commutative and exact after applying T, for each nth
row of modules is split. The result follows now from Theorem 6.4 (note that
the hatted complexes do not enter into the conclusion). ||

Theorem 6.26: If0— A'— A — A” — 0 is an exact sequence of modules and
T is covariant, there is an exact sequence
0—R°TA' - R°TA— R°TA" — - --
«++— R"TA" - R"TA - R"TA" 5 R"ITA —- -

with natural connecting homomorphisms é.
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Proof: Only one point needs comment: why does J raise the index by 1?
If E and E). are deleted injective resolutions, then ¢:H_,(TE}.)—
H_,_{(TE..). The index raising convention involving change of sign thus
gives 8:R"TA" — R"*1TA". |

By looking at the beginning of the exact sequence, one sees that if T is
covariant, then R°T is left exact.

Theorem 6.27: If0— A" A— A" — 0isan exact sequence of modules and
T is contravariant, there is an exact sequence

0— R°TA" — ROTA - ROTA - - -
. ___)RnTA//__)RnTA__)RnTA/iRn-f-lTA/I__), ..
with natural connecting homomorphisms.

If T is contravariant, we see that R°T is left exact.

We end this chapter with some words about “cohomology”, which usually
means a contravariant homology theory: the derived functors of a contra-
variant functor are thus called cohomology functors. In this case, all the
usual terminology is equipped with the prefix “co”: cochain, cocycle,
coboundary, cohomology; also, all indices are raised. For example, the
material in Chapter 5 is called “cohomology of groups”, for it arises as
derived functors of the contravariant functors Homg(, ). This clear
distinction—homology covariant, cohomology contravariant—is often
blurred, however, for we shall see the derived functors of the contravariant
Hom(, B) have the same value on A that the derived functors of the covariant
Hom(A4, ) have on B. As a result, one often calls the derived functors of Hom,
either variance, cohomology functors.
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Let us examine Ext more closely. At the moment, we have two definitions
for Ext*(4, B):

Ext"(4, B) = H _ (Hom(4, Eg)),
where Ej is a deleted injective resolution of B;
Ext"(4, B) = H_ (Hom(P,, B)),

where P is a deleted projective resolution of A4.
Until we prove these two definitions coincide, let us use a temporary
notation for the second:

ext(4,B) = H_,(Hom(P4, B)).

ELEMENTARY PROPERTIES

Theorem 7.1: If n is negative, then Ext"(A4, B) = 0 = ext(4, B) for all A, B.
Proof: WEz=-->0B08E 8 E_, -, then Hom(4, Eg) has only

0’s to the left of Hom(4, E,), and so all homology groups are 0 there as well.
A similar argument works in the other variable. |

Theorem 7.2: Ext%(4, ) is naturally equivalent to Hom(4, ).

194




Elementary Properties 195

Proof: IfEg=--—»03E,SE_, -, then
Ext%4, B) = ker d,,. /imd,,, = ker dg,.
If the (nondeleted) injective resolution is
0BSE,SE_ -,
then left exactness of Hom(4, ) gives an exact sequence
0 — Hom(4, B) % Hom(4, Eq) =2 Hom(4, E_ ,),

so that kerd,, = ime,, ie, &,:Hom(4, B) —» Ext%(4, B) is an isomorphism.
We let the reader check that the maps ¢,, one for each module B, define
a natural equivalence. ||

Remark: The only property of Hom(4, ) used in the proof of Theorem 7.2
is that it is left exact. Thus, if T is any covariant left exact functor, then
RT=T

Theorem 7.3: If 0— B'— B — B" — 0 is an exact sequence, there is a long
exact sequence with natural connecting homomorphisms

0 — Hom(4, B') - Hom(4, B) » Hom(4, B") % Ext'(4,B) - - -
Proof: Theorems 6.26 and 7.2. ||
Observe that Ext thus repairs the exactness we may have lost when we

applied Hom.

Theorem 7.4: ext®(, B) is naturally equivalent to Hom( , B). More generally,
if T is any contravariant left exact functor, then R°T = T.

Theorem 7.5: If 0— A'— A— A" — 0 is an exact sequence, then there is a
long exact sequence with natural connecting homomorphisms

0— Hom(A4"”, B) - Hom(4, B) - Hom(4’, B) % ext'(4",B) — - - - .

Exercise: 7.1. Suppose A’ is a submodule of 4 and f:4’'— B. Call
df e ext!(4/A’, B) the obstruction of f. Prove that f can be extended to A
if and only if its obstruction is 0. (Of course, one may conclude df = 0 when
ext!(4/4’,B) = 0.)

Theorem 7.6: If B is injective, then Ext"(A,B) =0 for all modules A and
alln> 1.
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Proof: If B is injective, then 0— B-> E® -0 is an injective resolution,
where E° = B and ¢ = 15. With respect to this choice of injective resolution,
it is clear that Ext"(4, B) = H_ (Hom(A4,Eg)) = O whenevern > 1. ||

Theorem 7.7: If A is projective, then ext’(4,B) =0 for all modules B and
alln > 1.

We now prove that Ext = ext.
Definition: Let 2, B, and € be categories. A function T:A x B->C is a
bifunctor if T'(4, ):B — € is a functor for each 4 € obj %, T(,B): A —»Cisa

functor for each B e objB, and, for each pair of morphisms 4'— 4 in A
and B’ — B in B, there is a commutative diagram

T(4’,B) ————— T(4', B)

T(4, B) >T(A, B)

Tensor product is a bifunctor M, x I — Ab. Of course, one may allow
either or both variables to be contravariant; once appropriate changes are
made in the definition, one sees Hom is a bifunctor.

Theorem 7.8: Let 0 > A—E®— E' - -- be an injective resolution and
-+ = P, = Py— C— 0 be a projective resolution. Then for alln > 0

H"Hom(P¢, A)) = HYHom(C,E,)).

Thus the two definitions of Exty have the same value on (C, A).

Remark: This proofis due to A. Zaks.

Proof: Let us display the kernels and images of the resolutions:

> P, >P, > P, >»C————0

NSNS
/\/\
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‘El rEZ > e

NN/
VAVAN

Since Hom is a bifunctor, the exact sequences 0 —» K, — P, —» C— 0 and
0—A— E°— L' - 0 give a commutative diagram

0 0

L J

0— Hom(C, 4) —» Hom(C, E®) ———— Hom(C,LY)—» W

| l

0 — Hom(P,, A) — Hom(P,, E®) —%— Hom(P,, L') = 0

« 1/3 ly

0 — Hom(Ko, 4) — Hom(K,, E®)———— Hom(K,, L!)— X

| l |

vV 0 Y

Zeros flank the middle row and column because P, is projective and E°
1s injective; the other zeros result from left exactness of Hom. The modules
W, V, X, Y are, by definition, cokernels of obvious arrows. Applying the
Snake lemma (for the maps a, §, ) yields an exact sequence

0 > A

ker f — kery — cokera — coker 5,
ie,
Hom(C, E°) » Hom(C, L') — ¥ — 0.
Since W = coker(Hom(C, E°) — Hom(C, L)), we conclude that
W=V

We can identify W as Ext!(C, A), for we are looking at the beginning of the
long exact sequence; after three Homs follow three Ext!’s, the second of
which is Ext!(C, E®) = 0 because E° is injective. Similarly, looking at the
first column identifies ¥ as ext'(C, A). The theorem is thus proved for n = 1,
ie, Bxt! = ext!.
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The diagram contains more information. Since § and ¢ are epic, it is
easy tosee X = Y, Le,
Ext!(C, L) = Ext'(K,, A).

The master diagram arose from two short exact sequences, one with middle
term projective, the other with middle term injective. Thus, for any i j,
we may begin with 0—»K;—»P;—»K; ;—»0and 0— L —»E' - L*' -0
and conclude

Ext'(K;, L) = Ext!(K;_{, L'*1).
Note that this remains valid if we interpret K_; = C and L° = 4. Combine
these isomorphisms with Corollaries 6.16 and 6.19:

Ext™ (C, A) = Ext'(C, L"~ ') = Ext!(K,, L"~2) = Ext'(K,, L"™?)
- Bxt}(K,_,, L9 = ext!(K,_;, 4) = ext"t}(C, 4).

We conclude that Ext"(C, A) = ext*(C, A), as desired. |

The reader should observe that all was proved from the following data:
Hom is a left exact bifunctor whose first right derived functors vanish on
appropriate modules. It is now a simple matter to give the dual treatment
to the right exact bifunctor tensor. That Tor, vanishes on projectives is
proved as in Theorem 7.6 (details are given in Theorem 8.4).

Theorem7.9: If -+ »P,->Py—>A4—-0and ---—»Q;—»Qs—B—0 are
projective resolutions, then for all n > 0,

Hn(PA ® B) = Hn(A ® QB)'
Thus the two definitions of TorY have the same value on (4, B).

Corollary 7.10: Assume Tor(A,B)=0 if either A or B is flat. If
v Pl Py—>A—-0 and > Q; > Qy—B—0 are flat resolutions,
then for alln >0,

H,(P,® B) = H,(A® Qp).

Proof: In the proof of Theorem 7.9, projectivity is used only in ensuring
that Tory vanish. ||

Remarks: 1. In the next chapter, we shall prove that Tor,(4,B) does
vanish if either 4 or B is flat (Theorem 8.7).

2. The force of Corollary 7.10 is that one may use flat resolutions, not
merely projective resolutions, to compute Tor.

Let us return to Ext, having disposed of the possible distinction between
Ext and ext.
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Definition: An extension of 4 by C is an exact sequence

0—-A4A—-B—-C-—0.

Theorem 7.11: If Ext!(C, A) = 0, then every extension of A by C is split.

Proof: Let0— A % B— C —0 be an extension. Applying Hom( , 4) gives
exactness of

Hom(B, 4) > Hom(4, 4) — Ext!(C, A) = 0,

so that i* is epic. In particular, there is g € Hom(B, 4) with 1, = i*(g) = gi,
and this says the original sequence splits. ||

Later, we shall prove the converse of Theorem 7.11; now we prove the
converses of Theorems 7.6 and 7.7.
Corollary 7.12: If Ext{C,A)=0 for all A, then C is projective; if
Ext!(C, 4) = 0 for all C, then A is injective. -
Proof: Theorems 3.13 and 3.19. ||

The next two results show that Ext behaves as Hom does on sums and
products.
Theorem 7.13:  For all n, Ext"(] |4, B) = [ ] Ext"(4,. B).

Proof: We do an induction on n, the case n = 0 being Theorem 2.4. For
each k, construct an exact sequence

0-L,»>P,—A,—-0,
where P, is projective. There results an exact sequence
O*ULk“’HPk“’UAk -0,

and | | P, is projective. There is a commutative diagram with exact rows

Hom(] |P,, B)——> Hom(] JL,, B) —— Ext!(] J4,, B) —> Ext'(][P;,B) = 0

|
|
o i
[ [Hom(P,, By— []Hom(L,, B)—>[] Ext(4,, B) ——> [ Ext'(P,, B) = 0
(the vertical arrows are the isomorphisms of Theorem 2.4; the maps in the

bottom row are the maps of Theorem 7.5 at each coordinate). Diagram-
chasing provides the dashed arrow

Ext!(] J4x, B) — [ ] Ext' (44, B)
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which must be an isomorphism. The theorem is thus true for n = 1 (many
inductions involving Ext" start slowly). If n > 1, there is a diagram

Ext"~ Y] [P, B)— Ext" [ [L,,B) -4 Ext"(] Ay, B) —> Ext"(] [Py, B)
J¥
[1Ext""(P,, B)——>]] Ext"~}(L,, B)—5— [ Ext"(4,, B) — [1Ext*(P,,B)
The first and last terms in each row are 0 (Theorem 7.6), so exactness gives
0 and 9’ isomorphisms. By induction, there is an isomorphism ¥, and
8o~ 1:Ext"(] [4x, B) » [ | Ext"(Ay, B) is an isomorphism. ||
Theorem 7.14:  For all n, Bxt"(4, [ |By) = [ | Ext"(4, By)."

Proof: Dual to the proof of Theorem 7.13. In particular, begin with exact
sequences 0 — B, — E, — Q, — 0, where E, is injective, and then apply the
long exact sequence for Ext(4, )to 0— [[By— [[Ei—~ ]2~ 0- |

Given a complex of R-modules and R-maps, the complex obtained after
applying Homyg, is a complex of abelian groups and Z-maps. If R is com-
mutative, however, we may consider R-modules as (R — R)-bimodules and
equip each Homg with an R-module structure (Theorem 1.15). Also, the
maps between the Hom’s are then R-maps.

Theorem 7.15: If R is commutative, then Exty(A, B) is an R-module.

Proof: Ext" is, by definition, a quotient of two R-submodules of
Homg(P,, B), where P, is the nth term of a projective resolution of 4. ||

We generalize this result. Let r € Z(R), the center of R, and let 4 be an
R-module. Then y,: 4 — A defined by a — ra isan R-map, called multiplication
by r (or homothety). If ¢ Z(R), then w1, may not be an R-map (e.g., take 4 = R).

Theorem 7.16: If u:A — A is multiplication by r, where re Z(R), then
w* Exti(A, B) - Exty(4, B) is also multiplication by r. The same is true in
the second variable.

Proof: Consider the diagram

«o+=m PPy A4-0

s P o Py A—0
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where the rows are identical projective resolutions of A. Recall the definition
of p*: first fill in a chain map g over yu, say g = {g,.P,— P,}, then apply
Homg(,B), and u* is the/induced map

w*(z, + boundaries) = g¥z, + boundaries.

We also know that any choice of chain map over u gives the same p*. In
particular, define g by letting g,:P, — P, be multiplication by r. This is a
chain map over y, and

1*(z, + boundaries) = rz, + boundaries = r(z, + boundaries). |

Exercises: 7.2. Use Theorem 7.16 to show that Ext}(4,B) is a Z(R)-
module.

7.3. Let Rbe adomain and 4 an R-module. Prove that A4 is torsion-free
if and only if every multiplication u,:4 — A (with r s 0) is monic; A4 is
divisible if and only if every such multiplication is epic.

7.4. Let R be a domain and A4 a divisible R-module. If A = 0 for some
reR,r+#0,then 4 =0.

7.5. Let Tbe afunctor that preserves multiplications: whenever y,: 4 — A
is multiplication by r € Z(R), then Ty,: TA — TA is also multiplication by r.
If R is a domain and A is a torsion-free, divisible R-module, then TA is
also torsion-free divisible.

7.6. Let R be commutative and A an R-module with r4 = 0 for some
re R. If T preserves multiplications, then rTA = (.

7.7. Every additive functor T: Ab— Ab preserves multiplications. More
generally, if R is a subring of Q, then every additive functor T:z3 — I
preserves multiplications.

The theorems we have just proved are useful in computing Ext. We give
the next result for abelian groups, although it obviously generalizes to
modules over any domain.

Theorem 7.17: If B is an abelian group, then
Ext}(Z/mZ, B) = B/mB.

Proof: Apply Homy(,B) to 0—»Z 5 Z — Z/mZ — 0, where the first map
is multiplication by m, to obtain exactness of
Homy(Z, B) = Hom,(Z, B) - Ext}(Z/mZ, B) » ExtL(Z, B).

Since Z is projective, even free, the last Ext = 0; also, the first map is still
multiplication by m, while Hom,(Z, B) may be identified with B (Theorem
1.16). It follows that Ext}(Z/mZ,B) = B/mB. ||
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If A and B are f.g abelian groups, recall the Fundamental Theorem
asserting each of them is a sum of cyclic groups; the results above permit
explicit computation of Ext}(4, B).

Exercises: 7.8. IfAand Barearbitrary abelian groups, then Ext%(4, B)=0
for all n > 2. (Hint: Use Corollary 4.19: every subgroup of a free abelian
group is free abelian.) '
7.9. If A is an abelian group with mA = A for some m € Z, then every
exact sequence 0 — A — E — Z/mZ — 0 splits.
7.10. If A and C are abelian groups with m4 = 0 = nC, where (m,n) = 1,
then every extension of 4 by C is split.
7.11. If A is a torsion abelian group, then Ext}(4, Z) = Hom(A4,R/Z),
where R/Z is the circle group. )
7.12. (i) If Gis a nonzero divisible group, then Hom(Q, G) # 0.
(it) If p,isthe mth prime, then.(I'],,Z/puZ) (I LwZm/PmZ) is divisible
7.13. Using Exercise 7.12, prove there is a nonsplit extension

0— I_IZ/me—»E—»Q—»O,

(We shall see later (Theorem 9.3) that this result is false if the index set of
the sum is finite.)

EXT! AND EXTENSIONS

We seek an interpretation of Ext}(C, ), and we begin with a deﬁmpon
motivated by Theorem 5.9.

Definition: Two extensions £ and & of A by C are equivalent if there is a
commutative diagram

&0 » A >E »C >0
1, @
£ 0 > A >E’ >C >

It is easy to check that equivalence is, in fact, an equivalence relation
(to prove symmetry, use the Five Lemma to show that ¢ must be an iso-
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/

morphism). The equivalence class of an extension £:0 >4 —»B—-»C—01is
denoted [£], and the set of all equivalence classes is denoted e(C, A). Our
aim is to identify e(C, A) with Ext!(C, A) (thus providing the etymology of
Ext). We remind the reader that equivalent extensions have isomorphic
“middle modules”, but, unfortunately, the converse may fail. Recall that an
example was given, after Theorem 5.9, of inequivalent extensions having
isomorphic middle modules.

Exercise: 7.14. Any two split extensions of A by C are equivalent.

Suppose £:0—»A4—-B—C—( is an extension. Given a projective
resolution of C, we may form the diagram

d, dy

> P, ’Po >C >
| |

[+4 IC

Py
|

| | |
| | |
1 | |
1 | ]
| I |
I | |
4 + 4
0 »A > B >C )

By the Comparison Theorem 6.9, we may fill in the dashed arrows and
obtain a commutative diagram. In particular, there is a map «: P, — 4 with
ad, = 0. By definition, Ext!(C, 4) = ker d%/im d*, where d¥ = Hom(d,, A).
Since ad, = d¥(a), we see that a e kerd}, ie. a is a cocycle. Second, we
know that « is unique to homotopy: if a':P; — A4 is a second such map,
then there are maps sq, s; With & — o’ = 0+ s, + s¢d; (for there is only the
zero map 0 — A).

0 > A >B

Thus, @ — o € im d}, and & determines a unique element of Ext!(C, A). It is
easy to check that if £ and ¢ are equivalent, they determine the same
element. In sum, we have defined a function y:e(C, A) — Ext(C, A), namely,
[£]— o+ imdf.

Exerciser 7.15. If £ is a split extension, then y[£] = 0.
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The next lemma arises from analyzing the diagram occurring in the
definition of the function .

Lemma 7.18: Consider the diagram

0 > X, J > Xo— £ >C >0
[+4 (o
A C

where the row is an extension &.

(i) There exists an extension of A by C making the following diagram
commute:

J
0 > X, > X, f C >0
@ i le
0 >4 - > B > C >

H
(i) In any such diagram, the first square is a pushout.
(i) Any two extensions completing the diagram are equivalent.

Proof: (i) Thisis Lemma 3.21. |
(i) First show the map o:4 @ X, — B defined by (g, x,) — ia + ﬁxo is
epic; then show kero = {(ax;, —jx;):x, € X,} and use Exercise 2.29.
(iii) Any two extensions completing the diagram begin with 4 and end
with C. Since we have pushouts, the map between the middle modules is
provided by the corresponding universal property. |

Notation: The extension just constructed is denoted af.

Observe that the dual of Lemma 7.18 is also true. Now begin with
A C

14 y
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There does exist a completion, unique to equivalence, and the second square
is a pullback.

Notation: The extension just described is denoted £y.

Theorem 7.19: The function :e(C, A)— Ext*(C, 4) is a one—one corre-
spondence.

Proof: We exhibit a function 8:Ext!(C,A4)— e(C, A) inverse to . Let
e P, % P, 4 Py, — C— 0 be the projective resolution of C chosen in the
definition of Ext. If a: P, — A is a cocycle, then ad, = 0 and so « induces a
map &@:P,/imd, > A4, namely, &(x + imd,) = ax. If E denotes the extension

Z:0- P,/imd, > Py —> C— 0,

define 8 by « + imd?¥ — [@Z]. By definition, 6(x + im d*) is the bottom row
of the following commutative diagram:

dy

00— P,/imd, > P, - >()
& B le
0 > A ——— B »C >0

1
Let us show 0 is independent of the choice of representative a. Suppose
o' = a + sd,, where s: P, — A. The following diagram commutes:

dy 4

> Po >C *0

%Pl
a'J B+is e
> A

> B > C >0;

P,

0

i

it follows that there is another commutative diagram

0—“"——__)P1/Hnd2 %PO >

sl

B +is

Q*—-*—__‘"——Q
)
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The uniqueness result of Lemma 7.18 shows that @'E is equivalent to the
bottom row «f, ie., 8(x + imd¥) = 8(a’ + im d¥).
We claim 8 = 1. Starting with o + im d¥, construct the diagram

0———— P, /imd, »P, >C >0

le

K

0 — A > B > C >0

Visibly, ¥ of the bottom row 1s « + im d¥. )

Finally, we claim 6y = 1. Starting with [£], observe that y[¢]=
o + im d%, as in the diagram just above. Now 8(x + im d¥) = [a=] = [£], by
the uniqueness in Lemma 7.18. |

Corollary 7.20: Ext*(C, 4) = 0 if and only if every extension of A by C is
split.

Proof: Necessity is Theorem 7.11. Conversely, if every extension of 4 by
C is split, then Exercise 7.14 shows e(C, A4) is a set with one element, and
the Theorem gives Ext*(C,4) = 0. |

We may now tie a loose end from Chapter 5. After proving Theorem 5.9,
we claimed that e(Z/pZ,Z/pZ) =~ Z/pZ. In Chapter 5, ¢(C, A) meant all
equivalence classes of extensions (not necessarily abelian) of the abelian
group A by the group C. In the special case A = C = Z/pZ, however, we
pointed out there that every middle group of an extension is necessarily
abelian; thus, the two meanings of e¢(Z/pZ,Z/pZ) coincide, and may be
identified with Ext}(Z/pZ, Z/pZ), which has order p (Theorem 7.17). -

Ext'(C, 4) has been treated via projective resolutions of C; we know that
it could also be treated via injective resolutions of 4. This approach yields
a function y’':e(C, A) - Ext!(C, A) defined by [¢]+>y + imd2, where

> A > B > C » ()
1, ¥
0 > A > EO =% >E1 sE2 5.-.

Just as above, one may show ' is a one—one correspondence; its inverse
is ¢, where 9'(y + imdJ) = [Q7],

Q=0->A4—-E%—- E'/imd® -0,
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and
- C—>E'/md°
is the map induced by the cocycle y.

If G is a group, X a set, and ¢: X — G a one—one correspondence, then
there is a unique addition on X making X a group and ¢ an isomorphism.
What is this addition on e(C,4)? We prepare by presenting three book-
keeping formulas. We abuse notation so that y[£] denotes any coset repre-
sentative of & + im d¥.

L If[£]ee(C,A4)and h:4— A, then
Wlhe] = hp(E].

This formula follows from the diagram

ce P, 5> P, »C >0
[+4 lC
v N v v
£ 0 > A > B —C >0
h 1¢
heE: 0 > A’ »E —sC >0

II. If[¢]ee(C,A)and k:C' - C, then
Y[Ek] = Y[ £k,

where k, is part of a chain map over k (see diagram below). Consider the
diagram

<o P > Py, >C’ >0
!
Ky k
w v v
- P, >P, >C >0
B le
v w v
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where k, is as advertised (existing by the Comparison Theorem), and f is
a coset representative of Y[ £].

Having pictured y[¢]k; = fk,, let us now picture y[¢k]. Consider the
diagram

S P, . C '
o 1

Ek: 0—>;4i ;E ;5’ »()
1, k

£ 0 A B s C >0

Here « is a coset representative of ¢[¢&k]. Since Sk, and o are each the
first constituent of a chain map over k, uniqueness to homotopy puts them
in the same coset modim d}.

The most obvious way to put two extensions ¢ and & together is to
form their sum £ @ &':

oA 42 . BB 22, cpCc 0.

L Y@ )= y[{]®y[¢&]. (The right hand side is the sum of
maps as pictu/red below.) This formula follows from the diagram

P, ®P———— P, ® P, »CRC' >0

x @ o 1

0>AQA———>BOB ———CHC ——0

The clue indicating how to assemble these formulas is the realization
that Ext! is a generalized Hom (after all, Hom = Ext%), and addition of
homomorphisms can be described in terms of composition and sum. Ex-
plicitly, let f,g € Hom(C, A4). If we define A¢:C—C@® C by ¢+ (c, ¢) and
ViA® A—>Aby(a,a)— a+ a, then

f+9=V(f®9gA,
for the right side sends ¢+ (c, ) = (fc, gc) — fc + ge.
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Exercise: 7.16. If ----» P, -» Py — C— 0 is a projective resolution of C
and - > P, ®P, > Py®P,—>C®C—0 is a projective resolution of
C® C, then {f,:P,—> P,® P,} is a chain map over A, where f, = Ap_ for
all n. (A similar result holds for V.) Conclude that we may take A; = A in
bookkeeping formula IL

Theorem 7.21: e(C, A) is an abelian group under Baer sum,
[+ [¢]=[(VEaMAl
and y:e(C, A) — Ext!(C, A) is an isomorphism.

Remark: It is true that associativity [(«&)y] = [«(&y)] holds; however, we
do not use this fact in the proof.

Proof: The formula for Baer sum defines a relation

p:e(C,A) x e(C,4)— e(C, 4)
which we do not yet know is a function. The bookkeeping formulas give

Y[(VE D ENA] = y[VE @ EN]A, = VY [ED E]A,
= V& @ y[EDA,
=V[E]®y[&])A  (Exercise 7.16)
= y[&] +y[¢'].

There are two conclusions from this computation. First, ¢p is a function,
so that, since ¥ is a one—one correspondence, p = ¥~ !(ifp) is also a func-
tion. Second, Y([£] + [&']) = Y[&] + ¢¥[&], so that y is a homomorphism
and p is the good addition on ¢(C,4). |

One could define Ext!(C, 4) as ¢(C, 4), and prove directly that it is an
abelian group under Baer sum that repairs the loss of exactness after ap-
plying Hom. This approach has the advantage that it avoids choosing
resolutions of either variable; indeed, no projectives or injectives need be
mentioned. This is MacLane’s viewpoint; paraphrasing him, this definition
of Ext! relegates resolutions to their proper place, namely, as aids to com-
putation. Yoneda has shown how to generalize ¢(C, 4) and Baer sum to
recapture Ext"(C, A). Briefly, an element of Ext(C, 4) corresponds to an
equivalence class of exact sequences of the form

0->4-B,» - —>B —>C—0,

Details may be found in [MacLane, 1963, pp. 82-87]. We have chosen a
standard presentation since it follows the historical development (even
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though Baer’s work introducing Baer sum is quite early), hence is more
natural once one has seen computations as in Chapter 5.

Exercises: 7.17. Consider the diagram with exact rows

& 0> A4, — B, »C; >0
o ¥
fz: 0'—>A2 \BZ \C2—>0

Prove there is a map §:B, — B, making the diagram commute if and only
if [«g,] = [£27]

7.18. Showthat —[¢] = [(—1,)¢&] = [¢é(—1¢)]. Generalize by replacing
—1, and — 1, with multiplication by an element in the center of the ring of
scalars. i

7.19. Show that [¢] = [0 — 4 - B— C — 0] has finite order in e(C, 4)
if and only if there is me Z, m# 0, and a map s:B—> A with si=m-1,.

7.20. e(C,)is a functor: if h:4 — A, define

hy:e(C,4)—e(C,A")

by [£] + [h&]. Show that e(C, ) and Ext!(C, ) are naturally equivalent.
721. If y is the extemsion 0 —> A > A5 A" -0, define a map
D:Hom(C, A")— e(C, A") by g — [xg]- Prove exactness of

~

Hom(C, 4) ™ Hom(C, A") 3 e(C,A’) > ¢(C, 4) 55 (C, A”).

7.22. Prove commutativity of

e(C, 4"
/
Hom(C, 4" v
d
Ext!(C, 4)

7.23. e(,A)is a contravariant functor: if k:C'— C, then k*:¢(C,4)—
e(C', A) is given by [¢]w> [¢k]. Prove that e( , A) and Ext*(, A) are naturally
equivalent.

7.24. If T is the extension 0—C'—C—C"—0, define D':Hom(C', 4)—
e(C”, 4) by g+ [gT']. Prove exactness of

Hom(C, A) » Hom(C', A) 2 e(C", A) — ¢(C, 4) — ¢(C', A).




Axioms 211

©7.25. Prove commutativity of
e(C", A)

/
,

Ext!(C", 4)

The naive approach to extensions that we followed in Chapter 5 can
also be followed here, and, as there, it leads to a special free resolution of
the first variable. Thus, given an extension of left R-modules 0 > 4 —» B —
C — 0, let us choose a lifting 1:C — B with A0 == 0. Each element of B has
a unique expression of the form'a + Ac, and, when we try to add two ele-
ments, a factor set emerges:

(@a+ )+ @+ A)=a+d + flc,d)+ Ac + ¢);
here f:C x C — A satisfies identities:

©) flc,0)=0=10c);

(i fic,c")~ fle+ ")+ fle,d + ") — fle,c) = 0;

(i) fle¢)=f(c,0.
The second identity arises from associativity; the third arises from com-
mutativity. This is not enough, for such a function f only carries the in-
formation that B is an abelian group. To ensure that B is a module, observe
there is a second function g:R x C— A defined by g(r,c) = ric — Arc.
There are more identities, arising from the module axioms.

) g(l,0)=0=g(r0);
(v) rg(s, ) = g(rs,c) — g(r, sc);

(vi) g(r+s,0) + f(re,sc) = g(r, ¢) + g(s,0);

(vii) g(r,c+ )+ flre,rc’) = glr,¢) + g(r, ).
The ordered pair (f,g) conveys all the data. We only remark that the set
of all such (f,g) forms an abelian group (each coordinate acts via pointwise
addition), and if one chooses a second lifting A':C — B, then he determines
a subgroup. Obviously, the resolution and boundary formula are more
complicated than before (although they are simple for Z-modules when g
can be forgotten).

Hom(C', 4)

AXIOMS

In this section, we characterize the sequence of functors Ext*(C, ), n >0,
by some properties we already know them to have. Note that Ext%C, ) =
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Hom(C, )is characterized in Theorem 3.38. The dual theorem, characterizing
the sequence Ext"(, A), n = 0, is also true and is left as an exercise; note that
Ext%(, A) = Hom( , 4) is characterized in Theorem 3.36.

Definition: A sequence of functors {T,:neZ} is connected if, for every
exact sequence of modules 0 > 4" > A — A" — 0, there exist maps
A T(A")— T,-4(4")
such that
@) o TA)> T TA") 5 T, y(4)> Toe () Tpmy (A7) -

is a complex;
(i) the“connecting maps” A, are natural: given a commutative diagram
with exact rows

00— A4 > A >» A" -0

0B > B > B" - ()
there are commutative squares for all n:

Tn(A”) — Tn— I(A,)

T,(B")———T,-(B)

Remarks: 1. The sequence is positive if T, = 0 for all n < 0; the sequence
is negative if T, = 0 for n> 0. In the latter case, we employ the usual con-
vention of raising indices (and A": T(A4") — T"* }(4")).

2. The definition can be easily generalized so that the functors are
evaluated on complexes instead of modules.

Definition: A connected sequence of functors is strongly connected if the
complex in (i) is acyclic, i.e, it is an exact sequence.

Theorem 7.22  (Axioms): Let {T"} be a negative sequence of functors such
that

(i) {T"} is strongly connected;
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(i) T°=~Hom(C, ) for some module C;
(il T"(E) =0 for all injective modules E and all n > 1.

Then T" = Ext"(C, ) for all n > 0.

Proof: We do an induction on n. The hypothesis gives the result for n =0
and, as usual with inductions here, we must treat the case n = 1 before
doing the inductive step. :

Given a module 4, choose an exact sequence

0-A—-E->D->0
with E injective. There is a commutative diagram with exact rows
T°E >T°D >T' 4 >TIE =0
[
D4

|
|
I
i
!
+
Hom(C, E)——— Hom(C, D) ——— Ext!(C, 4) ——> Ext{(C,E) = 0

where the downward arrows arise from the given natural equivalence
T° ~ Hom(C, ). Diagram-chasing provides a map ¢,:T'4— Ext!(C, 4)
that is necessarily an isomorphism.

It appears that ¢, depends on the choice of imbedding into an injective.
Assume B is a module with

0—->B->G—->H->0

an exact sequence with G injective; thus, ¢z is defined. If f:4 — B, injec-
tivity provides dashed arrows,

0 > A >E > D >0

| |

| |

f | |

: !

| I

¥ v
0 >B >G > H >0

There is a three-dimensional diagram:

T°F T T4 0

T°H > T8 {

T°G/ >0
J | l i ! i
Hom(C, E) c, D) Ext'(C,4) —» 0
~ e e

Hom(C, G) ——Hom(C, H) —Ext}(C, B) ———>»1(

/
Hom(
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Now every face of the left cube commutes. In the right cube, the top
and bottom faces commute by naturality of the connecting homomorphisms;
the front and back faces commute, by the construction of ¢, and ¢@p. It
follows that the right face commutes, ie., ¢ is natural. Further, if we set
A = Band f = 1, then it follows that each ¢, is independent of the choice
of imbedding in an injective.

The inductive step is similar (and easier, for the connecting maps are
now isomorphisms). [

Exercises: 7.26. Let0— A4'— A — A" — 0beexact. Show commutativity of

T A" > Tn+ lA/

Ext(C, A”) —> Ext"*1(C, 4")

where the vertical maps are the natural isomorphisms constructed in the
above proof.

7.27. State and prove the (dual) characterization of the sequence
{Ext"(, 4)}. Condition (iii) may be relaxed so that it reads “T™(B) = 0 for
all free modules Band all n > 17 (thus, “projective” may be replaced by “free”).

7.28. Let T be a left exact functor, and let {T"} be a negative sequence
of functors such that

(i) {T"}is strongly connected;
() T°~T;
(i) T™(E)= 0 for every injective module E and all n > 1.

Prove that T" ~ R"T for all n > 0.

Characterizations of Ext}(C, ) for fixed n > 0 are rare. Here is an instance
of such a theorem [Griffith, 1974]. Let R be Dedekind with quotient field Q.
If T:x3 — xM is a half exact functor that preserves products, annihilates
injectives, and Homg(Q, TP) = 0 for every projective P, then T = Ext}(C, )
for some C.

The next construction will not be used for a while, but this is an
appropriate place for it. Assume an exact sequence of modules

0-A4,- 54, 54,0

and a negative connected sequence of functors {T"}. “Factor” the exact
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sequence into short exact sequences
OﬁKi—)Ai—)Ki—-l—)Oy ISISP—I,

where K; = ker(4; > 4;.); note that K, = A, and K, = 4,. For each
i and n, there are connecting homomorphisms T"(K;_,) — T"**(K,). There
is thus a composite

T Aog) — T 1K) —» T Ky — - > TP YK, ) = TP (4.
Definition: The composite above, T"(4o) > T"*?~1(4,), is called an iterated
connecting homomorphism. '

Of course, there is a dual construction for a positive connected sequence

of functors.

Lemma 7.23: Counsider the commutative diagram with exact rows

> W - X >y A —0
@ B
0 > W’ > X’ > Y’ »Z' >0

If {T"} is a negative connected sequence of functors, then
DT I(B) — T"“(a)D: Tn—l(Z) - Tn+ I(W'),

where D:T" " YZ)—> T"* W) and D:T""YZ') > T"*YW") are iterated
connecting homomorphisms.

Proof: A simple calculation using naturality of connecting homomor-
phisms. |

Definition: A diagram

/N
o

is anticommutative if fo = —a'f'.
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Theorem 7.24: Let {T"} be a negative connected sequence of functors, and
assume all rows and columns of the following commutative diagram are exact:

0 0 0
£ 2 @ v ~
0 > A > A > A" >0
\\
B ¥ \\
v ~ \i
0 >B\ R B —0
~
~
¥ ~ ~ v
0 > C( 4‘]’: > Cu AO
0 0 0

Then there is an anticommutative diagram

T~ Y(C") ————T"(C)

T"(A”)' Tn+1(Al)

where the maps are connecting homomorphisms.

Proof: 1If one follows the dashed arrows, there are two exact sequences
of length 4:

0-A>A—->B"-C">0; 0—-A'->B ->C—->C"-0.

These sequences induce iterated connecting homomorphisms D and D',
respectively, T""HC")— T"*(4’); D is the clockwise composite we are
examining; D’ is the counterclockwise one.

We now construct a new four-term exact sequence which will be used
to compare the ones above. Define

AS>A®BSB
by ga’ = (ad', fa’) and 1(a, b’) = ya — 8b'. It is easy to check that
0-A>A®B ->B->C">0

is exact, where B— C” is the map obtained from the 3 x 3 diagram. If we




217

Axioms

define e:4" — A’ by g:d"+ —d/, then there is a commutative diagram

0 A A B O
Ly f Ier

0 > A4’ >»A @ B’ > B >C" 0
€ g Lo

N SR S SR, 0

where f:(a,b")+—>a and g:(a,b")+> —b' (other maps are from the 3 x 3
diagram). Applying Lemma 7.23 twice yields T"*Me)D = D. As ¢ = — 1,
we have D' = T"*}(g)D = —D, as claimed. |

Corollary 7.25: Let {T"} be a negative connected sequence of functors, and
consider a 3 x 3 commutative diagram of complexes with exact rows and
columns. Then there results an anticommutative diagram

"~ HC") —————T"(C)

T"(A”) > Tn+1(Ar)

Proof: The proof just given can painlessly be adapted to complexes. |

Theorem 7.26: Consider the commutative diagram of complexes with exact
rows and columns

0 0 0
0 » X/ » X > X" +0
0 » Y’ 'Y > Y" 0
0 ‘i’ ,i ,i” >0
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For each n, there is an anticommutative diagram

H(Z"y————H,_4(Z)

H, ;X") ————H,-,(X)
where the maps are connecting homomorphisms.

Proof: We may use Corollary 7.25, for the homology functors {H,} form
a connected sequence of functors defined on complexes. |

This discussion will be continued later to prove certain anticommutativity
results for Tor and Ext (Theorems 11.23 and 11.24). In order to prove these
theorems, it is necessary to define new complexes whose homology yields
Tor or Ext (namely, resolve both variables simultaneously). Although one
could give an elementary proof here, it would be out of context, and so we
wait until a discussion of bicomplexes and spectral sequences.

Exercises: 7.29. Given two short exact sequences with the same middle
term, )
0-A4A->B—>C—0 and 0—->D—->B—>E—Q,

then there is a commutative 3 x 3 diagram with exact rows and columns

0 0 0
0 > W D »X >0
0 > A > B ->C >0
0 >Y > E »Z »0
0 0 0

(Hint: Let the upper left corner be the pullback.)
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7.30. Give an example of a commutative 3 x 3 diagram
zeros, and with exact rows and columns, in which the upper
not a pullback.
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Now we turn to Tor. First, recall the definition on modules:
TOI’,I,{(A, B) = Hn(PA ®R B) = Hn(A ®R QB):

where P, and Q are deleted projective resolutions; the second equation
is Theorem 7.9.

ELEMENTARY PROPERTIES

Theorem 8.1: If nis negative, then Tor,(A, B) = 0 for all A, B.

Proof: IfQg='"-0,—0Qy—0, then A ® Qj has only O’s to the right
ofA®0,. 1

Theorem 8.2: TorX(4, ) is naturally equivalent to A®g ; Tork(,B) is
naturally equivalent to ®g B.

Proof: IfQp=-- -—»ngQofgo,then
Tory(4, B) = ker(1 ® dp)/im(l ® d;) = coker(1 ® d,).

If the (nondeleted) resolution is- - - — Q; 4 0, <> B — 0, then right exactness
of A ® gives an exact sequence

1®d; 1®e

AR®Q —AQQ,—A®B-0,

220
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so that 1 ® ¢ induces an isomorphism coker 1 ® d;, - A ® B. We let the
reader check that these maps, one for each B, define a natural equivalence. |

Remark: We have really proved that if T is right exact, then L, T = T.

Theorem 8.3: If 0— B — B— B”"— 0 is an exact sequence, then there is
a long exact sequence

-+— Tor(4,B)»A®B A B—-A®B" -0
with natural connecting homomorphisms; similarly in the other variable.
Proof: Theorems 6.21 and 8.2. |
Observe that Tor thus repairs the exactness we may have lost by tensoring.
Theorem 8.4: If P is projective, then Tor(P,B) =0 for all Band alln > 1;
similarly in the other variable.

Proof: Just as the corresponding result for Ext: the definition of Tor is
independent of the choice of projective resolution of P. |

Observe that we have already used Theorem 8.4 in our proof of
Theorem 7.9.

The following theorem enables us to stop saying “similarly in the other
variable”; there is no analogue of this result for Ext. Let R°® be the opposite
ring of R.

Theorem 8.5: Foralln>0andall A, B,
Tor?(4, B) = Tor?®(B, A).
Proof: IfP,=---— P, — Py,— 0,then it is easily checked that
t,:P, @z B— B ®gop P,
given by
X, ®br>b®x,

are isomorphisms that constitute a chain map t:P,® B—-B®P 4 By
Exercise 6.6, t is an isomorphism of complexes, so that

H, (P, ®B)=H(B®P,)

for all n > 0. Since P, may be construed as a (deleted) projective resolution
of the left R°*-module 4, the proofis completed by applying Theorem 7.9. ||
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Corollary 8.6: If R is commutative, then
TorX(4, B) = TorX(B, 4)
foralln>0and all A, B.

We now improve Theorem 8.4.

Theorem 8.7: If F is flat, then Tor,(F,B) = 0 for all n > 1 and all B.

Proof: Let Qg=:'-—Q;— Q,— 0. Since F is flat, the functor F® 1is
exact. It follows from Exercise 6.4 that the complex F ® Qj has all homology
groups 0 except the zeroth. ||

Corollary 8.8: The definition of Tor is independent of the choice of flat
resolution of either variable.

Proof. We have just proved that the hypothesis of Corollary 7.10 always
holds. |

Let us give a second proof of Theorem 8.7 by induction on n. As we have
already seen in the last chapter, such proofs involve a short exact sequence
whose middle module is special (projective, injective—or flat) and the
corresponding long exact sequence.

Definition: An inductive proof as just described is called dimension shifting.

Here is a proof by dimension shifting that Tor,(F, B) = 0 for n > 1, all
B, and flat F. Choose an exact sequence

0-K5P5Bo0
with P projective. There is an exact sequence
Tor,(F, P) - Tor,(F,B)» F® K ~25 F® P.

Since P is projective, the first Tor = 0. Since F is flat, 1 ® i is monic, and
so Tor (F,B) = 0.
For the inductive step, look further out in the long exact sequence:

Tor, . ,(F, P) - Tor,. 4(F, B) - Tor,(F, K).

The two outside terms are 0, one by Theorem 8.4, the other by induction,
and so exactness forces Tor, . (F,B) = 0.

There is a strong converse.

Theorem 8.9: If Tor,(F,B) =0 for all B, then F is flat.
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Proof: If0O—-B LBoB'-0is exact, then so is

Tor,(F,B")—»F® B 2L FQB.

Since Tor,(F,B") = 0, it follows that 1 ® i is monic, and hence F is flat. ||

Theorem 8.10: Tor,(] J4x, B) = [ [Tor,(4x, B), all n > 0.

Proof: Dimension shifting, using Theorem 2.8. ||

Theorem 8.11: If the index set is directed, then
Tor,,(li_r)n A, B) = h_rPTorn(Ak, B), all n=0.

Proof: Dimension shifting, using Theorem 2.18. ||

One must assume the index set is directed in Theorem 8.11, otherwise
it may be false, e.g., Tor,(, B) need not be right exact.

Theorem 8.12: If R is commutative, then TorXA, B) is an R-module.

Proof: In this case, the complex defining Tor is comprised of R-modules
and R-maps. |

As with Ext, this last result may be generalized.

Theorem 8.13: If r € Z(R), the center of R, and u:A — A is multiplication
by r, then so is p, . Tor, (A4, B) — Tor,(4, B).

Proof: Similar to the proof of Theorem 7.16. ||

Exercises: 8.1. If0— A — A—- A" — 0 is exact and A’ and A" are flat,
then A is flat.
8.2. If A” is flat, then the exact sequence

0-A4A>A—-A4"-0

1s pure exact.
8.3. Use Theorem 8.13 to show TorX(4, B) is a Z(R)-module.
8.4. Prove that Tor¥(Z/nZ,B) =~ B[n], where B[n] = {b € B:nb = 0}.
8.5. If A and B are f.g. abelian groups, compute Tor%(4, B).
8.6. For any abelian groups 4 and B, prove that

Tor%(4, B) = 0.

8.7. If A and B are abelian groups with mA4 = 0 = nB, where (m,n) = 1,
then TorZ%(4, B) = 0. Conclude that, in this case, exactness of 0—D—C—B—0
implies exactness of 0 - A® D4R C—-ARQ B - 0.

8.83. If A and B are finite abelian groups, then TorZ(4, B) =~ A ®, B.
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TOR AND TORSION

In this section, R denotes a domain, Q denotes its quotient field, and
K denotes the module

K =Q/R
Recall that the torsion submodule t4 of a module 4 is defined by
tA = {a € A:ra = 0 for some nonzero r € R}.

Were R not a domain, then t4 might not be a submodule: if ra =0 =r'd,
then rr'(a + @) = 0, but it is possible that rr' = 0.
Definition: A module A4 is torsion if t4 = 4; a module 4 is torsion-free
iftA=0.

We have remarked, in Chapter 4, that the module 4/tA is always torsion-
free; thus every module (over a domain) is an extension of a torsion module
by a torsion-free module. Exercise 7.13 shows that such extensions need
not split, even when R = Z.

The torsion submodule actually defines a functor: if f: 4 — B, define
tf = f|tA. One reason for the name Tor is that t = Tory(K, ), as we shall
nOW prove.

Lemma 8.14: There is a natural isomorphism Tor (K, A) = A for all torsion
modules A.
Proof: Exactness of 0 —» R — @ — K — 0 gives exactness of

Tor (Q, 4) — Tor,(K,A) SR® A — Q0 ® A.

The first term is O since Q is flat (Corollary 3.48) and Q ® A = 0 because
A is torsion (Exercise 2.27). It follows that 0 = d, is an isomorphism. If B
is torsion and f:A4 — B, naturality of the connecting homomorphism gives
commutativity of

)
Tor; (K, A) ——————> 4
S s
Tor,(K, B) ——8 1
B

Lemma 8.15: Tor,(K,4) = 0 for every A and all n > 2.
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Proof: We have exactness of
TOI',,(Q, A) - TOI',,(K, A) - Torn - I(R’ A),

and the outside terms are 0 since n — 1 > 1 and both Q and R are flat. |

Lemma 8.16: If A is torsion-free, then Tor,(K, A) = 0.

Proof: We saw in Lemma 4.31 that 4 can be imbedded in a vector space
E over Q; as E is a sum of copies of 0, it is flat. Exactness of 0 A—E—E/4A—0
gives exactness of

Tor,(K, E/A) — Tor,(K, 4) — Tor,(K, E).
The first term is 0 by Lemma 8.15; the last term 1s 0 since E 1s flat. ||

Theorem 8.17: The functors Tor,(K, ) and t are naturally equivalent.
Proof. Exactness of 0 — t4 La- A/tA — 0 gives exactness of
Tor,(K, A/tA) - Tor (K, t4) % Tor,(K, A) — Tor (K, A/tA).

The first term is 0 by Lemma 8.15; the last term is 0 by Lemma 8.16. It
follows that i, is an isomorphism, hence that ¢ = i,07*:t4 — Tor(K, 4) is
an isomorphism. It is a simple matter, using Lemma 8.14, to show that the
maps ¢ = g, constitute a natural equivalence. ||

Corollary 8.18: For every module A, there is an exact sequence
0-tA-A4A-Q0RA-KR@A—-0.

Corollary 8.19: A module A is torsion if and only if Q @ A = 0.

Proof: We have known necessity for a long time. For the converse, use
Corollary 8.18. (One could also use Theorem 3.71.) ||

Another reason for the name Tor is that Tor is always a torsion module;
let us prove this.

Lemma 8.20: If B is torsion, then Tot,(A, B) is torsion for all A and for
all n = 0.

Proof: We do a dimension shift. If n = 0, each generator a ® b is torsion,
whence Tory(4, B) = 4 ® B is torsion.

Ifn = 1, there is an exact sequence 0 » N — P — A — 0 with P projective,
and this gives exactness of

0 = Tor,(P, B) - Tor,(4,B) » N ® B.
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Since N ® B is torsion, by the case n = 0, so is its submodule Tor(4, B).
For the inductive step, look further out in the sequence. We have
exactness of

0 = Tor,, (P, B) - Tor,+ (4, B) > Tor,(N, B) - Tor,(P, B) = 0.

Since Tor,(N, B) is torsion, by induction, so is Tor, (4, B). |1

Theorem 8.21: Tor,(A4, B) is torsion for all A, B and all n > 1.

Proof: Letn=1, and consider the special case when B is torsion-free. By
Corollary 8.18, there is an exact sequence

0-B—-E—-»X-0,

where E is a vector space over Q and X = E/B is torsion. There results an
exact sequence

Tor,(A4, X) - Tor,(A4, B) - Tor,(4, E).

Now Tor,(4, X) is torsion, by Lemma 8.20, while Tor,(4, E) = 0 because E
is flat (being a sum of copies of Q). Thus, Tor,(4, B) is a quotient of a torsion
module, hence is itself torsion.

Now let B be arbitrary. Exactness of 0 —tB— B— B/tB—0 gives
exactness of

Tor,(4, tB) — Tor,(4, B) - Tor (4, B/tB).

The outside terms are torsion, for tB is torsion and B/tB is torsion-free. It
follows easily that Tor(4, B) is torsion. The proofis completed by dimension
shifting. ||

Of course, Theorem 8.21 need not hold for n =0, i.e, A ® B need not
be torsion.

Exercises: 8.9. Let R = k[x,y], where k is a field, and let I be the ideal
(x, ). Show that x® y — y ® x € I ®z I 1s nonzero and is annihilated by x.
Conclude that the tensor product of tersion-free modules over a domain
need not be torsion-free. (Hint: Look in (I/I*)® (I/I?)) Compare
Exercise 3.38.

8.10. (Axioms) Let {T,:n> 0} be a positive sequence of functors
such that

(i) {T,} is strongly connected,;
(i) To=A® for some module 4;
(i) T, (P)= 0 for all free modules P and all n > 1.

Then T, =~ Tor (4, ) foralln> 0.
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8.11. Let R be a domain with quotient field Q, and let K = Q/R. If ¢
is the torsion submodule functor, prove that its right derived functors Rt
are given by

R%=t, Rt=K®z, Rt=0 for i>1

(Hint: Use Exercise 7.28.)

8.12. (MacLane) If A and B are abelian groups, show that Tor%(4, B)
may be generated by those (a,m,b) € A x Z x B such that na = 0 in 4 and
nb = 0 in B, subject to the relations (whenever both sides are defined):

(1) (al +a23nab)=(a1’nsb)+(a23n:b);
(11) (a,n’bl + bZ) = (Cl, n’bl) + (Cl, n, bz),
(i) (ma,n, b) = (a,mn,b) = (a,m,nb).

(Hint: Choose an exact sequence 0 — K 4 F - B— 0 with F free and show
the group described is isomorphic to ker(l, ® i)) MacLane {1963, pp.
150-159] gives generators and relations for TorX(M, N).

If I is a right ideal in a ring R and J a left ideal, then IJ = {J a,b,:a; € 1,
breJ}. It is easy to see that IJ = I n J; also, there is a map I ®g J - IJ
with a ® b+ ab. In a later chapter, we shall prove (Corollary 11.27)

Tor¥(R/LR/T)= I~ J/1J
and
Tor¥R/LR/J) = ker(I® J - 1J).

UNIVERSAL COEFFICIENT THEOREMS

In Chapter 1, we defined the homology groups H,(X) of a topological
space X as

H,(X) = H(S(X)),

where S(X) is the singular complex of X. It is often convenient to modify
this construction by allowing “coefficients” in an abelian group G:

(one says “coefficients” because a typical element of degree n in S(X)® G
has the form ) s; ® g;, where s; € S,(X) and g; € G). For example, “obstruction
theory” deals with the problem of extending a continuous map defined on
a “nice” subspace of X and involves cohomology with coefficients in a certain
homotopy group. One might hope that H,(X; G) =~ H(X)® G, but this is
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usually not the case. The next theorem allows one to compute homology
with coefficients from unadormed homology, and hence is called a universal
coefficient theorem. Afterwards, we shall give the dual result for cohomology.

Theorem 8.22 (Universal Coefficient Theorem for Homology): Let R be
right hereditary, A an R-module, and (K, d) a complex of projective R-modules.
There is a split exact sequence
0 H,(K) ® A5 H,(K ®g 4)  Torf(H, ,(K), 4) -0
in which A and u are natural. Thus,
H,K ®z 4) = H,(K) ®x A® Tork(H,_ ,(K), 4).
Remark: The theorem is true if K is a complex of flat modules. This, and
much more, is proved in the Kunneth formula, Theorem 11.31.
Progf: For each n, there are exact sequences
) 0 Z,(K) & K, 5 B, ,(K)~ 0
and
0-B,.,K o Z,-,(K)>H,-,(K) >0

(the first is just the definition of cycles and boundaries; the second is just the
definition of homology). Splice these two sequences together to obtain an
exact sequence

() 02, > Kyt 57, > H, ;>0

N

Since every K, is projective and R is hereditary, Corollary 4.18 shows the
submodules Z, (of K,) and B,_; (of K,_,) are also projective. There are
two consequences: the exact sequence () is split (Theorem 3.12); the exact
sequence (++) is a projective resolution of H,_ .

Let L denote the complex obtained from (*+) by suppressing H,_,; L
is thus a deleted resolution and

LRQA=0-2Z,04 2L K @487 @40
is a complex with homology

H{L ® 4) = TorX(H,_,, A).
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Now Tor®¥(H,_ ;, 4) = 0 (Exercise 8.6), whence i ® 1 is monic (alternatively,
that () is split implies Z, ® 4 is even a summand of K, ® 4 with injection
[ ® 1), We can thus identify Z, ® 4 (via i ® 1) with a submodule of K, ® 4.
The remaining computations are:
(***) Torllz(Hn—I:A) = HI(L ® A) = (kerdn ® 1)/Zn ® Av

H,.1 ® A=Torf(H,-,,4) = H(L ® 4) = Z,-; ® 4/im(d, ® 1).

Consider now K, ,, BTN K, & K,_,. Examining elements, one verifies
the inclusions
imd,,, ®1cZ,@Ackerd,®1cK,® 4.
The Third Isomorphism Theorem gives
(kerd, ® 1/imd,; ® V/[(Z, ® A)/imd,; ® 1] = kerd, ® 1/Z,® 4,
which may be rewritten as an exact sequence
0527, @ A/imd,,, ® 1 Skerd,® l/imd,,, ® 15 kerd, ® 1/Z,® A - 0.

The middle term is just H, (K ® 4), while we have already computed that
the first term is H,(K)® 4 (item (#++) with n — 1 replaced by #) and the
last term is TorX(H, . ,(K), 4).

To see that this sequence splits, observe that Z, is a summand of K,
(for () splits), so that Z,, ® 4 is a summand of K, ® 4 and hence ofkerd, ® 1
(Exercise 2.23); it follows that Z,® A/imd,,, ® 1 is a summand of
kerd,® 1/imd,., @ 1. |

Remark: The splitting may not be natural.

Exercise: 8.13. Show that the map A1: H(K) ® 4 — H, (K ® A4) is given by
[z ]®ar [z, ®4],
where [ ] denotes homology class.
Corollary 8.23: If X is a topological space and G an abelian group, then
foralln,
H(X;G) = H(X) ®7 G® Tor{(H,- (X),G).

Proof : By definition, H,(X) = H,(S(X))and H,(X; G) = H,(S(X) ® G). The
Universal Coefficient Theorem applies at once, for S(X) is a complex of free
abelian groups. |
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Corollary 8.24: If K is a complex of vector spaces over a field R, and V is
a vector space over R, then for all n,

H,K®g V)= H,(K) & V.

Proof: Every field R is hereditary and every vector space over R is a free
R-module. |

Corollary 8.25: Let K be a complex of free abelian groups. If either H,_,(K)
or A is torsion-free, then

Hn(K ®Z A) = Hn(K) ®Z A
Proof: REither assumption forces Toré(H,_,,4)=0. ||

Of course, any hypothesis forcing Tor,(H, -, 4) to vanish (e.g., Exercise
8.7) will give a similar result.

Let us now turn to cohomology; recall that the nth cohomology group
of a topological space X with coefficients in an abelian group 4 is defined by

H"(X;A) = H_,(Hom(S(X), 4)).
Theorem 8.26: (Universal Coefficient Theorem for Cohomology): Ler R be
hereditary, 4 an R-module, and (K,d) a complex of projective R-modules.
There is a split exact sequence
0 - Exth(H,-(K), 4) > H"(Homg(K, 4)) £ Homg(H (K), 4) - 0
in which A and u are natural. Thus
H'(Homg(K, 4)) = Homg(H,(K), 4) ® Ext(H, - ,(K), 4).

Proof: The proof of Theorem 8.22 applies here; the only change is that
one now uses the contravariant functor Homg( , 4) instead of the covariant
functor ®z 4. |

The next result shows that the homology groups H,(X) of a space X
determine its cohomology groups.

Corollary 8.27: If X is a topological space and G an abelian group, then
foralln,

H(X; G) = Homy(H,(X), G) ® Exty(H,-,(X),G).
It is known that for any sequence of abelian groups 4,, 44, 4,, - . - , there

exists a topological space X with H,(X) = A4, for all n. In contrast, if one
defines H(X)= H_, (Hom(S(X),Z)) = H(X;Z), Nunke-Rotman [1962]
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prove that if H*(X) is countable, then it is a sum of a finite group and a free
abelian group.

Corollary 8.28: Let K be a complex of free abelian groups. If either H,.. ,(K)
is free or A is divisible, then

H"(Homy(K, 4)) = Homg (H,(K), 4).
Proof: Either hypothesis forces Exti(H,_,,4)=0. |

Of course, variations on this theme are played by assuming other
hypotheses guaranteeing that Ext* vanish.

Corollary 8.29: If K is a complex of vector spaces over a field R, and if V is
a vector space over R, then for all n

H"(Homg(K, V)) = Homg(H(K), V).
In particular,
H"(Homg(K, R)) = H,(K)*,

where * denotes dual space.
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This chapter is intended to indicate that Ext and Tor are valuable tools
in studying rings; the next chapter will indicate their value in studying
groups. We begin with a minor illustration that these functors are good for
something, and so we use Ext to prove a result (Theorem 9.3) that does not
mention Ext in either its hypothesis or conclusion.

Theorem 9.1: If R is left hereditary, then Exth(4,B) =0 for all left R-
modules A, B and all n > 2.

Proof: There is an exact sequence 0 — P, — Py — 4 — 0 with P, projec-
tive. By Corollary 4.18, P, is also projective, and the short exact sequence

above is a projective resolution of 4. The result follows from the definition
of Ext. |

Theorem 9.2: If R is a Dedekind ring and A is a torsion-free R-module, then
Extk(4, B) is divisible for every R-module B.

Proof: By Lemma 4.31, there is an exact sequence
0-4—-E->X->0
with E torsion-free divisible; this gives rise to an exact sequence
Ext!(E, B) - Ext'(4, B) - Ext%(X, B).

232
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The last term is O, by Theorem 9.1, so that the first map is epic. Since
Ext!(E, B) is divisible (Exercise 7.5), its image Ext*(4, B) is also divisible. |

In Exercise 7.13 we saw that the torsion subgroup of an abelian group
may not be a summand.

Theorem 9.3: Let R be Dedekind, and let B be an R-module with torsion
submodule tB. If there is some nonzero r € R with r(tB) =0, then tB is a
summand of B.

Proof: We must show that 0 —tB — B — B/tB — 0 splits. Since B/tB is
torsion-free, it suffices to prove Ext!(4, T) = 0 whenever 4 is torsion-free
and T = tB. Now Ext!(4, T) is divisible, by Theorem 9.2; on the other hand,
rT = 0 implies r Ext}(4, T) = 0 (Theorem 7.16). It follows that Ext!(4, T) =0,
for divisibility implies multiplication by r (r # 0) is epic. [k

Note that the hypothesis r(¢B) = 0 holds if ¢B is f.g.

DIMENSIONS

We begin by measuring how far a module is from being projective.

Definition: If 4 is a left R-module, then pd(4) < n (pd abbreviates projec-
tive dimension) if there is a projective resolution

0>P,»->P ->Py—>A4A-0.

If no such finite resolution exists, define pd(4) = oo; otherwise, if n is the
least such integer, define pd(4) = ».
Examples: 1. pd(4) = 0 if and only if 4 is projective.

2. If R is left hereditary, then pd(4) < 1 for every R-module 4 (this is
contained in the proof of Theorem 9.1).

Let us now give a name to submodules that arise in analyzing a projec-
tive resolution,

Definition: Let-- - — P, i Po 5 A— 0 be a projective resolution; denote
kere by K, and, for n > 1, denote kerd, by K,. For n> 0, K, is the nth
syzygy of A.

Obviously, the syzygies of 4 depend on the choice of projective re-
solution.
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Definition: Two modules 4 and B are projectively equivalent if there are
projectives P and Q with A@P=B @ Q.

It is obvious that this is an equivalence relation.

Theorem 9.4: Let {K,} and {K,} be syzygies of A defined by two projéQtive
resolutions of A.

(i) For each n= 0, K, and K, are projectively equivalent;
(ii) for every module B, Ext*(K,,B) = Ext'(K}, B);
(ii) for every module B and every n > 1, Ext"**(4, B) = Ext*(K,-,, B).

Proof: (i) This follows at once from the generalized Schanuel lemma,
Exercise 3.37.

() Theorems 7.7 and 7.13.

(i) Corollary 6.19. |

As a result of Theorem 9.4, one often abuses language and speaks of
the nth syzygy of A, even though such a module is only defined to projec-
tive equivalence.

A short digression. The word “syzygy” is used in astronomy, in the
context of several bodies bq, by, b,, ..., with b, rotating about by, b,
rotating around b, (hence around by), and so forth. For example, sun,
earth, moon. “Syzygy”, from the Greek “syzygos” meaning “yoked together”,
describes certain positions of these bodies relative to each other. In de-
scribing a module 4 by generators and relations, say, Po/K, = 4, let us
(poetically) regard the relations K, as a yoke between P, and A4; further
regard K, relations on relations, as yoking P, to K, (hence to A), and
so forth.

Theorem 9.5: The following are equivalent for a left R-module 4:

() pd(4)<n;
(i) Ext*(4,B) = 0 for all modules B and all k> n + 1;
(i) Ext"*(4,B) = 0 for all modules B;
(iv) there is a projective resolution of A with projective (n — 1)st syzygy;
(v) every projective resolution of A has a projective (n — 1)st syzygy.
Proof: (i)=>(ii) There is a projective resolution of 4 with P, = 0 for all
k> n + 1. Therefore, Hom(P,, B) = 0 for all k> n + 1, and so Ext*(4,B)=0
forall k>n+1.
(i) = (iii) Trivial.
(iii) = (iv) Take a projective resolution of 4 with (n — 1)st syzygy K, ;.
By hypothesis, 0 = Ext"*!(4, B) = Ext!(K,.,, B) for all B; by Corollary
7.12, K, is projective.
(iv) = (v) Assume K,_, and K|, _, are (n — 1)st syzygies of 4 given by
two projective resolutions. By Theorem 9.4(i), there are projectives P and
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owithK, , ®P =K, ;@ Q.If we further assume K, _, is projective, then
K,_1® P is projective; hence K, _,; is projective, being a summand of a
projective.

(v)=>() Let---—P,—>Py—>A->0 be a projective resolution. By
hypothesis, K, is projective, so that

0->K,.,>»P,.,—>"—>P —>Py—->4-0
is a projective resolution exhibiting pd(4) < n. |

We temporarily adopt an overcomplicated notation.

Definition: If R is a ring, its left projective global dimension /pD(R) is
defined by
IpD(R) = sup{pd(4): 4 € zM}.

Corollary 9.6: IpD(R) < n if and only if Extk '(4,B) =0 for all left R-
modules A and B.

Proof: Immediate from Theorem 9.5(ii). |

Exercises: 9.1. IpD(R) =0 if and only if R is semisimple.

9.2. If R is quasi-Frobenius, prove that I[pD(R) =0 or co. Conclude
that IpD(Z/nZ) = co if r is not square-free.

9.3. IpD(R) <1 if and only if R is left hereditary.

9.4. If I is a left 1deal of R, then either R/I is projective or pd(R/I) =
pd(I) + 1 (where oo = oo + 1).

9.5. Let R, be the ring of all n x n matrices over a ring R. Prove that
IpD(R) = IpD(R,). (Hint: Corollaries 3.41 and 3.42))

9.6, If M is an R-module with pd(M)=n < o, then prove that
Ext}(M, F) # 0 for some free R-module F.

All may be repeated using injective modules instead of projectives; we
need only give the definitions and results.

Definition: If B is a left R-module, then id(B) < n (id abbreviates injective
dimension) if there is an injective resolution
0>B—->E°SE - L E" 0.

If no such finite resolution exists, define id(B) = oo; otherwise, if n is the
least such integer, define id(B) = n. ’

Of course, B is injective if and only if id(B) = 0.
Definition: Let 0B 5 E° S E! .- be an injective resolution; denote

ime by L° and, for n> 1, denote imd"~! by L". For n> 0, L" is the nth
cosyzygy of B.
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Definition: Two modules B and C are injectively equivalent if there are
injectives E and E' with BO@ Ex=COE".

Since the dual of the generalized Schanuel lemma holds, we may assert
the following result.

Theorem 9.7: Let {L"} and {M"} be cosyzygies of B defined by two ijective
resolutions of B.

(i) For each n> 0, L" and M" are injectively equivalent;
(i) for every module A, Ext'(4, L") = Ext'(4, M");
(ii) for every module A and every n> 1, Ext"*!(4, B) = Ext!(4, L*"1).

Thoerem 9.8: The following are equivalent for a left R-module B:

(1) d(B)<mn;
(i) Ext*(4,B) =0 for all modules A and all k = n + 1;
(iii) Ext"*(4,B) =0 for all modules A;
(iv) every injective resolution of B has an injective (n — 1)st cosyzygy.

Definition: If R is a ring, its left injective global dimension [ID(R) is de-
fined by

liD(R) = sup{id(B):B € zM}.

Corollary 9.9: [iD(R) < n if and only if Exty"™(4,B)=0 for all left R-
modules A and B.

‘We now combine Corollaries 9.6 and 9.9.‘

Theorem 9.10: For any ring R, IpD(R) = liD(R).
Proof: The two corollaries yield the same criterion. |

In view of Theorem 9.10, one defines the left global dimension /D(R) as
the common value of IpD(R) and /iD(R). If one considers right R-modules,
he may define the right global dimension rD(R). The Wedderburn theorem
implies left semisimple is the same as right semisimple; thus, ID(R) = 0 if
and only if rD(R) = 0. The first example of a ring for which the left and
right global dimensions differ was given by Kaplansky, who exhibited a
ring R with ID(R) = 1 and rD(R) = 2. Jategaonkar [1969] proved that if
1 <m < n< o, then there exists a ring R with ID(R) = m and rD(R) = n.
The same phenomenon (but with » finite) is also exhibited by Fossum~—
Griffith—Reiten [1975, pp. 74-75].

On the positive side, we shall prove (Corollary 9.23) that ID(R) coincides
with rD(R) when R is left and right noetherian. Jensen [1966] showed that if
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all one-sided ideals of R are countably generated, then [ID(R) — rD(R)| < 1;
this is generalized by Osofsky [1968] who showed that if every one-sided
ideal of R can be generated by at most X, elements, then |ID(R) — rD(R)] <
n + 1. In this last result, set theory makes its presence known. Indeed, if R
is a product of countably many fields, then D(R) = 2 if and only if one
accepts the Continuum Hypothesis [Osofsky, 1973, p. 60] (when R is com-
mutative, one drops the unneeded letters / and r).
The next problem is to develop ways to compute global dimension.

Lemma 9.11: A left R-module B is injective if and only if Ext!(R/[,B) =0
for all left ideals 1.

Proof: Apply Hom(,B) to 01— R->R/I -0 to obtamn exactness of
Hom(R, B) » Hom(l, B) — Ext'(R/I, B) = 0. The result now follows from
Baer’s criterion, Theorem 3.20. |

Theorem 9.12 (Auslander): For any ring R,
ID(R) = sup{pd(R/I):I is a left ideal}.

Remark: This proof is due to Matlis.

Proof: If sup{pd(R/I)} = oo, we are done. Assume that pd(R/I) < n for
all ideals 1, so that Ext"*!(R/I,B) = 0 for every module B. It suffices to
prove id(B) < n for every B. Take an injective resolution of B with (n — 1)st
cosyzygy L"~*. By Theorem 9.7(iii), 0 = Ext"*(R/I, B) = Ext'(R/I,L""").
But Lemma 9.11 gives L"~! injective, and therefore id(B) < n. |

Thus, to compute [D(R), it suffices to know projective dimensions of the
cyclic modules. Note also that global dimension measures how far a ring is
from being semisimple. Using Exercise 9.4, we see that if R is not semi-
simple, then ID(R) — 1 = sup{pd(I):I = left ideal}. It is now clear why the
definition of left hereditary ring is natural; moreover, one expects some
good theorems because these rings are only one step removed from semi-
simple rings.

Exercises: 9.7. If 0—» 4’ = 4 — 4" — 0 is exact with 4 projective, then
either all three modules are projective or
pd(4") =pd(4) + 1.

(Of course, this generalizes Exercise 9.4.)
9.8. Given a family of modules {4,:k e K}, then

pd(L140) = sup{pd(4,):k e K}.
Conclude that if ID(R) = oo, then there exists a module 4 with pd(4) = co.
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99. f 0-54"—-4—A4"-0 is exact and two of the modules have
finite projective dimension, then so does the third. Moreover, if n < oo,
pd(4’) = n, and pd(4”) < n, then pd(4) = n.

The question arises whether there is an analogue of Lemma 9.11 to
test for projectivity. The obvious candidates do not work. If we assume
Exti(P, R/I) =0 for all I, then Theorem 9.3 shows that we may only con-
clude that P is torsion-free (when R is Dedekind). If we assume Extk(P,I) =0
for all ideals I, this, too, is not enough. Indeed, when R = Z, then [ # 0
implies I = Z and one is asking whether Ext}(P,Z) = 0 implies P is free.
This question is called Whitehead’s problem. If P is countable, K. Stein
proved P is free. If P is uncountable, then Shelah [1974] proved Whitehead's
problem is undecideable: the statement “Ext!(P,Z) =0 and card P =&,
implies P is free” and its negation are each consistent with the (ZFC)
axioms of set theory!

Exercises: 9.10. Let R be a Dedekind ring with quotient field Q, and let
K = Q/R. Prove that an R-module 4 is injective if and only if Extk(K, 4) = 0.

9.11. If R is Dedekind, then an R-module 4 is projective if and only if
Ext!(4, F) = 0 for every free module F.

Let us now define another dimension, using flat modules and Tor.

Definition: If 4 is a right R-module, then fd(4) < n (fd abbreviates flat
dimension) if there is a flat resolution

O0->F,—»-—-Fy—>4-0.

If no such finite resolution exists, define fd(4) = co; otherwise, if n is the
least such integer, define fd(4) = n.

Definition: Let - — F, 3 Fy 5 4 - 0 be a flat resolution; denote kere
by Y, and, for n > 1, denote ker d, by Y,. For n > 0, Y, is the nth yoke of 4.

If each F, is projective, then the nth yoke is the nth syzygy.

Of course, the nth yoke of 4 depends on the choice of flat resolution.
Unfortunately, Schanuel’s lemma does not hold for flat resolutions. For
example, if K = Q/Z, then two flat resolutions of K are

0-Z-Q-K-0 and 0-S—>F-K-0,
where F is free (of infinite rank). Clearly Z @ F is free, and hence cannot

be isomorphic to Q @ S because Q is not Z-projective. However, we can
link flat dimension to Tor.
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Theorem 9.13: The following are equivalent for a right R-module A:

(i) fd(4)<mn;

(i) Tory(4,B) =0 forall k> n + 1 and all left R-modules B;
(ii) Tor,,(4,B) =0 for all left R-modules B;
(iv) every flat resolution of A has a flat (n — 1)st yoke.

Proof: ()= (ii) Assume O0— F,—---— F;— A4—0 is a flat resolution.
By Corollary 8.8, Tor(4, B) can be computed via flat resolutions, and the
result follows.

(if)=>(iii) Trivial.

(i) = (iv) Let Y,_, bethe (n — 1)st yoke of a flat resolution of 4. Using
Corollary 8.8, we see that Tor, ;. (4, B) = Tor (Y, ,B). But Tor,(¥,_,,B)=0
for all B gives Y,_, flat, by Theorem 8.9.

(iv)=-(i) As in the proof of Theorem 9.5. |

Remark: The proof of (iii) = (iv) just given could have been used in the
proof of Theorem 9.5, thus avoiding projective equivalence and Schanuel’s
lemma.

Definition: The right weak dimension of a ring R is defined by

rwD(R) = sup{fd(4): 4 € Mz}
Theorem 9.14: rwD(R) < n if and only if Tor,, (4, B) = 0 for all right R-
modules A and all left R-modules B.

Proof: Immediate from Theorem 9.13. |

Definition: The left weak dimension of a ring R is defined by
IwD(R) = sup{fd(B): B & z;I}.

Theorem 9.15: For any ring R,
rwD(R) = IwD(R).

Proof: One may prove the left versions of Theorems 9.13 and 9.14,
obtaining the same formula for rwD(R) and for IwD(R). |

Definition: The weak dimension of R, wD(R), is the common value of
rwD(R) and IwD(R).

In the beginning, it seems a nuisance that 4 ®z B, more generally,
TorX(4, B), requires A4 to be a right R-module and B to be a left R-module.
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However, we now see that weak dimension requires no left-right distinction
as does global dimension. This fact will soon be exploited.

Examples: 3. wD(R)=0 if and only if R is von Neumann regular

(Theorem 4.16).
4. wD(R) < 1if and only if every submodule of a flat module is flat. We
shall have more to say about this class of rings shortly. -

The next result explains why this dimension is called “weak”.

Theorem 9.16: For any ring R,

wD(R) < min{ID(R),rD(R)}.
Proof: Given a right R-module 4, we claim fd(4) < pd(4). If pd(4) < n,
there is a projective resolution

0—-P,—-->Py—>4-0.

Since projective modules are flat, this is a flat resolution of 4 exhibiting
fd(4) < n. A similar argument works for left R-modules. |

Since there are von Neumann regular rings that are not semisimple, the
inequality may be strict.

Corollary 9.17:  If Ext%"'(4,B) = 0 for all left R-modules 4, B (or for all
right R-modules A, B), then Tor®, (C,D) = 0 for all right R-modules C and
all left R-modules D.

In particular, we now see why Tor’ = 0 for hereditary rings R.
We wish to compute wD(R).

Lemma 9.18: A left R-module B is flat if and only if TorJ(R/I,B)=0
for every right ideal I.

Proof: Theorem 3.53 says that B is flat if and only if ®zB preserves
exactness of 0 = I - R — R/I - 0 for every right ideal. This easily translates
into the vanishing of Tor{(R/I, B). |

Theorem 9.19: For any ring R,

wD(R) = sup{fd(R/I):1 a right ideal of R}
= sup{fd(R/J):J a left ideal of R}.

Progf :  The proofis just as that of Theorem 9.12, using Lemma 9.18 instead
of Lemma 9.11. |
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As global dimension, weak dimension is thus determined by the cyclic
modules.

Lemma 9.20: Let R be left noetherian and let A be a f.g. left R-module.
There exists a projective resolution - -+ -» P, — Py — A — 0 with each P,,
hence each syzygy, f.g.

Proof: Thisis just a restatement of Corollary 4.4. |

This lemma has an interesting consequence.

Theorem 9.21: If R is commutative noetherian and A and B are fg. R-
modules, then Ext%(4, B) and TorR(4, B) are f.g. R-modules for alln > 0.

Proof: First of all, the theorem is true when n = 0, i.e, Homg(4, B) and
A ®g B are f.g. R-modules (commutativity is used to guarantee they are
R-modules). For the inductive step, choose a projective resolution
-++—> Py > Py—>A—0 as in Lemma 9.20. Since Homg(P,, B) is fg. and
Ext}(4, B) is a quotient of a submodule of Homg(P,, B), it follows from
Theorem 4.1 that Ext}(4, B) is f.g. The same argument works for TorX(4, B)
if we replace Homg(P,, B) by P, @z B. |

Let us return to dimensions; for noetherian rings, weak dimension is
nothing new.

Theorem 9.22: If R is right noetherian, then wD(R) = rD(R); if R is left
noetherian, then wD(R) = ID(R).

Proof: We shall show that fd(4) = pd(4) for every fg. right R-module;
this will suffice, for we may even compute wD(R) and rD(R) with cyclic
modules. Now fd(4) < pd(4), as we saw in the proof of Theorem 9.16. For
the reverse inequality, assume fd(4) < n; we must show pd(4) < n. Take
a projective resolution of 4 having f.g. terms (hence f.g. syzygies):

coro P> Py A4-0.

This is also a flat resolution, so that Theorem 9.13(iv) says that the (n — 1)st
yoke Y, _, (which is the (n — 1)st syzygy) is flat. Thus,

0-Y,_—>P, 1> +>Py>A-0

is exact, the P’s are projective, and Y,_ , is f.g. flat. Since R is right noetherian,
Corollary 4.3 gives Y, _, projective. We have exhibited a projective resolution
of 4 showing that pd(4) < n. |

Corollary 9.23 (Auslander): If R is left and right noetherian, then
ID(R) = rD(R).
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Proof: In this case, both global dimensions equal wD(R). |}

Osofsky [1973, p. 57] proves that if every right ideal of a ring R can be
generated by ¥, elements, then rD(R) < wD(R) +n+ 1 (if X_; means
“finite”, this generalizes Theorem 9.22).

Let us return to a class of rings mentioned in Chapter 4.

Theorem 9.24: The following are equivalent for aring R: /

(i) every left ideal is flat;
(i) every right ideal is flat;
(i) wD(R) < L.
(iv) Tor¥(4,B)= 0 for all Ay and zB.

Proof: This follows immediately from Theorems 9.19 and 9.14. |}

If R is left noetherian, we have seen in Theorem 4.34 that wD(R) < 1
implies R is left hereditary. This also follows from Theorem 9.22.

Theorem 9.25: The class of rings R with wD(R) < 1 contains all left or right
semihereditary rings. In particular, if R is left or right semihereditary, every
submodule of a flat module is flat.

Proof: The last statement is just a restatement of the definition of weak
dimension <1 (Example 4).

Since every ideal is a direct limit of f.g. ideals, R semihereditary implies
every ideal is a direct limit of projectives, hence flat. By Theorem 9.24,
wD(R)< 1. |

It is shown in Exercise 9.26 that commutative domains R with wD(R) < 1
are semihereditary. Berstein [1958] computes the global dimension of a
direct limit of rings over a countable directed index set.

HILBERT’S SYZYGY THEOREM

4
Global dimensions of polynomial rings are computed in this section. We
begin with an easy result; there is a short proof avoiding Ext, using Schanuel’s
lemma, but I feel the coming proofexplains the occurrence of 1 in the formula.
Lemma 9.26: If 0— A'— A — A" — 0 is exact, then
pd(4") < 1 + max{pd(4),pd(4")}.

Proof: Clearly we may assume the right side is finite, say, pd(4) < n and
pd(4’) < n. For every module B, there is an exact sequence

- Ext"* (4", B) - Ext"+2(4", B) > Ext"*%(4,B)—> - - - .
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Using Theorem 9.5, the outer terms are 0. Therefore Ext"*%(4”,B) = 0 for
all B, and hence pd(4")<n+ 1. |
Exercise: 9.12. If0— 4'— 4— A" - 0is exact, then

pd(4) < max {pd(4), pd(4")}.
Moreover, if this sequence is not split and pd(4’) = pd(4”) + 1, then the
inequality is equality.

If R is a ring, then R[t] is the polynomial ring: we allow R to be non-
commutative, but we assume the variable ¢t commutes with the coefficients in
R (thus, t lies in the center of R[¢]). If M is a left R-module, write

M[i] = R[t] @ M.

Since R[t] is a free R-module (with basis {1,2,¢% ...}) and since tensor
product commutes with sums, we may regard the elements of M[t] as
“vectors” ( @ my), i > 0, m; € M, with almost all m; = 0.

Lemma 9.27: For every left R-module M,
pdr(M) = pdgi(M[2]).

Proof: Tt suffices to prove that if one dimension is fimite and <n, then the
other dimension is also <n.
Assume pdg(M) < n; there is an R-projective resolution

0->P,>- —>Py—->M-0.

Since R[t] is a flat R-module (it is R-free), there is an exact sequence of
R[{]-modules

0> R[{]®P,— > R[t]® Py — M[t] - 0.
But R[¢] ® P; is R[t]-projective, all i, so that pdg(M[t]) < n.
Assume pdg(M[]) < n; there is an R[¢]-projective resolution
0-Q,— = Qy—>M[t]—-0.

If we consider the terms only as R-modules, then ‘we have an R-projective
resolution of [[M (X, copies of M) of length n By Exercise 9.8,
pdx(M)<n. |

Corollary 9.28: If ID(R) = 0, then ID(R[]) = c0.

Proof: By Exercise 9.8, there exists an R-module M with pdz(M) = co. But
Lemma 9.27 now applies to give pdg;(M[t]) = co0, andso ID(R[t]) = co. |
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We have seen that we may create an R[t]-module M[¢] from an R-module
M this construction is available, in particular, for an R[¢]-module M if we
forget the action of .

Lemma 9.29: If M is an R[t]-module, there is an R[t]-exact sequence
0-M[t]>M[]>M-0.

Proof: Define e:M[t]—>M by @ me> t'm. There is an R[t]-exact
sequence

0K — M[{] > M0,

and it suffices to prove kere= K =~ M[t] as R[¢]-modules. Define
BM[t] Kby Yr®@m> > (1®t—t® lym; clearly B is an R[¢]-map
with im § < K. To show f is an isomorphism, we write the formula in more
detail: ‘

k k
Y ER@m1®tmy+ Y EQ(tm—mi_,) — T @ my.
i=0 i=1

If 3 ' @ m; € ker B, then
O=—m=tm—m_, =---=1tm —my,

so that eachm; = 0, and fis thus monic. If 3 f. o # @ v;e K, then Y g t'; =0
in M ; the equations

—Vo=1tmy, V;=1Im —My,...,00= —0h_

can be solved recursively to show that §is epic. |

Corollary 9.30: For every ring R,
ID(R[t]) < ID(R) + 1.

Proof: If we agree that o + 1 = oo, then we may assume that [D(R) =
n < co. Let M be an R[t]-module. If we consider M as an R-module, then
Lemma 9.27 gives

Pdg(M[t]) = pdp(M) < n
(we are assuming [D(R) < n). Coupling the R[t]-exact sequence
0->M[t]>M[t]>M-0
with Lemma 9.26, however, gives\
pdr(M) < 1+ pdgM[t)<1+n |
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Our aim is to replace the inequality of Corollary 9.30 by equality
(Corollary 9.28 does this in the infinite-dimensional case). The proper
context in which to proceed is that of “change of rings”. Assume ¢:R —» R*
is a ring map. Every left R*-module M* acquires a left R-module structure
via the formula

r-m* = p(r)m?*, re R, m*e M*.
Every R*-map f:M* — N* is also an R-map:
Srm*) = flo(r)m*) = o(r)f(m*) = 1f (m*).

Theorem 9.31: Every ring map :R — R* defines an exact functor
U: gt — 90

Remark: U is called a change of rings functor.

Proof: That U is a functor is automatic; that U is exact follows from
observing that, as functions, Uf = f, and so Uf has the same kernel and
mmage as does f. |}

This topic will be discussed further in Chapter 11.
Exercise: 9.13. If ¢:R - R* is onto, then for every pair of R*-modules
M*, N*, there is equality

Homg.(M*, N*) = Homg(M*, N*).

The following exposition is due to Kaplansky; afterwards, we shall
present a more “homological” proof.
Theorem 9.32: Let ¢:R — R* be aring map and A* a left R*-module. Then

pda(4*) < pdg.(4*) + pdg(R¥).

Moreover, if equality holds for every nonzero A* with pdpA*) < 1, then
equality holds for every nonzero A* with pdg{A*) finite.

Proof: 1If pdg{A*) = oo, there is nothing to prove; we therefore assume
pdp{(A*) =n < co and proceed by induction. If n =0, then A4* is R*-
projective; thus there exists a module B* with A* @ B* = | [R*. Exercise 9.8
applies to give
pdg(4*) < pdp(L[R*) = pda(R).
Suppose n > 0. There is an exact sequence of R*-modules

00— K*— F* > A4* - (,
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where F* is R*-free. By Lemma 9.26,
pdr(4*) < 1 + max{pdg(K*), pdg(F*)} < 1 + max {pdx(K*), pdr(R*)}.

Since A* is not R*-projective, Exercise 9.7 gives pdz(K*) = n — 1, so that
induction gives ) :

pdp(K*) < n — 1 + pdz(R¥).
Combining these inequalities: /
pdr(4%) < 1 + max{n — 1 + pdg(R*), pdz(R*)} < n + pdg(R*).

Finally, suppose we have equality whenever 4* 0 and pdz{(4*) < 1.
Assume pdgd{A4*) = n =2, and let pdg(R*) =r. By Exercise 9.7, the exact
sequence of R*-modules

0-> K* — F* — A* - 0,

with F* an R*-free module, has pdz{K*) = n — 1 > 1. In particular, K* # 0
and so induction gives

pdp(K*¥)=n—1+r
Denoting pdz(4*) by a, Exercise 9.12 gives
r = pdp(F*) < max{n — 1 +r,a}.
This inequality is strict (hence the sequence does not split), for
max{n—1l+ra}=n—1+r>r
The remainder of Exercise 9.12 gives
pdp(A*)=pde(K*)+1=n—1+r)+1=n+r. }
Theorem 9.33: Let x € R be a central element that is neither a unit nor a
zero divisor. If R* = R/Rx, and if ID(R*) < co, then
ID(R) = ID(R*) + 1.
Before proving this result, let us draw an instant consequence.
Theorem 9.34: For any ring R,
ID(R[{]) = ID(R) + 1.
Proof: Corollary 9.30 gives the inequality <. Corollary 9.28 allows us

to assume /D(R) < co; since R[¢]/tR[¢] = R as rings, Theorem 9.33 applies
to give the reverse inequality. |J
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Corollary 9.35 (Hilbert’s Theorem on Syzygies): Ifk is a field,
Dk[ty,..., t])=n
Proof : Induction on n, after observing D(k)=0. ]

Corollary 9.36: Ifkis afield and R = k[t,,. .., t,], then every R-module A
has a free resolution

0-F,—» - —>Fy—>A4-0.
Proof: Corollary 9.35 and the Quillen-Suslin theorem. J

Note that the hypothesis ID(R*) < oo in Theorem 9.33 is essential. An
example is provided by R =27 and x =4: D(Z) =1 and D(Z/4Z) = .

Proof of Theorem 9.33: 1t suffices to show that if 4* is a nonzero R*-
module with pdg.(4*) < oo, then

Pdg(4*) = pdp:(4*) + 1

(for then take sup of both sides, realizing that not every R-module need be
of the form A*).

Since x is central, multiplication by x is an R-map R — R; moreover,
x not a zero divisor gives an exact sequence of R-modules

0—+R5R—-R*-0.

It follows that pdp(R*) < 1; in fact, pdg(R*) = 1, otherwise this sequence
would split, forcing Rx to be a summand of R, and this would imply x is
a zero divisor. By Theorem 9.32,

pdg(4*) < pdes(4*) + 1;

moreover, if we can prove equality whenever 4* # 0 and pdz.J4*) < 1, we
are done. It suffices to eliminate strict inequality.

If pdgdA*) =0, then pdg(A4*) < 1 and strict inequality means pdg(4*) =0,
Le, A* is R-projective. But xA* =0, while xP % 0 if P is any nonzero
projective (P is a submodule of a free R-module, hence each element of P
has coordinates in R; since x is not a zero divisor, x cannot annihilate any
nonzero element of P). Since A* 5 0, pdg{4*) # 0.

If pdpu(4*) =1, then pdx(4*) <2 and strict inequality means pdg(4*) < 1.
‘We have already shown pdz(A*) 5 0; we claim pdg(4*) # 1. Otherwise there
is an exact sequence of R-modules

0->K—>F—A4* -0,

where F is R-free and K is R-projective. Since xA* = 0, there is an exact
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sequence of R*-modules
0— K/xF — F/xF - A*¥ - Q.

Now F/xF is R*-free, so that pdz«{A*) = 1 shows that K/xF is R*-projective.
The exact sequence of R*-modules

0 xF/xK — K/xK — K/xF — 0

must split, whence xF/xK = F/K = A* is a summand of K/xK. As K is
R-projective, K/xK is R*-projective, and thus A* is R*-projective, con-
tradicting pdg{4*) = 1. |}

We now offer a second proof of Theorem 9.33. After all, the “moreover”
clause of the crucial Theorem 9.32 does remind one of the slow starting
inductions so characteristic of dimension shifting. An obvious way to prove
ID(R[£]) = m for some (finite) m is to exhibit a pair of R[¢]-modules 4
and B with Ext™(A4, B) # 0; we shall be able to do this once we have proved
the next result.

Theorem 9.37 (Rees): Assume x € R is a central element that is neither a
unit nor a zero divisor, and let R* = R/xR; assume B is an R-module for which
multiplication by x, u = u.:B — B, is monic. Then, for every R*-module A,
there are isomorphisms

Ext%(A, B/xB) = Ext" (4, B).

Proof: First of all, the natural map R — R* enables us, by change of rings,
to regard A as an R-module; since an R*-module is merely an R-module
annihilated by x, the quotient B/xB is an R*-module; thus, both sides make
sense.

Next, we claim Homg(4,B) = 0. If a e 4, then xa =0, for A is an R*-
module. Consequently, if f: 4 — B, then

xf(a) = f(xa) =f(0) =0,

and the hypothesis on B forces f = 0.

To prove the theorem, we use the axioms characterizing the contra-
variant Ext functors (Exercise 7.27, proved by dimension shifting). Define
contravariant functors G*: g9 — Ab, n > 0, by

G"(4) = Ext’* (4, B).

Clearly {G"} is a strongly connected sequence of contravariant functors.
Exactness of 0 — B % B — B/xB — 0 gives exactness of

Homg(A, B) — Homg(4, B/xB) — Exth(4, B) > ExtL(4, B).
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We have already seen that Homg(4, B) = 0. On the other hand, p* is also
multiplication. by x (Theorem 7.16); since A is annihilated by x, we have
impu* =0. We conclude that the connecting homomorphism is an
isomorphism

Homg(A4, B/xB) = Extk(4, B).

However, R — R* onto allows us to use Exercise 9.13 to conclude
Hom (4, B/xB) = Hom (4, B/xB).

There is thus a natural equivalence G° = Homg( , B/xB).

It remains to prove that G*(P*) = 0 for all free R*-modules P* and all
n > 1. Choose a basis of P* and let Q be the free R-module with the same
basis. There is an R-exact sequence

0-05Q0—-P*-0
(again we have used x a central non-zero-divisor). Exactness of
-+ - — Exti(Q, B) - Exty* {(P*, B) > Ext}" 1(Q,B) — - - -
shows that
G"(P¥) = Ext%" }(P*,B) = 0, n>1

The axioms have been verified and the theorem is proved. |

Corollary 9.38 (= Theorem 9.33): Assume x € R is a central element that
is neither a unit not a zero divisor, and let R* = R/xR. If ID(R*) =n < <0,
then ID(R) = ID(R*) + 1.

Proof: Assume M is an R*-module with pdz.(M) = n. By Exercise 9.6,
there is a free R*-module F* with Ext}(M, F*) # 0. If we define B as the
free R-module on the same basis as F* (precisely as in the previous proof),
then B/xB = F*. By the theorem of Rees,

Exty* (M, B) = Exth(M, F*) # 0,
and this says pdg(M) = n + 1. Therefore, ID(R)>n+1=IDR* +1. |

There is another comparison theorem that is often useful.

Definition: Let R be a (not necessarily commutative) ring. A right R-module
M is faithfully flat if M is flat and whenever M ®z N = 0, then N = 0.

Examples: 5. R[t] is faithfully flat, for it is a free R-module.

6. If R is the ring of integers in an algebraic number field, then R is
a faithfully flat Z-module (for R is Z-free).

7. Qis aflat Z-module, but it is not faithfully flat.
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Exercise: 9.14. Assume R is a subring of 4 with 4y flat. Prove that A,
is faithfully flat if and only if 4 ®g (R/I) # 0 for every proper left ideal 1
of R. Conclude that A is faithfully flat if and only if AI # A for every proper
left ideal I of R.

Theorem 9.39 (McConnell-Roos): Assume R is aring with[D(R) =n < oo,
and that R is a subring of A, where Ay is faithfully flat. Assume either

(i) gA is projective, or
(i) grA isflat and R is left noetherian.

Then ID(R) < ID(A).
Remark: Goodearl [1974] gives an example showing one must assume R
has finite global dimension.

Proof: For any left R-module M, there is a map ¢:M — 4 ® M given by
m— 1 ® m;weclaim ¢ is monic. If K = ker ¢, thenK = {meM:1 ® m = 0}.
Since Ay is flat, exactness of 0 —» K LM gives exactness of

0-AQ K3, A M.

But the definition of K gives
ml®i)={l®meA@M:me K} =0;

there is thus an exact sequence 0 — 4 ® K — 0. Therefore A® K =0, so
that A faithfully flat implies K = 0.

Assume (i): g4 is projective. Choose zM with pdg(M) = n. There is an
R-exact sequence

0-M->ARM-—>C-0.
Now pdx(C) < n, since ID(R) < n, so Exercise 9.9 gives
pdx(4A ® M) = n.

It suffices to prove pd (4 ® M) = n, for then ID(4) = n, as claimed.
Take an R-projective resolution of M :

0-P,—»---—>Py—>M-D0.
Since A4y is flat, there is an A-exact sequence
0-A®P,—» > ARPy—>ARQM-0.

By Exercise 3.10, each A ® P; is A-projective. Hence pd (4 ® M) < n.
For the reverse inequality, choose an A4-projective resolution of 4 ® M:

”“—)Qn-l-l‘—)Qn‘—)“.‘—)QO‘—)A@M‘—)O'
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Since z4 is projective, it is easy to see that each Q; is also R-projective.
Therefore, pdg(4 ® M) = n implies (Theorem 9.5(v)) that we may assume

0——>K"——>Q"_1——>--'——>Q0——>A®M——>O

is an R-projective resolution of 4 ® M (where K, = ker(Q,-; = 0,-,)
considered as an R-module). Hence, n < pd (4 ® M).

Assume (ii): g4 is flat and R is left noetherian. The above argument
may be repeated, yielding pdg(4 ® M) = n and pd A4 ® M) < n. For the
reverse inequality, we use R left noetherian to enable us to switch to flat
resolutions (Theorem 9.22). Assume an A-flat resolution of 4 ® M:

coosF > F 5> Fo—> AR M—0.

Since pA4 is flat, each F; is R-flat (for ®xF; = Qz(A®,F;) , and use
Exercise 3.38). But now Theorem 9.13(iv) applies, and the proofis completed
as in case (i). J

SERRE’S THEOREM

We now give an elementary proof of the theorem of Serre mentioned in
Chapter 4; the basic idea of this proof is due to Borel, Serre, and Swan and
the exposition provides details of the sketch given by Kaplansky [1970,
p. 134].

Definition: A module M has FFR (finite free resolution) of length < » if
there is an exact sequence

0->F,»F, =+ —>Fy>M-0
in which each F; is f.g. free.

If M has FFR, then M is f.g., even finitely related. The reader may easily
provide examples of such modules.

Exercises: 9.15. A projective module hds FFR if and only if it is stably
free. (Hint: Induction on length.)

9.16. Let R be left noetherian and let M be a left R-module with FFR
of length <n. Every free resolution of M, each of whose terms is f.g., has
a stably free nth syzygy. (Hint: Generalized Schanuel lemma, Exercise 3.37.)

Lemma 9.40: If M has a projective resolution
O——)Pn——w“——)sz—Z)Pl i1—1>P0—5>M~—>0
in which each P; is stably free, then M has FFR of length <n + 1.
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Proof: Wedo an induction on n.If n = 0, then ¢ is an isomorphism Py = M.
Since P, is stably free, there are f.g. free modules F,and F with Fy = P, @ Fy,
ie., there is an exact sequence 0 » Fy —» Fy - M — 0.Ifn > 0,let K, = kere.
If F is a f.g. free module with P, @ F free, then we have exactness of

0=P— =P, 3P, @F 225, P @F 5 M0,
where d5: p, = (d,p,,0) and ¢':(py, f) — &(py). Since kere' = Ky @ F has
a stably free resolution with n— 1 terms, the proof is completed by
induction. §

Theorem 9.41: Let Rbe left noetherian and0 — M’ — M — M — 0 an exact
sequence of left R-modules. If two of the modules have FFR, then so does
the third one.

Proof: Since two of the modules have FFR, they are fig; since R is
noetherian, the third module is also f.g. That R is noetherian also provides
free resolutions of M' and M" each of whose terms is fg. (Corollary 4.4).
Use the Horseshoe Lemma 6.20 to insert a resolution with f.g. free modules
in the middle. For each n, there is an exact sequence of syzygies

0—-K,—»K,—»K,—0.

Assuming two of {M’, M, M"} have FFR of length <n, Exercise 9.16 shows
two of {K;, K,,, K/} are stably free. If one of these is K}, then the sequence
of syzygies splits and the third syzygy is also stably free; Lemma 9.40 now
gives the result. If K, and K, are stably free, then

0-K,—»K,-»F/ . —»->F;->M -0

is a resolution of M’ by stably free modules, and Lemma 9.40 gives the result
in this case as well. ]

Definition: A family & is 2 nonempty subclass of ;9 such that whenever
0—>M - M- M"—0 is exact and two of the modules lie in &, then the
third one lies in & as well.

Theorem 9.41 states that the class of all FFR modules over a left
noetherian ring is a family.

There are some easy observations. Every family & contains the zero
module: if M € §, then 0 — M —4 M — 0 — 0 is exact. From this it follows
that M'= M and M € § implies M’ € §&: families are closed under iso-
morphism.

It is easy to see that any intersection of families is again a family. Thus,
every subclass & of g9t generates a family.
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If S is a subclass of g9k containing the zero module, define E(S) as the
subclass of all modules contained in a short exact sequence having two terms
in &. Clearly E(€) is a subclass containing &. Define an ascending chain
of subclasses:

E®)=6; EYS)=EE(S))

Lemma 9.42: If © is a subclass of MM containing the zero module, then
2.0 EY(S) is the family generated by S.

Proof: Tt is clear that any family containing © must contain each E%(S),
hence the union of them. On the other hand, { JE(S) is a family containing
S:if 0»> M’ — M — M" — 0 is exact with two terms in | JE"(€), then these
two terms lie in some E"(€), and so the third lies in E(EY(S)) = E"*4(€). |

Corollary 9.43: Let S be a class of modules over a left noetherian ring,
each member of which has FFR. Then every module in &, the family generated
by €, has FFR.

Proof: If M e §, there isd least n with M ¢ E"(S); we do an induction on
n. If n=0, then M € © and has FFR by hypothesis. If n > 0, then M is
contained in a short exact sequence whose other two terms lie in E"}(S)
and hence have FFR, by induction. By Theorem 9.41, M has FFR. }

Theorem 9.44: Let R be commutative noetherian and assume every fg.
R-module has FFR; then every fg. R[t]-module has FFR.

Before proving Theorem 9.44, let us deduce Serre’s theorem from it.

Theorem 9.45 (Serre): If kisa field, then every f.g. projective k[¢,,...,t,]-
module is stably free.

Proof: We first do an induction on n that every fg. k[, ..., t,]-module
has FFR. Ifn = 1, then k[ ¢] is a principal ideal domain and every f.g. module
has FFR oflength <1.Ifn > 1,let R = k[¢,, .. ., t,_,], which is noetherian
by the Hilbert Basis Theorem. By induction, every f.g. R-module has FFR,
so that Theorem 9.44 gives every f.g. R[¢,]-module has FFR. In particular,
every f.g. projective module over R[s,] = k[t,,. .., t,] has FFR, hence is
stably free by Exercise 9.15. |}

To prove Theorem 9.44, we use two simple lemmas, the first of which
is a form of Zorn’s lemma available in noetherian rings.

Lemma 9.46: If R is a left noetherian ring, then every nonempty set U
of left ideals of R contains a maximal member.
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Proof: Assume U has no maximal member. Choose I, € ¥; since I, is not
maximal, there is I, e ¥ with I, & I,. This procedure may be iterated
indefinitely, so the axiom of choice provides a strictly ascending chain that
violates ACC. |}

Remark: One may show that the property in Lemma 9.46 characterizes
left noetherian rings.

Definition: If M is a left R-module, then its annihilator is
ann(M) = {re R:rM = 0}.
One defines the annihilator of an element x € M by
ann(x) = ann(Rx).

It is clear that ann(M) is a left ideal in R.

Lemma 9.47: Let R be commutative noetherian and M a nonzero R-module.
If I is an ideal maximal among {ann(x):x e M, x # 0}, then I is a prime ideal.

Proof: Choose x € M with I = ann(x). Let abe I and b¢ 1, ie., abx =0
and bx s 0. Then
ann(bx) o I + Ra> 1.

If a ¢ I, the maximality of I is violated. Therefore, I is prime. |}

Proof of 944: For any noetherian ring R (not necessarily enjoying the FFR
hypothesis), we shall prove the family § in g, generated by the class &
of all (extended) modules of the form R[t] ® N, where N is a f.g. R-module,
consists.of all f.g. R[¢]-modules. If, in addition, every f.g. R-module has FFR,
then Corollary 9.43 applies, for N has FFR implies R[t] ® N has FFR (be-
cause R[t] is R-flat), and we are done.

We shall normalize the problem so we may assume that if M’ is a f.g.
R[¢]-module with ann(M") " R % 0, then M’ € §. Define I, = 0 and §, = §.
Construct an ascending chain of idealsin R, [ < I, < I, < - -, as follows.
Assume I, has been defined and that §, is the family generated by €, the
class of all R,[r]-modules extended from f.g. R,-modules, where R, denotes
R/I,. If there are f.g. R,[¢]-modules M not in §,, Lemma 9.46 provides an
ideal I, /I, maximal among {ann(M) N R,:M ¢ §,}: if no such M exist, de-
fine I, , = I,. Since R is noetherian, this chain stops, say, I, = I,.q1 = .
Observe that M ¢ §&,, implies

annM)n R, < I,.,/I,,=0.

We prove, by induction on the minimal such m > 0, that § consists of
all f.g. R[¢]-modules. Momentarily deferring the case m = 0, we prove the
inductive step. Choose a f.g. R[t]-module M¢§ with ann(M)n R =1,.
Since I;M =0, M is a f.g. R,{t]-module. By induction, M € &, , the family




generated by ;. Since
Ri[t]® N = R[] ® (R, ® N),

it follows that &, « G and &, « § Therefore M € §, a contradiction.

It remains to prove the case m = 0:we have normalized so that if M'is a
fg. R[t]-module with ann(M)n R # 0, then M'e §. Choose a f.g. module
M (over the noetherian ring R[¢]) with M ¢ §. We may apply Lemma 9.46
to find a nonzero x, € M with ann(x,) maximal among {ann(x):xe M, x % 0}.
Iterating, there are elements x,, X,, ... in M and submodules M, = 0 and
M; = {x{, X3, ..., X with

O=MocM,cM,c<---.

By construction, M;/M; .., = R[t]/P;, where P, = ann(x; + M,_,) is a prime
ideal (Lemma 9.47). By Corollary 4.7, R[¢] noetherian and M fg imply
M has ACC; therefore, M = M, for some r. By induction on r, using the
fact that & is a family, M e & if R[t]/P € & for every prime ideal P in R[¢]
(and this is the desired contradiction).

Now P n R = ann(R[£]/P) ~ R, so the normalization gives R[¢]/P e &
if P n R # 0. We may thus assume P n R = 0; as R~ R is always a prime
ideal in R, we may assume R is a domain; let Q be its quotient field. Let
P =(g,,..., 9, and choose f € P a nonzero polynomial of minimal degree.
We claim ann(P/(f)) n R # 0. Foreach i, 1 < i < n, the division algorithm
in Q[1] yields

gi=Jg +rn,
where g; and r; e Q[¢] and degree r; < degree f. Clearing denominators,
there are nonzero g; € R with

ag; = fq; + i,

where ¢; and r} € R[¢] and degree r; < degree f. By minimality of degree f,
ag; = fgie (f) for all i If a=]Ja;, then a0 and aP/(f) =0. Hence
a € ann(P/(f)) n R, and the normalization gives P/(f) e &. Exactness of

0 (f) = P P/(f) >0
together with (f) = R[¢]e & imply Pe §, for & is a family. Finally, exactness of
0— P - R[t]—>R[t]/P—>0
shows R[f]/P € §, as desired. ]

We mention a useful tool; for some applications, see [Kaplansky, 1970,

§4.3].

Exercises: 9.17. AssumeRisaring withIBNand0—F,~>«-*—»Fs—>M—0
is R-exact, with each F; f.g free. Prove that y(M) = )7 o(— 1) rank(F,) is
independent of the choice of FFR. (Hint: Schanuel.) The integer y(M) is called
the Euler characteristic of M. Compare Exercise 3.6.
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9.18. AssumeR hasIBNand0— M'— M — M"— Oisanexact sequence
of left R-modules, two of which have an Euler characteristic. Then the
third module also has an Euler characteristic, and

x(M) = x (M) + x(M").
(Hint: Use Lemma 3.63.)
MIXED IDENTITIES

Various natural isomorphisms involving tensor and Hom can be extended
to isomorphisms involving Tor and Ext.

Theorem 9.48: Let R and S be rings, and consider the situation (Ag, gBs, sC).
If A is flat, there are isomorphisms
Tory(A ®g B, C) = A ® Tor;(B, C).

Proof: Let P. be a deleted projective resolution of C. Naturality of the
associativity isomorphisms for tensor imply an isomorphism of complexes

(A® B)®s P = A@z(B®P()
and hence isomorphisms, for all n > 0,
H,(A ® B) ®s P¢) = H,(4 & (B® Pc)).

The left hand side is thus Tor3(4 ®g B, C). To evaluate the right hand side,
flatness of A means the functor 4 ®; is exact. By Exercise 6.4,

H,(A®r(BQPc) = AQrH(BPc) = AR Tor;(B,C). 1

There is a very useful variant of this result.

Theorem 9.49: Let R be commutative, S a subset of R, and A, B R-modules.
There are isomorphisms, for all n > 0,

S~ Tork(4,B) = Tord '’R(S~1 4,5~ 'B).

Proof: Recallthat S™'4 = §™ 'R ®; 4. By Lemma 3.77, there is a natural
1sSomorphism e
S'R®z(A®zB)= S '4A®;s-:xS™'B.

If Py is a deleted projective resolution of B, then exactness of localization
may be used to show that S™'Py is a deleted S™'R-projective resolution
of $™'B. Naturality provides an isomorphism of complexes

S_IR ®R(A ®RPB) = S_IA ®S-1RS_1PB,
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and their homology modules are thus isomorphic. Since S™'R is a flat
R-module, Theorem 9.48 shows
H/(S 'R ®z (4 ®zPs)) = S~ 'R ®z Tor¥(4, B) = S~ TorX(4, B).
On the other hand,
H(S 'A®s-1gS™Pg) = Tord ‘RS~ 14,57 !B). ]

There is a similar result for Ext if we add some hypotheses.

Theorem 9.50: Let R be commutative noetherian with subset S, and let
A, B be R-modules with 4 f.g. There are isomorphisms, for all n = 0,

S™VExti(A4, B) = Exth-1x(S™'4, S~ 1B).

Proof: Since R is noetherian and 4 is f.g, Lemma 9.20 shows there is a
deleted projective resolution P, each of whose terms is fg. But now the
natural isomorphism of Theorem 3.84 gives an isomorphism of complexes

. $~'R ®z Hom(P,, B) = Homg-1x(S"'P,, S~ 'B).

Taking homology of the left side gives S™ 'R ®g Ext}(4, B) (since S™'Ris a
flat R-module), while homology of the right side is ExtZ-1x(S~*4,S7!B). |

Remark: One can weaken the hypotheses to R a commutative ring for
which localizations of injectives are injective (see the remark after Theorem
3.85) and A finitely related (see the proof of Theorem 11.58).

Theorem 9.51: Let R and S be rings with R left noetherian. Consider the
situation (g4, gBs, Cs) with A f.g. and C injective. Then there are isomorphisms,
forn=0,

TorX(Homg(B, C), 4) = Homg(Ext(4, B), C).

Proof: Since R is left noetherian, A f.g. implies A finitely related. The
hypotheses are precisely those of Lemma 3.60, which provides a natural
isomorphism

Homg(B, C) ®z A = Homg(Homg(4, B), C).
Replace A4 by a deleted projective resolution P, each of whose terms is f.g.

(Lemma 9.20) to obtain isomorphic complexes; taking homology gives
isomorphisms for n = 0,

H,(Homg(B, C) @z P,) = Homg(H"(Homg(P,, B)), C),

for H, commutes with the contravariant exact functor Homg( ,C) (C is
injective). The left side is TorX(Homg(B,C), 4); the right side is
Homg(Ext%(4,B),C). 1

Remark: The same result holds with no noetherian hypothesis if one
assumes 4 has a projective resolution each of whose terms is f.g.
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Exercises: 9.19. Use Theorem 9.51 to give another proof that R left
noetherian implies ID(R) = wD(R). (Hint: If 4 is fg. and n < pd(4), then
Exth(4, B) # 0 for some B; therefore there exists a Z-injective C with
Hom,(Ext}(4,B),C) # 0.)

9.20. In the situation (g4, sBg,sC) with 4 projective, use the adjoint
isomorphism to obtain isomorphisms

Exti(B ®z 4, C) = Homg(4, Ext¥(B, C)).

9.21. In the situation (z4, s Bg,sC) with B R-projective, use the adjoint
isomorphism to obtain isomorphisms

Exti(B ®z 4, C) = Exti(4, Homg(B, C)).

9.22. Recall that if m is a maximal (even a prime) ideal in a commutative
ring R, then R, = S™!R, where S = R — m, the complement of m. If R is
commutative noetherian and A4 is a f.g. R-module, then prove A is projective
if and only if 4,, is Ry-projective for every maximal ideal m of R. (Hint:
Theorems 9.50 and 3.80.)

9.23. If R is commutative noetherian, then an R-module B is injective
if and only if B,, is an injective R,,-module for every maximal ideal m of R.
(Hint: Theorem 9.50 and Lemma 9.11)

9.24. If I is a nonzero ideal in a Dedekind ring R, then R/I is quasi-
Frobenius. (Hint: Use Theorem 4.35 and the fact that R Dedekind implies
R, a principal ideal domain.)

9.25. If R is commutative noetherian with D(R) = nand if 4 € g9, then
Exth(4, M) = M ®z Ext}(4,R) for all fg. R-modules M. (Hint: Use
Corollary 3.34.)

9.26. The following are equivalent for a (commutative) domain R:
(i) wD(R) < 1; (i) R is a Priifer ring; (iii) R,, is a valuation ring for every
maximal ideal m in R. (Hint: Use the result of Endo [1962] that f.g. flat
modules over a domain are projective, as well as Theorems 9.49 and 3.80 and
the fact that local Bézout rings are valuation rings.)

COMMUTATIVE NOETHERJAN LOCAL RINGS

Although homological algebra had admirers from its birth, many
mathematicians dismissed it as “merely a language™! In 1958 and 1939,
Auslander, Buchsbaum, and Serre used homological algebra to solve two

! To say something is “merely a language” is not to say it is worthless. Indeed, even a mere
notation may be valuable: try to deal with polynomials without the usual notation for the
variable (due to Viéte).
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open questions about local rings; the language gave forth poetry, and
became more widely accepted thereafter.

The problem of computing the global dimension of a commutative
noetherian ring reduces to computing global dimension of its localizations.

Theorem 9.52: If R is a commutative noetherian ring, then
D(R) = sup D(R,,)
where m ranges over all maximal ideals in R.

Proof: First of all, we prove D(R) = D(R,,) for every maximal m. If
D(R) = o0, we are done, so assume D(R) = n < co. Let 4 be an R ,-module;
we may regard 4 as an R-module and 4 = 4, = R, ®z 4 (Lemma 3.75).
There is an R-projective resolution

0->P,—> - -—>Py—>A-0

since D(R) = n. Since R,, is a flat R-module and R, ® P; are projective
R.-modules,

0>R,®P,— >R, ®Py—>R,®A0

is an R,-projective resolution of R, ® 4 = 4 showing pdg (4) <n. It
follows that D(R,,) < n = D(R).

For the reverse inequality, it suffices to assume supD(R,) = n < 0.
Since R is noetherian, Theorem 9.22 says D(R) = wD(R), so it is enough to
prove that

Toryy 1(4,B) = 0

for all R-modules 4 and B (Theorem 9.14). However, Theorem 9.49 provides
an isomorphism

(Torf-i- I(A: B) )m = TOI'nR$ I(Am: Bm) = 0:

for wD(R,) < D(R,) = n (Theorem 9.16; in fact one knows (Example 3 of
Chapter 4) that R, is noetherian, whence wD(R,) = D(R,)). But now
Theorem 3.80(i) applies to show Tory, ,(4,B) =0. |1

If R is commutative noetherian, and if m is a prime ideal in R, then R, is
commutative, noetherian, and local (Chapter 4, Examples 3 and 36). In view
of Theorem 9.52, we shall now modify our definition of local ring.

Definition: A commutative ring R is local if it is noetherian and if it has a
unique maximal ideal m; the quotient R/m is called the residue field and is
denoted k.
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Lemma 9.53: Let R be local and 4 a f.g. R-module. Then
pd(4)<n  ifandonlyif Tork, (4,k) =0.

Proof: 1f pd(4) < n, then fd(4) < n (see proof of Theorem 9.16), and hence
Tor, , ;(4,k) = 0 (indeed, Tor, , ,(4, B) = 0 for every B).

We prove the converse by induction on n Assume n=0 and
Tor,(4, k) = 0. Consider the projective cover

0> N 4 F5 450
(in elementary terms, let {a,, ..., a,} be a minimal set of generators of 4, let
F befree on {x;, ..., x,}, and let @(x;) = a;, all j; in Lemma 4.43, it is shown

that iN < mF). There is an exact sequence
0->NRk2HLFekL2h40k—0
since Tor,(4,k) = 0. We claim i® 1 = 0. Since iN —« mF, ye N implies
y=yrx,remIflek,
iQUY®@N)=Yrx®@l=Yx;®@r)=0
because r;A = 0, all j (m annihilates k = R/m). Thus
0=im@i®!l)=kerlp®1)= Nk

It is easily seen that N ® k = N ® (R/m) = N/mN. Therefore N = mN, so
Nakayama’s lemma gives N = 0 (R noetherian gives N f.g). Thus A= F
is free and pd(4) < 0.

For the inductive step, assume Tor,, ,(4,k) = 0, and take a projective
resolution of 4 with (n — 1)st syzygy K,_,. By Corollary 6.13,

Tor,, (4, k) = Tor (K, 1, k).
The case n = 0 shows K, _, is free, whence 4 has a projective resolution of
length n, and so pd(4) < n. |
Lemma 9.54: If R is local, then D(R) < n if and only if TorX, ,(k, k) = 0.

Proof: Only sufficiency needs proof. If Tor,. ,(k,k) =0, then pd(k) < n
(Lemma 9.53); hence, Tor,, ;(4, k) = O for all A (apply 4 ®; to a projective
resolution of k of length <#); in particular, Tor,,(4,k) = 0 when 4 is fg.,
so Lemma 9.53 gives pd(4) < n. Smce D(R) may be computed from projective
dimensions of f.g. modules (indeed, cyclic modules suffice), we have shown
DR)<n 1

Corollary 9.55: If R is local, then
D(R) = pd(k).
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Proof: Immediate from Lemma 9.54. |}

If R is a local ring, there is a longest chain of prime ideals py, > p, =
-++ > p,, and the number d is called the (Krull) dimension of R and is denoted
Dim(R). A second number one may associate to R is V(R), the minimal
number of generators of m/m?. Since m/m? is a vector space over k (being
an R-module annihilated by m), V(R) = dim;, m/m?. There is always an
inequality

Dim(R) < V(R).

Definition: A local ring R is regular if Dim(R) = V(R).
Regular local rings have been studied for some time, especially in con-

nection with nonsingular points on algebraic varieties.

Definition: An R-sequence in a local ring R is an ordered sequence
{X1,%3, ..., X,} in m such that x, is not a zero divisor and, for i > 1, each x;
is not a zero divisor on the module R/(x,, ..., x;_,), i.e., multiplication by
X; is monic.

If R is regular, then m can be generated by an R-sequence {X, ..., X4}
with d = Dim(R) = V(R) [Kaplansky, 1970, p. 119].
Lemma 9.56: Let R be local and A a f.g. R-module. If pd(4) =r < o and
if x e m is not a zero divisor on 4, then
pd(4/x4) =r+ 1.
Proof: By hypothesis, there is an exact sequence
0454 A/xA—0,

where the first map is multiplication by x. Consider the long exact sequence,
firstfori>r+ 1:

0 = Tory(4, k) — Tor;(4/xA, k) — Tor;_ (4, k) = 0

(one shows the ends vanish by using Lemma 9.53 and the fact that pd(4) = r).
Thus, Tor,(4/xA4,k) = 0 for i > r + 1, which says pd(4/x4) < r + 1.
Now consider the long exact sequence when i = r + 1:

0 = Tor, . (4, k) > Tor,, ,(4/xA, k) > Tor,(4, k) > Tor,(4, k).

Since x e m, multiplication by x annihilates k, and hence multiplication by x
isthe zero map on Tor,(4, k). Exactness gives Tor, , ,(4/x4, k) — Tor.(4, k)an
isomorphism. But pd(4) = r gives Tor,(4, k) # 0; hence Tor, , ;(4/xA4, k) # 0.
It follows that pd(4/x4) =r + 1. |
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Theorem 9.57: If R is a regular local ring, then
D(R) = Dim(R) = V(R).

Proof: Since R is regular, m = (x,,..., X;), where {x;,...,x,} is an
R-sequence. Applying Lemma 9.56 repeatedly to the modules R, R/(x,),
R/(x4,%3),---» R/(Xq,..., X5 = Rim =k, we deduce that pd(k) = 4. But
we have cited the result that regularity implies d = Dim(R) = V(R), while we
have proved (Corollary 9.55) that D(R) = pd(k). 1]

The converse of Theorem 9.57 is also true (though more difficult).

Theorem 9.58 (Serre): A local ring R is regular if and only if D(R) < c0;
moreover, in this case

D(R) = Dim(R) = V(R).

Proof: [Northcott, 1960, pp. 202-208] or [Matsumura, 1970, pp. 132-
1397. 1

As a consequence of Serre’s characterization, there is a purely ring
theoretic result.

Theorem 9.59 (Serre): If R is aregular local ring and p is a prime ideal in
R, then R, is also a regular local ring.

Proof: 1t is always true that R local implies R, local. If D(R) < co, then
Theorem 9.52 gives D(R,) < D(R) < 0. |

Theorem 9.60: A commutative noetherian ring R has D(R) < o if and only
if every localization R,,, where m is amaximal ideal of R, is aregular local ring.

Proof: Theorems 9.52 and 9.58. |

As a consequence of Theorem 9.60, rings of finite global dimension are
often called regular. Note that this cannot be confused with von Neumann
regular rings: for example, a commutative noetherian ring R isvon Neumann
regular if and only it it is semisimple, whence D(R) = 0.

One may prove that regular local rings R are domains, and it had been
conjectured that they are UFDs (unique factorization domains). This is easy
to prove when D(R) < 2. Moreover, Nagata [ 1958] had proved the inductive
step: if R is a UFD when D(R) = 3, then every regular local ring is a UFD.
That 3-dimensional regular local rings are UFDs was proved by Auslander
and Buchsbaum in 1959, and we present their proof. There are now several
proofs of this theorem [Kaplansky, 1970, p. 130].

We begin by generalizing the definition of R-sequence; we are still
assuming R is a local ring with maximal ideal m.
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Definition: If A is an R-module, then an A-sequenceis an ordered sequence
{X4,%3, ..., Xy} in m such that x, is not a zero divisor on 4 (i.e., multiplica-
tion by x, is monic) and, for i> 1, each x; is not a zero divisor on
Af(x1, .- o5 x- DA

Of course, if A = R, we have the earlier definition of R-sequence.

Definition: If A is a fg. R-module, then cod(4) = codimension A is the
length of a longest A-sequence.

Codimension is also called “depth” or “grade”.
We cite the following result, explaining the name.
Theorem 9.61 (Auslander—Buchsbaum): If 4 isa f.g. R-module, then
pd(4) + cod(4) = D(R).
Proof: [Northeott, 1960, p. 209] or [Kaplansky, 1970, p. 125]. |
Lemma 9.62: If D(R) =3 and p is a prime ideal properly contained in m,
then pd(p) < 1.

Proof: Let A= R/p. By hypothesis, there exists x € m — p, and we claim x
is not a zero divisor on A: if x(r + p) =p, then xrepand re p (since x ¢ p
and p is prime). Therefore cod(R/p) > 1 and, by Theorem 9.61, pd(R/p) < 2.
Exactness of 0 »p - R - R/p — O shows that pd(p) < 1. |

It is a standard result that a domain R is a UFD if every nonzero minimal
prime ideal p is principal (p is “minimal” if there is no nonzero prime ideal
g with p 2 q). Indeed, it suffices to show in our case that such an ideal p is
projective, for p is then free (R is local), and free ideals in (commutative)
domains are principal. (One could also argue by invoking Theorem 4.28.) In
other words, we know pd(p) < 1, and we must show pd(p) = 0.

Definition: If I is an ideal in a commutative ring R, and y € R, then
Iy={reRiryel}.
It is easy to verify that I:y is an ideal.
Lemma 9.63: If p is a minimal prime ideal in a regular local ring R, then
there exists x e p — mp and y e m — p such that

p=(x):y.

Proof: This is contained in the proof of Auslander-Buchsbaum [1959,
Corollary 2] and is a brief argument using localization and the primary
decomposition of an ideal. ||
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We cite one more elementary result of commutative algebra: if 4 isafg
R-module and x € 4 — mA4, then x is part of a minimal generating set of 4.

Theorem 9.64 (Auslander-Buchsbaum-Nagata): Every regular local ring
R is a unique factorization domain.

Proof: By Nagata’s reduction, we may assume D(R) = 3. If p is a minimal
prime ideal, Lemmas 9.62 and 9.63 allow us to assume:

@) pdlp=1;
{iiy p=(x):yforsome x € p — mp,some y € R.

We show that p = (x), which will complete the proof.
Assume p is not principal, so there is a minimal generating set

{x,ay,...,a,} of p. There is an exact sequence
0-K—->F3%p-0,
where F is free of rank n+ 1 and @(ro,7y, ..., 7,) = rox + Y ra;. This is a

projective cover, so that K < mF. Since pd(p) < 1, K is projective, hence free
(R is local); moreover, K # 0 lest p be free, hence principal. Choose a basis
{i',..., 1% of K, where ¢ = (15, 4}, . . ., A}). We have A} & m, all , j, because
K cmF,

Now a; € p = (x): y implies there is v € R with

ary = ovx.
There are thus two obvious elements in K:
o= (v, —»0,...,0) and p=(a;,—x,0,...,0);

moreover,

xa = yB.
Now a =Y r;jt/ and = Y 5;t/, so that xa = yf implies

Yxrl =Y ysitl;
it follows that xr; = ys; for all j (for {¢', ..., 19} is a basis of K). Therefore,
s;e(x):y=mp, all j.
But
B=(a;,—x0,...,0)=Yst/ = Ys;(A, 2], ..., A),
so that
—x=)5;A e mp,

and this contradicts the choice of x. |}




10 The Return
of Cohomology of Groups

In Chapter 5, we observed that certain group-theoretical questions led
to the construction of a free ZG-resolution of the trivial G-module Z, ap-
plication of functors Homg(,4) or ®gA4, and taking homology. The
following definition is thus reasonable. :

Definition: Let G be a group, 4 a left G-module, and Z the integers con-
sidered as a trivial G-module. Define

H"(G, A) = Extyg(Z, A),
H,(G, A) = Tor®%(Z, A).

The groups H" are the cohomology groups of G (with coefficients A); the
groups H, are the homology groups of G\

For the remainder of this chapter, we use the notation H" and H,, instead
of Ext" and Tor,; in particular, the long exact sequences will be so written.
Observe that we only have long exact sequences in the second variable: if
G, and G, are distinct groups, then HY(G;, ) and H,(G;, ), i = 1, 2, deal with
modules over distinct rings ZG, and ZG,.

Our aim is not to give a survey of this large subject. We shall give some
interpretations of low-dimensional groups, some techniques of calculation,
and some purely group-theoretical applications.

265
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HOMOLOGY GROUPS

We remind the reader that we have already proved (Theorem 5.17 and
Corollary 5.20) that for a G-module A4,

Ho(G,4) = Ag = A/gA = LB 4,

where A is the maximal quotient module of 4 that is G-trivial and g is the
augmentation ideal of G. In particular, if 4 is G-trivial, then 4 = A and
HyG,A4) = A.

Theorem 10.1: If g is the augmentation ideal of G, then
Hy(G,Z)= g/¢’,
where Z is G-trivial (as usual).

Proof: The augmentation sequence 0 — g — ZG 5 Z — 0 induces exact-
ness of

H\(G,2G)— H(G,Z) > H(G,9) » Hy(G, ZG) 3 Ho(G,Z) - 0.

Since Z is G-trivial, Hy(G,Z) = Z; also, Hy(G,ZG) = Z ®;6:2G = Z. But
any endomorphism of Z is either O or monic; since &, is epic, ¢, # 0,
and hence e, is monic. Exactness of the sequence gives & epic. Finally,
H,(G,Z.G)=0since ZG is projective (remember, H,(G, ZG) = Tor?%(Z, ZG)).
Therefore 8:H (G, Z)— H(G, g) is an isomorphism. As H(G, 4) = A/gA for
any G-module 4, it follows that H(G,q) = g/g%. |

Theorem 10.2:  For any group G, the additive group g/g? is isomorphic to the
multiplicative group G/G', where G’ denotes the commutator subgroup of G.

Proof: Define 8:G — g/g* by x> (x — 1) + g*. Note that # is a homo-
morphism, for

=D —(x—D)—(y—1)=(x—1)(y—eg

Since g/g® is abelian, G’ < ker#f, and so 8 induces a map 9:G/G' — g/g%,
namely, xG' > (x — 1) + g2

We construct an inverse to 8. Recall (Theorem 5.19) that g is a free
abelian group with basis {x — 1:x e G}. Define ¢:qg— G/G' by p(x — 1) =
xG'. It suffices to prove g*> < ker ¢, for then ¢ induces a map g/g> — G/G'
that is visibly inverse to 8.
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Ifue g? then
U= (Zmi(xi - 1))(an(yj - 1))
= Z miny(x; — 1)(y; — 1)

—ZmMﬁy, — (=1 —(y;—- D]

Therefore
(P(u) = H (xiiji_ lyJ— l)mian, — G,’
1251

and u € ker ¢ as desired. |

Corollary 10.3: For any group G,
H,(G,Z) = G/G".

Exercises: 10.1. Assume G and H are groups with isomorphic group
rings, say f:ZGSZH. If ¢:ZG -7 and n:ZH — Z are augmentations,
prove there exists a ring isomorphism §':ZG — ZH with 78’ = &. Conclude
that G and H have the same homology groups and the same cohomology
groups. (Hint: Define §' = fu, where a:ZG — ZG is given by Y m.x+>
SmnB(9]x)

10.2. If G and H are groups with ZG =~ ZH, then G/G' = H/H'. In
particular, if G and H are abelian, then G =~ H. (Whitcomb has shown that
727G = ZH implies G = H if both groups are metabelian, but the general
problem is unsolved.)

10.3. Show that ZG may be identified with its opposite ring by the anti-
isomorphism Y m.x— Y mx"!. Conclude that if we regard a fight G-
module A as a left G-module by x-a=a-x"?!, and if we regard a left
G-module B as a right G-module by b-x = x"1- b, then, for all n> 0,

TorZ5(A, B) = TorZ%(B, A).

(Compare Theorem 8.5.) :

104. If G is finite, then every f.g. G-module is f.g. as an abelian group.
Conclude that ZG is left and right noetherian and, for every n and every f.g
G-module A, H(G, A) and H,(G, A) are f.g. abelian groups.

10.5. For an integer m, regard Z/mZ as a trivial G-module. Prove
that H(G,Z/mZ) = G/G'G™, where G™ is the subgroup of G generated by
all mth powers. (Hint: Consider the exact sequence of trivial G-modules
072572 ~7Z/mZ—0.)




268 10 The Return of Cohomology of Groups

Remark: The Frattini subgroup ®(G) of a group G is defined as the inter-
section of all maximal subgroups of G. If G is a finite p-group, where p is
prime, one may show @(G) = G'G” and that G/®(G) is a vector space over
Z/pZ whose dimension is the cardinal of a minimal set of generators of G
(Burnside Basis Theorem) [Rotman, 1973, p. 126].

Definition: The (Schur) multiplier of G is H,(G, Z).

The multiplier is often called the “multiplicator” (transliterating from
German). Our immediate aim is a series of results leading to a formula for
H,(G,Z), due to Hopf, that bears upon free presentations of G.

Recall that a (not necessarily abelian) group G is free with basis X if,
for every function ¢:X — H, H any group, there exists a unique homo-

G\
~

™~
AN

/‘Gl

~
~
N

X———F—H
morphism &:G — H extending ¢. When G is free on X, each ge G (g # 1)
has a unique factorization
g= x5 X
where x; € X, ;= +1,and x{i*} # x;%. Clearly G isnotabelian if card(X) > 1.
(See [Rotman, 1973, pp. 238-239].)

Theorem 10.4: If G is a free group with basis X, then g is a free G-module
with basis X — 1 = {x — l:x e X}.
Remark: We know, by Theorem 5.19, that g is a free abelian group with
basis G~ 1={g— 1:9 € G}.
Proof: The formulas

xy—1l=x—-1D+x(y—1) and x"!'—1=-—-x"Yx-1)
show that if g = x5* - - - x&, then g — 1 is a G-linear combination of X — 1.

Therefore, X — 1 generates g as a G-module.
To see that g is freely generated by X — 1, we must complete the diagram
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where A is a G-module, ¢ is a function, and @ 1s a G-map (uniqueness of
such a @ follows from g being generated by X — 1). Since Homg(g, 4) =
Der(G, 4) (Theorem 5.21), let us seek a derivation. Consider the (necessarily)
split extension 0 — A4 — E - G— 1, so that E consists of all ordered pairs
(a,9) € A x G and 7(a,g) = g. The given function ¢ defines a lifting A of the
generators X of G, namely, Ax = (@(x — 1), x). Since G 1s free on X, the
function A:X — E extends to a homomorphism 1: G — E. By Exercise 5.10,
if geG, then 1(g) = ({gD,g), where ¢ >:G— A4 is a derivation. Now the
isomorphism of Theorem 5.21 yields a G-map &:g — 4, namely, $(g — 1) =
{g>. Since Ax = 1x = ({x),x), we have @(x.— 1) = ¢(x — 1), which shows @
extends ¢. |}

Corollary 10.5: If G is a free group, then
H,(G,A)=0= H"G,A4)
for every G-module A and every n > 1.

Proof: The augmentation sequence 0—-g—ZG—-Z -0 is a G-free
resolution of Z. |}

Exercise: 10.6. If G = {1}, then H,(G, 4) = 0= HYG, A4) for every G-
module 4 and every n > 0.

Let G be a group, and let F be a free group (with basis X) mapping
onto G, say, via n:F — G. If R = kern, then R<a F and F/R = G. As every
subgroup of a free group is itself free (Nielsen-Schreier theorem), R is also
free, say, with basis Y.

Every group has its own group ring, Clearly ZR is a subring of ZF, while
7 induces a ring map %:ZF — ZG that is onto, namely, Y m; f; — Y mz(f).
If we denote ker @ by r, then r is a two-sided ideal in ZF and ZF/r = ZG.
Beware! In this case only, we have deviated from our usual notation: r is
not the augmentation ideal of R, for that is merely an ideal in ZR, Actually,
as we see from the next result, r is the two-sided ideal in ZF generated by
the augmentation ideal of R.

Lemma 10.6: With the notation of the paragraphs above, v is a free (left
or right) F-module with basis Y — 1 = {y — 1:ye Y}.

Proof: Clearly Y — 1 is contained in ker 7% = r. Choose a complete set of
left coset representatives of R in F:

F={JtR.
If a e ZF, then a = ) m;t;r;, where t;r; € t,R and m;; € Z. If a e v, then

0= =Y myn(t),
i,j
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and the n(z,) are distinct elements of G. By Theorem 5.19, Y ;m;; = 0 for
each i. Therefore

oc:oc—~0zz<z mytr; — 1)>

is an F-linear combination of elements of the form r — 1, r € R. However,
the proof of Theorem 104 shows each r — 1 is an R-linear (a fortiori, an
F-linear) combination of ¥ — 1. Thus, r is generated by ¥ — 1.

Assume Y o;(y;— 1)=0, where a; € ZF. It is easy to see that o«; = ) ;1,8
where B;; € ZR. Now the coset representatives ¢; are independent over ZR
(0 = Y t;myr, implies each m; = 0 since all ¢, are distinct), from which
it follows that zfﬁ ;i — 1) = 0 for each j. The problem has been reduced to
Theorem 10.4, for R is free with basis Y.

We have just proved r is free as a left F-module. To prove that r is free
as a right F-module, just repeat the above proof using right coset repre-
sentatives instead of left. |

Lemma 10.7: If M is a free left F-module with basis W, then M/tM is a
Jree left G-module with basis {w = w + tM:w € W}. 4 similar statement holds
Jor M/Mrx when M is a free right F-module.

Proof: First of all, let G act on M/tM by
g-m+tM)=f -m+ 1M, where =n(f)=

This is well defined, for if n(f) = =(f1), then f — fy ekerF=rand (f — f1)-m
erM.
Since M = | [,,cw (ZF)w and tM =] Jrw, it follows that

MM = [ [(ZFwjrw) =] (ZF/x)w,

and the last module is G-free since ZF/r = ZG. |

Corollary 10.8: If M is a free F-module with basis W, then M/{M (or
M/M§ when M is a right F-module) is a free abelian group with basis
(W=w+iM:we W} (or {w+ Mf:we W}).

Proof: Take G = {1}. The trivial map n:F — G = {1} induces a ring map
ZF — ZG = Z whose kernel is just §, the augmentation ideal of F. This
corollary is thus a restatement of Lemma 10.7, for f now plays the role
ofr. |

Let us make two elementary observations before using these lemmas.

(i) Ifaand b are two-sided ideals in ZF, free on 4 and B respectively,
then ab is free with basis AB = {ab:a e 4,b € B}. /
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(i) If M, =« M, < M, then there is an epimorphism M/M, - M/M,
given by m + M, — m + M, (of course, this is the map of the Third Iso-
morphism Theorem, and its kernel is M,/M,). If M < M’, then M/M, <
M'/M,, and the composite

M/M, '“’M/Mz & M'/M,

is called enlargement of coset.

Theorem 10.9 (Gruenberg): Let 1— R-—F 5 G— 1 be an exact sequence
of groups, with F free on X and R free on Y. There is a G-free resolution
o Z,

P8P, BZ652 -0,
where

P,, = t"/t"*"1, the G-free module with basis
i =1 a =D +1r"" iy e Y},
P,y =" Y1, the G-free module with basis
{0 =) G~ D= D+ 1y e Y, x e X,
and the maps d,: P, — P, .., are enlargements of coset.

Proof: Since f is F-free on X — 1 and r is F-free on Y — 1, iterated
use of observation (i) shows the left F-modules "~ *f and 1" are free with
bases {(y;— 1) (Va1 — Dix—1):y;e Y, xe X} and {(y; = 1)~ (y,— 1):
y: € Y}, respectively. Lemma 10.7 now applies, showing that P,,_, and P,,
are free left G-modules on the corresponding cosets.

Let us describe the maps in more detail. Since t" " < v}, d3,: Pyp — Pan—1
is the enlargement of coset map

P s P, 1,
The Third Isomorphism Theorem gives
imd,, =1"/tf and  kerd,, = r"j" T
Since r"*'f = ¥"* 1, dyy 11 :Pypy 1 — Py, is the enlargement of coset map
rnf/rn‘F lf — r"f/r’l+ 1 N rn/rn‘F 1 ;
hence
imd,n, = "1 and  kerd,,,, ="t

Our calculation of images and kernels shows exactness of the sequence,
with the possible exception of

inf=P, 8372652,
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If we interpret t° as ZF, then Py =1°/! = ZF/t 3 ZG, and d;:x — 1 + f
X — 1+ rrrnx — 1. Thus, imd; is the augmentation ideal g = kerg,
and the proofis complete. §

The resolution above is called Gruenberg’s resolution with respect to the
given presentation of G as F/R.

In Theorem 102, we saw that g/q? = G/G'. There is thus a relation
between group ring constructions and group constructions. The next result
reveals further such.

Lemma 10.10: With the notation of Theorem 10.9, there are isomorphisms
of abelian groups

t/tf % R/R’ and (e + fr)/xf = [F, R]/R".
Remark: [F,R]=[R,F] is the subgroup of F generated by all com-

mutators [ f,r] = frf "'r™!, where f € F and r € R. Actually, R<a1 F implies
that [ F, R] is a subgroup of R, even a normal subgroup.

Proof: By Corollary 10.8, r/xf 1s free abelian on {y — 1 + rf:ye Y}, while
R/R' is visibly free abelian on {yR":y e Y}. There is thus an isomorphism
of abelian groups

6:r/tf > R/R'
defined by
y—1+rfr— yR".
Ifr=y} - -yi"eR, whatis 0(r — 1 + tf)? The identities
w-1)—-u-1)—-@w—-)=u—-v-1
and
~@ T =) = (= )= (- D - 1),

together with r? < rf, show that 8(r — 1+ rf) = rR".
Now restrict the isomorphism 8 to (cf + fr)/rf, the subgroup generated
by all (f ~ 1)(r — 1) + rf, where f € F and r € R. The identity

f=Dr=-D=0L]-D+ L] =D0f =D+ = D(f = 1)

shows that

(f =D = 1) +1f=[fir] = 1 +1f, T~

and so

0(f =D -D+H=[fr]R. 1
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Remark: Actually, more is true. The multiplicative abelian group R/R’ is
a G-module if one defines ‘
g rR = frif "R, where #f =g.
The isomorphism 6 is now a G-isomorphism, for
Ol (r—141f)=0(f(r — 1)+ rf) (see Lemma 10.7)
=0(fr =1+ for = 1(f 1 = 1)+ 1)

=9(ﬁ'f"1 — 1 4+ tf)
= frf IR =g - rR = gb(r — 1 + tf).

Exercises: 10.7. Let IT be a group with normal subgroup N, and let B
and A be II-modules. Prove that Homy(B, 4) is a II/N-module if one
defines, for b € B and f € Homy(B, A4),

(®- f)b) = x- f(x™'b),

where x € IT has coset X e IT/N.
10.8. With the same notation as in Exercise 10.7, prove that B ®zy 4
is a IT/N-module if one defines

Xb®a)=bx"'® xa.

10.9. Let N be a subgroup (not necessarily normal) of a group I, and
let T be a complete set of right coset representatives, ie., one element from
each right coset Nt in Il. Show there is an isomorphism of N-modules

zn = [ @Ny.

teT
Conclude that every projective II-module is a projective N-module. .

We need one more elementary lemma.

Lemma 10.11: If M is a left F-module, then
Z ®s(MhM)= M/iM.

Proof:  Aleft G-module A may be regarded as a left F-module annihilated
by r; moreover, if nf = g (where n:F— G), theng-a=f-aforallac 4
Therefore (g — 1)- a = (f — 1) - a which implies

g4 = fA.
In particular,
o(M/eM) = f(M/eM) = IM/tM.
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By Theorem 5.18,
Z ®¢ (M/xtM) = (M/cM)/g(M /M)
= (M/tM)/fM/tM) = M/iM. |
Theorem 10.12 (Hopf’s formula): For any group G,
H,y(G,Z)= (R n F)/[F,R],
where F is free and f/R ~ G
Proof: Apply Z ®; to the Gruenberg resolution
C ot S B
to obtain the complex (using Lemma 10.11):
o/ S e S R
the maps A, are still enlargements of coset. By Exercise 10.3,
H,(G,Z) = ker A, fim A, = (r n ) /(fr + tf)
= ker(t/(fr + tf) — /%),

this last arrow being enlargement of coset. But {/f*> = F/F’ and, by Lemma
10.10, ‘

v/(Fr + ) = (e/e)/[(r + £)/xf]
= (R/R)A[F,R]/R) = R/[F,R].

We conclude that
H,(G,Z) = ker(R/[F,R] - F/F) = (R ~ F))/[F,R],
for the reader may check commutativity of the diagram

t/(fr + of) ——————{/f*

RIF,Rl<————F/F" 1

Corollary 10.13:  If G =~ F/R, where F is free, then (R n F')/[ F, R] depends
only on G (and not on the choice of F and R).

Let us now give a minor group-theoretic application of Hopf’s formula,
so the reader may appreciate it.
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Every group G may be described as a quotient of a free group (in many
ways): G = F/R. If X is a basis of F, then X is called a set of generators
of G and R is the normal subgroup of relations. The ordered pair (X |R)
obviously describes G to isomorphism. Of course, there is no need to list
every element of R: if Y is a basis of R (which always exists), then G may
be described by (X|Y). But we can be even more efficient. Since R<1 F, it
may be possible to describe R by a set of smaller cardinal than that of Y,
namely, a set W that generates R as a normal subgroup. Thus, R is the
subgroup of F generated by all conjugates fwf ! of elements we W by
elements f e F. The ordered pair (X |W) is called a presentation of G; this
says that G = F/R, where F is free with basis X and R is the normal sub-
group of F generated by W.

As an example, let G be the 4-group Z/2Z © Z/2Z. One presentation
of G is

(XI’XZ ]X%:X%: [Xl ’XZJ)'

Here, F is the free group with basis {x,,x,}; the normal subgroup R gen-
erated by the relators turns out to have a basis of five elements, three of
which are the displayed relators. (In contrast to free abelian groups, a basis
of a subgroup of a free group F may have larger cardinal than that of a
basis of F.)

Let us use Hopf’s formula to show H,(G,Z) = Z/2Z. Set K = F/[R, F].
Since F/R is abelian, F' < R and R n F’' = F'. Therefore,

K'=F/[RF] = (R n F)/[R,F] = H,G,Z).

Define a=x[R,F] and b= y[R,F], so that K =<a,b). If L ={[a,b]>,
then clearly L <« K’; on the other hand, L <1 K and K/L is abelian, being
generated by two commuting elements, so that L > K'. Therefore K’ = L is
cyclic with generator [a, b].

We claim [a,b]? = 1. Observe first that F’ < R implies [F, F] < [R,F],
from which it follows that K’ = Z(K), the center of K ; furthermore b? € Z(K)
(for y* e R and [ )% f] e [R,F] for all f € F). Hence

b% = ab*a™! = (aba™1)? = ([a, b]b)*
=[a,b]?b?,  since [a,b]e Z(K).

Canceling b* gives [a,b]* = 1 and [K'| < 2.
It remains to show K’ # {1}, i.e., that K = F/[R, F] is not abelian. Con-
sider the group of quaternions, with presentation

0 = (x,y|x* = y*, xyx = y).
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We record simple properties of Q:

() Q is a group of order 8 with generators ¢ and d, where ¢ = x§,

d = yS,and § is the normal subgroup of F generated by x*y~? and xyxy~!;

(i) N = {c?) has order 2;

(i) Z@)=N=¢.
If we can show that [R,F] < S, then F/[R,F] maps onto the nonabelian
group F/S = Q; this will show that F/[R, F] is not abelian, ie, K’ # {1}.
To prove [R,F] < S, it suffices to prove [F,f] =1 in Q (bar means
cosetmod S) for every f e F and re {x? y%[x,y]}. But this is true, for
%2=c?=F*liein N = Z(Q), and [X, 7] € Q' = N = Z(Q).

Using spectral sequences, we shall generalize this result (Theorem 11.48).

Let us return to Hopf’s formula.

Definition: A group S is finitely related if it has a finite presentation
(Xl’ e ,Xn]yl’ e ,yr)'

Finitely related groups are f.g. (the converse is false). Of course, finite
groups and fg. abelian groups are finitely related. Is there some way to
describe the integers n and r.in terms of G when G is finitely related? If
one chooses F wisely, then n can be described as the cardinal of a minimal
generating set of G. The example of the presentation F/R of the 4-group
given above shows that the cardinal of a basis of R may be bigger than r
(there the cardinal is 5 and not 3); thus, r is more subtle than n.

Notation: If 4 is a fg abelian group, then 4 = T @ B, where T is finite
and B is fg. free abelian. Let d(4) denote the smallest cardinal of a gen-
erating set of 4, and let p(4) = rank B.

Exercises: 10.10. If Aisa fg. abelian group, then p(4) < d(4); moreover,
p(A) = d(A) if and only if 4 is free, and p(4) = 0 if and only if 4 is torsion.
10.11. If A and A’ aref.g. abelian groups with 4’ free, then d(4A @ 4") =
d(A) + d(4"). (This is false if A’ is not free: Z/2Z @ Z/3Z = Z/6Z.)
10.12.  Prove that p(4) = dimgQ ®, A. Conclude that if 0 > 4’ — 4 —
A" — 0 is an exact sequence of fg. abelian groups, then

p(A4) = p(4’) + p(4").

Lemma 10.14: Let G have a presentation (x,, .. ., x,,]yl, ey ¥y (s0 that
G = F/R, where F is free on {x,,...,x,} and R is the normal subgroup of
F generated by {y,,...,y,}). Then R/[F,R] is a fg. abelian group and

d(R/[F,R]) <.
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Proof: Since R<a F, one sees easily that [F, R] is a normal subgroup of R
containing [R, R] = R'; therefore, R/[F, R] is an abelian group. It suffices
to show R/[F,R] is generated by the cosets of the y’s. Every element of R
is a product of elements of the form fsf ™', where s lies in the subgroup
generated by the y’s. But fsf~'s™ ! e[F,R], so that fsf ~! = smod[F,R]
and the result follows. |

Theorem 10.15: If G has a finite presentation (xy, . .., X4| Y1, - - -, V), then
H,(G, Z) is f.g. with d(H,(G, Z)) < r, and

n—r<p(G/G) — d(HLG,Z)).
Progf: Let Fbefree on {x,,. .., x,} and R the normal subgroup generated
by {¥1,.--, ¥} The chain to the left is a descending series of normal sub-

groups of F. By Lemma 10.14, R/[F, R] is a f.g abelian
group with at most r generators. There is an exact sequence

F of abelian groups

FR group:

R 0 (R F)/[F,R] > R/[F,R] > R/RAF'—0.
RnF By Hopf’s formula, d(H,(G, Z)) = d((R~ F")/[F,R]) < r
[F,R] (Corollary 4.19). Since R/Rn F'= F'R/F' < F/F, the

group R/R n F' is free abelian (because F/F' is), and the
sequence splits. By Exercise 10.11,

d(R/[F.R]) = d(R/R ~ F") + d((R n F)/[F,R])
' = d(F'R/F') + d(H,(G, Z)).
There is another exact sequence
0— F'R/F'— F/F'— F/F'R -0,
and Exercise 10.12 gives p(F/F') = p(F'R/F’) + p(F/F'R). Because F/F' and
its subgroup F'R/F’ are free, however, we have
A(F'R/F'y= d(F/F') — p(F/F'R) = n — p(F/F'R).
We conclude that
r> d(R/[F,R]) = n — p(F/F'R) + d(H G, Z)).
This completes (the proof, for F/F'R = G/G’ (under the map F — G, the sub-
group of F mapping onto G' is F'R). |

Definition: A finite presentation is balanced if n = r: it has the same num-
ber of generators as relators.
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Corollary 10.16: Ifa finitely related group G has a balanced presentation, then
d(H(G, Z)) < p(GIG' ). In particular, if a finite group G has a balanced pres-
entation, then H(G,Z) = 0.

Corollary 10.17:  Let G be a finite group having a presentation with n gen-
erators and r relations. Then

dHAG,Z))<r —n.

The multiplier must be computed in order to use Corollary 10.16. If G
is the 4-group, we have seen that H,(G, Z) # 0, hence G admits no balanced
presentation. .

A more impressive result is due to Golod and Safarevit. Let G be a
group, p a prime, and Z/pZ a trivial G-module. Since multiplication by p is
the zero map on Z/pZ, it follows from Theorem 8.13 that pH (G, Z/pZ) =0
for all n, ie., H,(G,Z/pZ) is a vector space over Z/pZ; let d, denote its di-
mension. Now Exercise 10.5 and our subsequent remarks about the Burnside
Basis Theorem show that if G is a finite p-group, then d,(G) = d(G). In
view of Theorem 10.15, it is reasonable to expect that d,(G) somehow
involves the number of relators of G.

Theorem (Golod and Safarevi€): If G is a finite p-group, then
d5(G) > £(d4(G) — 1)%.

(This result may be improved to: dy(G) > +(d,(G))* [Gruenberg, 1970,
p. 104])

Thus, a criterion exists to determine whether a p-group G is finite. They
also construct a f.g. p-group G violating this inequality, thereby exhibiting
an infinite fg. p-group. Burnside had proved fifty years earlier that a f.g.
torsion subgroup of GL(n, C), n x n nonsingular matrices over the complex
numbers C, must be finite. (Thus, the group of Golod and Safarevi¢ has n§
faithful finite-dimensional complex representation.) Burnside’s problem
asked whether every f.g. torsion group is finite; thus, the answer is “no”.
A much more difficult version of Burnside’s problem replaces “torsion” by
the stronger condition “there is an integer ¢ > 0 with x* = 1 for all x e G.”
In 1968, Adjan and Novikov proved the answer is negative in this case as
well, if e is odd and sufficiently large; in 1982, OlSanskii found a more
elegant proof. (No homological algebra is used in the last proofs, and the
proof of Golod and Safarevi& can now be given without homological alge-
bra [Herstein, 1968].)

There is another context in which multipliers arise.
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Definition: A central extension of G is an exact sequence of groups
l1-A—-E—-G-1

in which 4 = Z(E), the center of E. A universal central extension of G is a
central extension

l>M->U-—-G—1

such that, given any central extension, there exists a unique map U — E
making the following diagram commute:

1 —M >»U > G >1

lg

1 - A ~E > G >1

If G is a finite group, then it is has a universal central extension if and
only if G is perfect, i.e, G = G’, in which case M = H,(G,Z) [Milnor, 1971,
pp. 43—46]. For example, nonabelian simple groups are perfect. What if G
is not perfect?

Definition: A stem extension of G is a central extension
1-4A-E—-G—1
in which A < E' (Schur called such groups E “representation groups”).

If G is perfect, every central extension is a stem extension.

Definition: A stem cover of G is a stem extension of the form
1- H)G,Z)—»S—- G- 1.

When G is the 4-group, H,(G,Z) = Z/2Z and the two nonabelian groups
of order 8 (dihedral group and quaternions) give stem covers of G. There
are two main results:

(a) Each stem extension is a homomorphic image of a stem cover (this
is the analogue of universal central extension when G is not perfect);

(b) If 1-4A—-E—-G—1 is a central extension with A a divisible
abelian group, then there exists a homomorphism of every stem cover of G
into it.

Proofs and discussion of stem extensions and stem covers may be found
in [Gruenberg, 1970] and [Stammbach, 1973].
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The significance of result (b) is bound up with “projective represen-
tations”, so this is a convenient place to switch from homology to co-
homology.

COHOMOLOGY GROUPS

Before continuing the story of stem covers and multipliers, let us recall
some items from Chapter 5. Using homological language that was not avail-
able then, we saw in Theorem 5.15 that

H%G, 4) = Homgy(Z, A) = A,

where AS is the maximal G-trivial submodule of 4; in particular, if 4 is
G-trivial, then H%(G, 4) = 4.
Using Theorem 5.16,

H(G, A) = stab(G, 4) = Der(G, A)/PDer(G, A).

In case A is G-trivial, then PDer(G, 4) = 0 and every derivation is a homo-
morphism. Therefore

H(G, A) = Hom(G, 4)

whenever A4 is G-trivial.

1f ¢(G, A) = (normalized factor sets)/(normalized coboundaries), then we
had almost proved (in Chapter 5) that e(G, 4) = H*G, A). Let us remind
the reader of the formulas.

A normalized factor set is a function f: G x G — 4 with

O xf(y2) — fxy,2) + fx, y2) — f(x, ) = 0;
i@ Sl 1) =0=f(1,%);
a normalized coboundary is a function g: G x G — A4 such that
(i) g(x, y) = xh(y) — h(xy) + h(x),
where h:G — A is a function with
(iv) h()=0.

The gap in obtaining an isomorphism H*G, 4) = e(G, 4) was that the
resolution of Z in Theorem 5.16 gave cocycles satisfying condition (i) but
not (ii), and coboundaries satisfying condition (iii) but not (iv).

With these formulas before our eyes, let us return to stem covers. Repre-
sentation theory deals with homomorphisms G — GL(n, k), where k is a
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field. If k* is the multiplicative group of nonzero elements of k, then k* is
isomorphic to the center of GL(n, k), all nonzero n x nscalar matrices.

Definition: . The projective general linear group is
PGL(n, k) = GL(n, k)/scalars.
A projective representation of G is a homomorphism G — PGL(n, k).

Now one really prefers a representation of G, but he may only have a
projective representation. The next theorem says, when k is algebraically
closed, that one can exchange a projective representation of G if he pays
a price: G must be replaced by a stem cover (i.e, a representation group)
S of G. (A more complete account of this material can be found in [Isaacs,
1976].)

Theorem (Schur): If ©:G - PGL(n, k), where k is algebraically closed,
and if 1 »M - S5 G —1is a stem cover, then there exists a commutative

diagram
7

S —————G

|

i R

T: T

!

|

3

GL(n, k) ——— PGL(n, k)
Le., T “comes from” an ordinary representation T of S.
Sketch of proof: First form the pullback
1 >k* - E > G >1

P
P S

1 > k* » GL(n, k) ~» PGL(n, k) ——1;

the top row is a central extension. Since k is algebraically closed, k* is
divisible (for each n, every element has an nth root), so result (b) on p. 279
provides a homomorphism of any stem cover (hence a map p:S — E) into
the top row. Then T = ¢gp:S — GL(n,k) is the desired representation. |

The next exercises show that prO_]CCtIVC representations give rise to a
cohomology group.
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Exercises: 10.13. Consider the diagram

GL(n, k) ~—— PGL (1, k) ———>1

where 7 is a projective representation. For each x € G, define T(x) € GL(n, k)
as some lifting of 7(x). Prove that the function T satisfies

T(xy) = f(x, NT()T(y),

where f:G x G — k¥ If the multiplicative group k* is considered as a trivial
G-module, prove that f is a factor set (equation (i) written multiplicatively).

10.14, If, in the situation of Exercise 10.13, one chooses other liftings
T'(x) of 7(x), so that T'(xy) = f'(x, »T'(x)T'(y), show that f~'f" is a co-
boundary (equation (iii) written multiplicatively).

The exercises above show H*(G,k*) = factor sets/coboundaries, so that
cohomology occurs in this context (as well as in the context of extensions).
Surely this group H*(G, k¥) deserves the name of “multiplier”, and we shall
prove (Theorem 10.31) that H%(G, k") = H,(G,Z) when G is finite and k is
an algebraically closed field of characteristic zero.

Our present task is to establish an isomorphism H*(G, 4) = &(G, A), and
there is no choice but to write down some G-projective resolutions of Z.
Before taking the plunge, we alert the reader that a topological interpreta-
tion of cohomology groups will appear. ¢

Definition: Let G™ denote the cartesian product of n copies of G;
let P, be the free abelian group on G®*! made into a G-module by
X(Xg, %1,y X)) = (XXg,XX1, - .., Xx,). Define maps 3,:P,— P,_, when-
ever n> 1, by

n
(X07“‘7Xn)'__) z (wl)l(XO:"':k\i?"‘:Xn)s
i=0
where ~ indicates deletion.

Theorem 10.18: P=--—P, 3P, 57 -0 is a G-free resolution of Z.

Proof: Observe that Py = ZG; by definition, ¢ is the augmentation map.
We let the reader check that P, is G-free (a basis consists of all (n + 1)-tuples
of the form (1,x, ..., x,)). Next, P is a complex, for the boundary homo-
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morphism is precisely that arising in topology (Theorem 1.19). To prove
exactness of P, it suffices to construct a contracting homotopy (Exercise 6.19);
we want maps

P, Ep Pl
with
Ont 150 F Sp-10, =15, n=0 (p=2¢) and  &s., = 1,.

Define s_;:Z — Py by 1 (1) (the 1 in parentheses is the identity of G); if
n > 0, define s, by

(XO"":Xn)’__)(laxo"":xn)'
Note that the maps s, are only Z-maps (which is all we need: the conclusion
is that P is exact as a complex of abelian groups; but, by the definition of

exactness, P is then exact as a complex of G-modules). Here are the simple
computations.

@D es_i()=¢e(l)=1;

(11) (an+lsn + Sn—lan)(XO, cees Xn)
:an+1(17x0:"'7xn)+sn—l Z (Ml)i(XO:H‘:Xi:"‘rxn)
i=0
= (X055 Xa) + 2 (=1 UL Xgs o, Riy s X
k=0

+Z (“l)i(laxo:""xi’-'-:Xn)
i=0
= (Xg, .. -5 Xy)- |

Exercise: 10.15. Prove that P, is isomorphic (as a G-module) to the tensor
product (over Z) of ZG with itself n + 1 times.

The resolution P of “homogeneous™ (n + 1)-tuples is quite simple, but it
does not resemble the formulas that arose in Chapter 5. We now construct a
resolution of “inhomogeneous” n-tuples.

Definition: Forn > 0, define Q, as the free G-module with basis all n-tuples
[x1,. .., X,] of elements of G; define Q, as the free G-module on the single
generator [ ].

For each n> 0, P, = Q,, for both are free G-modules on a set in one-to-
one correspondence with G*™; we give a specific isomorphism.
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Define v: P, — Q, by
T(Xg, -0 %) = Xol x5 X1, X7 1, o1 Xa i X s
define ¢:Q, — P, by
olx1y- oy xn] =Xy, X X5, X X5X5, ..., X1 Xg " X,).

It is easy to check that ¢ and t are inverse to one another. There are thus
unique maps d,: Q, — 0, -1, n = 1, making the following diagrams commute:

Pll —-—-—T—.-—_> Qll
0, d,

Pn—l T ;Qn—l

)
Since 1~ ! = o, we have d, = 1 §,0. The formula is
n-1 .
dfxiy .o Xa) = X%, X5, -, %)+ 2 (=D xe, 0oy XXt e ey X
i=1

A (=D X1y os Xum1 ]
In particular, we have

di[x]=x[]1~-[1
da[x, y] = x[y] — [xy] + [x],
ds[x,y,2] = x[y, 2] — [xy,z] + [x, yz] — [x,y].

Thus Q is the resolution of Z we began building in Chapter 5, and it is called
the (unnormalized) standard resolution of Z.

Theorem 10.19: Q =---—Q, it Qo > Z -0 is a G-free resolution of Z.

Proof: First, Qis a complex, ford,_,d,=13d,.,8,0 = 0and ed; = 0. Next,
7:P - Q is an isomorphism of complexes, hence it induces isomorphisms
H,(P) - H,Q), all n. Since P is exact, each H,P)=0; therefore each
H.(Q)=0and Q isexact. ||

The complex P suggests a connection between group cohomology and
cohomology of topological spaces.

Definition: Let X be a topological space, and let Aut(X) be the group of all
homeomorphisms of X with itself. A group G operates on X if there'is a
homomorphism G — Aut(X). :
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If G operates on X, we may regard each g € G as a homeomorphism of X ;
moreover, there are identities

91(92%) = (9192)x, lx = x,
where g, ¢g,,1€Gand x e X.

Definition: A group G operates without fixed points on a space X if gx = x
for some x € X implies g = 1.

Theorem 10.20: If a group G operates on a topological space X, then the
singular complex - -+ — S (X) 3 S, (X)—---is a complex of G-modules.
Moreover, if G operates without fixed points, each S,{X) is a free G-module.

Proof: Recall that S,(X) is the free abelian group with basis all continuous
T:A, — X. If g € G, we may regard g as a homeomorphism X — X, so that
gTis again an n-simplex. The identities above show that S, (X) is a G-module.
Also (using the notation of Chapter 1), if T* = Te, is the ith face of T, then
(gT) = gTe, = g(T"); it follows that d is a G-map.

If x € X, its orbit is the set {gx:g € G}; clearly the orbits partition X.
Let Xy < X consist of one element from each orbit. Call a simplex T basic
if Tvge X, (where A, = [vp, ..., 1,]); we claim S(X) is free on all basic
simplexes. They do generate, for if S:A, —» X, then Sv, = gxo for some
geG, x,€X,; hence g~'S is basic and S = g(g~'S). Finally, suppose
>y T; = 0, where y; = Y myug, € ZG, and the T; are distinct. Then

Zk: mudge T) = 0.
i

We claim thatif gT', = hT,, where Ty, T, are basic, theng = hand T, = T,.
Suppose T v, # T,00; then, as these elements lie in distinct orbits, gT' v, #
hT,ve, a contradiction; therefore T vy = T,v, = x. But gx = hx implies
g~ 'h fixes x; since G operates without fixed points, g = h. Finally, since g
is a homeomorphism, T, = T,. It follows that all the simplexes g,T; are
distinct, so that each my = 0, hence each y; = 0. 1

Definition: A topological space X is acyclic if Hy(X) = Z and H(X)=0
forn > 0.

Theorem 10.21:  If a group G operates without fixed points on an acyclic
space X, then the singular complex of X is a deleted G-free resolution of Z.

Proof: We already know the singular complex is a complex of G-free
modules. The condition that X is acyclic gives an exact sequence
o S1X) = So(X) = Hy(X)—»0,and Hy(X) = Z. 1|
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Let 4 be a G-module. Now H%(X; 4) is the homology of the complex
Hom,(S(X), A). If X is acyclic and G operates on X without fixed points, then
H"(G, A) is the homology of the complex Homg(S(X), 4), by Theorem 10.21.
To complete this discussion, we assume some knowledge of topology.
Suppose G operates properly on X, i.e, each x € X liesin an open set U with
gUn U=, all ge G, g # 1 (this implies that G operates without fixed
points). One can give an isomorphism of complexes [ MacLane, 1963, pp.
135-136]

Hom,(S(X/G), A) = Homg(S(X), 4),

where A is G-trivial and X/G is the orbit space of X, and this induces iso-
morphisms for all n = 0

H'(X/G; A) = HY(G, A).

The next step is to.exhibit a space X as above. Given a group G, there
exists an Eilenberg—MacLane space Y = K(G, 1): a path connected, “aspheri-
cal” space (ie, the nth homotopy groups =, (Y)=0 for n> 1) having
fundamental group =;(Y) = G. If one defines X = Y, the universal covering
space of Y, then X is acyclic, G acts properly on X, and X/G = Y. It follows
that

H"(K(G, 1); A) = HY(G, A):
the cohomology of an abstract group G (with G-trivial coefficients) coincides
with the cohomology of a certain topological space Y = K(G, 1).

It is also true that there are isomorphisms in homology: if Y = K(G, 1)
and A is G-trivial, then '

H(K(G,1); A) = H\(G, 4)
(a proof using spectral sequences may be found in [MacLane, 1963, p. 344]).
Theorem 10.22 (Universal Coefficient Theorem): If G is a group and A
is G-trivial, then
H"(G,4) = Homy(H,(G, Z), A) ® Exty(H,- (G, Z), A).

Proof: The Universal Coefficient Theorem 8.27 gives such an isomorphism
for any topological space Y. Choose Y = K(G,1) and use the fact that
H(Y;A) = HYG,A)and H(Y;A) = H(G,A) foralln. |

Remark: A purely algebraic proof of Theorem 1022 may be found in
[ Gruenberg, 1970, p. 49].
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There is also a universal coefficient theorem for homology, using Corol-
lary 8.23:if A is G-trivial,

Hn(G’ A) = Hn(G7 Z) ®Z A @ TOI‘%(H,,_ 1(G9 Z): A)

The fact that one may realize homology groups of G as homology groups
ofatopological space “explains” Theorem 10.3. If Y'is a path connected space
having fundamental group =, then the Hurewicz theorem states that

H\(Y;Z)= n/x.

Setting Y = K(r, 1) shows H(Y;Z) = H(n,Z), which gives a topological
proof of Theorem 10.3.
We return to algebra, still seeking to prove HX(G, A) = ¢(G, A).

Definition: The bar resolution (or standard resolution or normalized res-
olution) is

B="'-—-)B1£3)B0j-)Z“>0,
where B, is the free G-module on all {x, . .., x,] with x; € G and x; # 1, and
the formula for d,:B, — B,_, is the same as in Q. (B, is free on the single
generator | )

Remarks: 1. In order that d, be defined, we agree that [x;,...,x,] =0
whenever some x; = 1.

2. Itisnot obvious that B is a complex (this does not follow immediately
from d,. d, =0 in Q, for here we are making some of the terms in the
formula equal to 0). :

3. B is called the bar resolution because the original notation for

[x15 -5 Xa] Was [x [X5] ] x,].

Theorem 10.23:  The bar resolution B is a G- free resolution of Z.

Proof: Again, we do not yet know B is even a complex (so far, all we know
is that each B, is G-free and the d’s are G-maps). First, we construct a con-
tracting homotopy

c- =B & By 7,
where eachi s, is 2 Z-map. Define
5-1:Z— By by 1]
and

Sp:B,— By by x[xy,..., %] [%x,...,%,]
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(since s, is only a Z-map, it must be defined on a Z-free set of generators, not
merely on the G-free generators [ x4, . . ., x,])- It is easy to check that this is
a contracting homotopy, i.e.,

Api 1Sy + Suoydy = g, (where dy,=¢)
and
es_y =14,

If we show B is a complex, then Exercise 6.19 completes the proof. Now
B, . is generated as a G-module by the subgroup im s,, so that it suffices to
show d,d,.; = 0 on this subgroup. We do an induction on n, noting that
0 = &d, = s_,d,. For the inductive step,

Aufl 118y = (1 — 5, 1d,) (contracting homotopy)
= dn - (1 - Sn—zdn—l)dn (dlttO)
=dn_dn_sn—2dn—ldn=0' I

Theorem 10.24: H2(G, A) = (G, A).
Proof: Applying Homgl(, A) to B gives the complex
<+ - — Homg(B;, 4) 3 Homg(B,, A) 2 Homg(Bs, ) — - - -
and
H*G, A) = kerd%/im d%.
Suppose f:B, — A is a cocycle. Then 0 = d f = fd,, so that

0= fds]x,y,2] = xf(y,2) — f(xy,2) + f(x, yz) — f(x, )

(that f is a G-map is used to get f(x{ y,z]) = xf(y, 2)). Moreover, f(x,1) =
0= f(1,x), since [x,1] = 0 =[1,x], so that f is a normalized factor set as
needed in the definition of (G, A).

Suppose g:B, — A lies in imd%, ie, there is a map h:B, » A with
g = d%h = hd,.Since h: B; — 4, wehave h(1) = 0. Also, g(x, y) = hd,[x,y] =
xh(y) — h(xy) + h(x) (that k is a G-map is used to get h(x[y]) = xh(¥)).
Therefore, g is a normalized coboundary as needed in the definition of
e(G,A). 1

Theorem 10.24 follows immediately from the fact (Theorem 10.23) that
the bar resolution B is a G-free resolution of Z. The proof given above is the
proofin the original paper of Eilenberg and MacLane (and is credited there
to Weil).

We now give a second proof of Theorem 1023, using the Gruenberg
resolution of the trivial G-module Z corresponding to a suitable free pre-
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sentation F/R of G. In order to proceed, we must know a basis of R;
fortunately, the Nielsen—Schreier theorem actually exhibits one [Rotman,
1973, pp. 260-261].

A left transveral T of a (not necessarily normal) subgroup R of F is a
complete set of coset representatives, i.e., one element from each left coset tR
in F. A Schreier transveral of R in F, where F is free with basis X, is a trans-
versal T such that, whenever t = x{* - - - xir € T, where x; € X and ¢; = +1,
then every terminal segment of t:x% -« xgn, ..., xinpxin, xin, 1, also lies
in T. It may be shown that Schreier transversals always exist (most accounts
of this theory deal with right transversals of R in F; of course, inverting is
the way to change one account to the other). Ift € Tand x € X, then xtR = uR
for some (unique) u € T (perhaps u = xt, perhaps not). Define

Ver = U xt.

The Nielsen—Schreier theorem states that if T is a Schreier transversal of R
in F, and if X is a basis of F, then

{ye#lixeX,teT}

is a basis of R.

Let F be free on X = {s,:x € G,x $ 1}, define n:F — G by s, +> X, and
let R =kern. For notational convenience, set s; = 1. It is clear that T =
{s.:x € G} is a Schreier transversal of R in F; moreover, if x, y € G, then
5wR =s.5,R and s,5, % 5., (When x # 1 and y % 1). Thus, R has a basis

{rey =S558, %,ye G, x,y #1}.
Theorem 10.25 (=Theorem 10.23): The bar resolution Bis a G-free resolu-
tion of Z.

Proof: Let us use the presentation of G given in the paragraph above. Since
R is free on all elements r, , = s5,'s,s,, x, y # 1, the ideal r is free on all
suchr, , — 1. Ass,, is a unit in ZF, we may modify this basis to obtain a basis
of r comprised of all elements (x, y), where

(x7 y) = Sxy(rx,y - 1) = SxSy - Sxy: X,y € G7 X, y # 1

Theorem 10.9 gives an explicit description of the corresponding Gruenberg
resolution - - — P, 3 P, &4 Py 57— 0:

P,, = r"/t"*! is G-free with basis all elements
[xh Tt x2n} = (xlaxz) e (x2n—-17x2n) + rn+1;
P,y =1"" 11" is G-free with basis all elements

[xlz‘ Xan- 1} (x1,%5) (x2n—37x2n—2)(sxz,._1 = 1)+ 1"
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the maps d,: P, — P,_, are enlargements of coset. If we regard P, = ZG as
the G-free module with single generator [ ], then the end of the proof of
Theorem 10.9 shows dy:[x]+—=(x— D[ J=x[]-[}

Here are two notational conventions. For x € G, denote s, [x;, ..., x;]
by x[xi,...,x]. Also, allow an entry in {Xy, ..., x,] to be 1 by defining
such a bracket to be 0. This last convention allows us to state the formula
whose validity we shall prove by induction on k:

k-1
dk[xl, ey xk:l = xl[XZ, ey xk:! -+ Z (—1)l[xl, ey XX g e e e s xk:l
i=1

+ (=[x, ey X ]

Because the definitions of bracket depend on the parity of k, it is no surprise
that the induction reflects this fact.
If k = 2, use the identity

(x7 y) = SxSy — Sxy = Sx(sy - 1) - (Sxy - 1) + (Sx - 1)
In bracket notation, this is the desired formula
dy[x,y] = x[y] = Dyl + [x].

The case k = 3 is trickier. Evaluate s,s,s, in two ways, using the defining
equation S,7,, = S,5,- On the one hand, (s,s,)s, = s.,7. ,S,; on the other,

xy' x,y°z 2

— — 1
Sx(s Sz) - S yz y z Sxyzrx,yzry,z - Sxyszrxy,zrx,yzry,z'

Therefore,
(x7 y)(sz - 1) = Sxy(rx y )Sz - (x7 y)
= Sy eryz x,yz Ty 2 Sxysz_(xay)
- Sxys ( xyz xyzry z 1) - (xay)~
The identities
ab—1=@—-D+bB—-1+@— Db -1);
alt—l=—(@-~@*'-a-1),
yield congruences mod r2:
(xay)(sz-' 1) = Sxys { (rxyz - ) + ( Tx,yz — ) + (ryz - 1)} - (X,Y)
xy z{ xyz(xy: + Sxyz(x yz) + Syzl(ya )} - (x7 Y)~
Clearly s,5,5" € R and s,5,55,* — 1 € r; hence, if « e 1, then

5SS e = a mod r2.
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In particular,
(x7 y)(sz - 1) = —(xy,z) + (x7 yz) + Sx(y7 Z) - (x7 y)mOdrza

and this completes the case k = 3.

The inductive step assumes the result for all integers <k; there are two
cases, depending on whether k is even or odd.

Assume k = 2n. We must show (xy, X,) - - - (X5, 1, X2,) 1S cOngruent to the
alternating sum formula modr"f. Denote s, — 1 by (x), and set x,.; =y
and x;, = z. Modifying slightly the identity occurring in the case k = 2,

(X, %) (B2 =(xy, ..., xk—Z){_(yz) +(MN+ @2+ (Y)(Z)}

Expanding gives a sum of four terms; examine the last term
(X1, - - -5 Xk-2)(M)(2). By induction, (x4, .. ., Xz ,)(»), a term of odd length,
can be written

k-2
(x17 ] xk—-Z)(y) =xl(x27 ey y) + Z (_1)l(xl7 cee xixf+17 ey y)
i=1

+ (_l)k—l(xla DI} xk—z) + u,

where u € 1" (induction takes place in P,,_, = P, ., = "~ !/t"). Multiplying
on the right by (z) leaves us with two offensive terms: (— 1) (x4, ..., X 2)(2)
and u(z). As k=2nis even, (—1*"* = —1 and the signed term cancels
against the third term of the original four terms. Finally, u(z) € ™, so that
we have the desired congruence.

Assume k =2n+ 1. We must show (x;,X,) " (X2n- 2, X2n-1)(X2,) 1S
congruent to the alternating sum formula mod t"* . Set X5, » = X, X2, 1 = ¥,
and x,, = z. Modifying slightly the congruence occurring in the case k = 3,
there is a five-term expansion

(x17 L} xk—3)(x’ y)(Z) = (x17 DRI} xk—3){_(x.y7 Z) + (x,yz)
+ (x)(y7 Z) + (y: Z) - (x7 y)}:

the congruence mod r"** (the term (x,, ..., X,_3) e "~ * since k = 2n + 1).
By induction, we may rewrite part of the term involving (x)(y, 2):

k-3
(X1 X 3)(x) = xl(XZJyC) + igl (—1)i(x17 e XXy gy, X)
+ (=1 Hxy, ..., X 3)modr".

Multiplying on the right by (y,z) yields a congruence modr"**. Since k,
hence k — 2, is odd, the sign of the last term is negative, hence cancels
against term four of the original five terms. What survives is the desired
formula. This completes the induction. |
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COMPUTATIONS AND APPLICATIONS

We have given some interpretations of low-dimensional homology and
cohomology groups, but are we in a stronger position having done so? In
order to use homology, some computations are necessary.

Theorem 10.26: Let G be a finite group of order m. For every G-module 4
and every n> 0,

mH"(G, A) = 0 = mH (G, A).
Proof: We use the unnormalized standard resolution Q. If f/:0,— 4,
define g:Q0,-; — A by

glXi, .oy Xpoy) = Z X1, oo e ) Xpm1, X)-

xeG

Now sum the coboundary formula
n—2 ’
(df)(xla‘ ‘-7xn+1)=xlf(x27‘ . ‘7x) + Z (—l)if(xl,. - .,xixiH,...,x)
i=1

+ (_l)n—lf(xla sy xnx) + (_1)nf(x17 DR xn)

over all x = x,,; in G. In the next to last term, as x varies over G, so does
x,x. Therefore, if f is a cocycle, then df = 0 and
n-2

0=2x90xz, > %)+ 2, (=1Vg(Xg, oy XiXip 1,0 -5 %)
<1

+ ('— l)n—lg(xla sty xn—l) + m('—l)nf(xl, RN xn)
(the last term is independent of x). Hence
0=dg+ m(-1)f,

and mf is a coboundary.
The same proof works for homology, and we merely set up notation.
If f(Xgy- ey X @ =[Xy, - .-, Xs] ® a, Where a € 4, then define

g(xh .. -7xn—-17a) = Z f(xla‘ '~7xn7a)‘

xXneG

The proof proceeds as above, but remember that one begins with an element
of the form Y 2., f(x4, ..., x}, d). 1

Remark: Ifeisa pésitive integer, then a group G has exponent ¢ if x°* = 1
for all x € G. (Often, one defines the exponent of G as the minimal such e.)
One might ask whether Theorem 10.26 can be improved for finite groups G
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by replacing the order m of G by its exponent e, for clearly e < m. In general,
the answer is “no”: the group of quaternions Q has order 8 and exponent 4,
but it may be shown that H%(Q,Z) = Z/8Z [Cartan-Eilenberg, 1956, pp.
253-254].0n the other hand, if G is finite abelian and A is a trivial G-module,
then one may replace m by e.

- This seemingly harmless result, Theorem 10.26, has many consequences.

Theorem 10.27 (Schur-Zassenhaus): Let E be a finite group having a
normal abelian subgroup A with (|4],|E/A|) = 1 (where |A| denotes the order
of A). Then E is a semidirect product of A by E/A, and any two complements
of A in E are conjugate.

Proof: Let E/A = G have order m and let |4] = k. By Theorem 5.2, we may
consider 4 as a G-module. If n > 0, Theorem 10.26 gives mH™(G, A) = 0.
On the other hand, k4 = 0 implies kH(G, A) = 0 (Exercise 7.6). Since
(m,k) = 1, it follows that HYG, 4) = 0 for all n > 0. When n = 2, this says
that E is a semidirect product of 4 by G (Corollary 5.10); when n = 1, this
says that any two complements of 4 in E are conjugate (Theorem 5.13). |

Remark: The hypothesis that 4 is abelian may be removed ([Rotman,
1973, p. 1497 for the first statement; conjugacy is true-also, but much harder).

Theorem 10.28 (Maschke): Let G be a finite group of order m, and let k
be a field whose characteristic does not divide m; then the group ring kG is
semisimple.

Proof: By Theorem 5.14, it suffices to prove HY(G, A) = 0 for every kG-
module 4. Now 1/m € k, since k is a field whose characteristic does not divide
m. Therefore, multiplication by m is an automorphism of 4 (whose inverse is
multiplication by 1/m) which induces an automorphism of HY(G, A) that is
also multiplication by m (Theorem 7.16). It follows that mH (G, A) = H*(G, A).
On the other hand, mH*(G, 4) = 0, by Theorem 10.26, whence H'(G, 4) = 0.

Theorem 10.29: If G is a finite group and A is a f.g. G-module, then H'(G, A)
and H,(G, A) are finite for all n > 0.

Proof: By Ezxercise 104, H (G, A) and H (G, A) are fg. abelian groups for
all n > 0. If n > 0O, these groups are annihilated by |G}, whence the result. |

There is a remarkable connection between cohomology and homology
groups of G. For a G-module B, we write B* for the character module (with
G-action as in Theorem 1.15):

B* = Homy(B, Q/Z).
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Theorem 10.30 (Duality Theorem): For every finite group G and every
G-module B, there are isomorphisms for alln > 0

(H(G, B))* = H,(G, B*).

Proof: Recall the mixed identity, Theorem 9.51: Let R and S be rings
with R left noetherian, and consider the situation (x4, gBs, Cs) in which 4
is f.g. and C is injective. Then there are isomorphisms for all n > 0,

TorX(Homg(B, C), A) = Homs(Exti(4, B), C).

Set § = Z and R = ZG (which is left noetherian, by Exercise 10.4); take
A = Z and C = Q/Z. The isomorphism becomes

Tor?%(B*,Z) = (Ext}(Z, B))*.

By Exercise 10.3, Tor?¢(B*, Z) = Tor?%(Z, B*) = H,(G, B*), while the right
hand side is (H(G, B))*, as desired. |1

Remark: Using the remark after the proof of Theorem 9.51, one majr
prove the Duality Theorem 10.30 for any group G for which the trivial G-
module Z has a G-projective resolution each of whose terms is f.g.

The next theorem explains why H,(G,Z) is called the multiplier of G
when one recalls the discussion of projective representations.

Theorem 10.31: Let G be a finite group, and let k be an algebraically closed
field of characteristic 0. If k* is the multiplicative group of nonzero elements
of k considered as a trivial G-module, then

H,(G,Z) = H¥G, k*).

Progf: Since k is algebraically closed, every element in k* has an nth root
for every n > 0. This says that the multiplicative abelian group k* is divisible.
The torsion subgroup of k*, consisting of the roots of unity, is isomorphic
to Q/Z because k has characteristic 0 (consider k = C to convince yourself).
Divisibility, hence injectivity, of Q/Z gives

k*=Q/Z®YV,
where V is a vector space over Q (Exercise 3.20); thus,
H¥YG,k*) = HYG,Q/Z) ® H¥G, V).
However, the argument of Theorem 10.28 gives H*(G, V) = 0, whence
H*G,k*) = H¥G,Q/Z).
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Exactness of 0 » Z — Q — Q/Z — 0 gives exactness of
H¥G,Q)— H¥G,Q/Z) — H¥G,Z)~ H(G,Q),
and the outside terms are 0 by the Theorem 10.28 argument. We conclude that
H*G,k*)= HYG,Q/Z) = H*(G, 7).
A similar argument gives an isomorphism in homology
Hi(G,Q/Z) = H,(G, Z).
Applying the Duality Theorem 10.30 yields an isomorphism
(H3(G,Z))* = H4(G,Z%).

By Theorem 10.29, H¥(G, Z) is finite, whence (H3(G, Z))* = H*(G, Z). Also,
Z7* = Q/Z, so that H*G, Z) =~ H,(G, Q/Z). Assembling all the isomorphisms
gives H¥(G, k%) = H,(G,Z), as desired. ||

Observe that H, and H® were useful to us, even though we have not
given them down-to-earth interpretations.

Definition: A group G has cohomological dimension < », denoted ¢d(G) < n,
if H¥(G, A) = Ofor all G-modules 4 and all k > n. If nis the least such integer,
one defines cd(G) = n; if no such integer n exists, define cd(G) = co.

Exercises: 10.16. Prove that cd(G) =0 if and only if G = {1}.

10.17. If Gis free of rank >0, then cd(G) = 1.

10.18. If H**YG,A) =0 for all G-modules A4, then H*(G,4) =0 for
all k > n and all G-modules A.

10.19. Let G be free abelian with basis § = {xy, ..., x,}. Prove that
ZG = S™'Z[x,, ..., x,]; use Hilbert’s Syzygy Theorem to prove cd(G) <
n+ 1.

Remarks: 1. The ring of Laurent polynomials in x, coefficients in Z,
consists of all formal sums

n
Y mx, melZ,
=k

k, n (possibly negative) integers, with obvious addition and multiplication.
One may easily geperalize this definition to several (commuting) variables,
and observe, using Exercise 10.19, that Laurent polynomials in n variables,
coefficients in Z, is ZG, where G is free abelian of rank n.

2. If G is free abelian of rank n, then ¢d(G) = n (Corollary 11.50). The
reason the bound in Exercise 10.19 is too high is that global dimension <n
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demands vanishing of Ext%(B, 4), all k > n and all pairs of G-modules B,
A, whereas ¢d(G) < n only demands such vanishing in the special case B = Z.
Is there a relation between cd(S) and ¢d(G) when § is a subgroup of G?
Theorem 10.32 (Shapiro’s Lemma): If S is a subgroup of G and A is an
S-module, then, for all n > 0,
HYS, A) = HG, Homg(ZG, A)).

Proof: First of all, the right side makes sense, for Homg(ZG, A) may be
regarded as a G-module (as in Theorem 1.15, ie, as in the adjoint iso-
morphism). A mixed identity, Exercise 9.23, arising from the adjoint
isomorphism, gives

Exty(ZG ®¢ Z, A) = Exth(Z, Homy(ZG, A)).
Since ZG ®¢ Z = Z, this is the desired isomorphism
H"(S, A) = HG,Homg(ZG, 4)). |

Corollary 10.33:  If S is a subgroup of G, then cd(S) < c¢d(G).

Proof: Without loss of generality, we may assume cd(G) =n < co. If
k > nand A4 is an S-module, then Shapiro’s lemma gives

HYS, A) = HYG,A*) = 0,
where 4*¥ = Homg(ZG, 4). ||

Lemma 10.34: Let G be a finite cyclic group of order k and with generator
x. Define elements of Z.G:

D=x—-1 and N=14+x+x2+---4+x"1
Then the following is a G-free resolution of Z.:
2632652652652 -0,
where D and N denote multiplication by D and N, respectively.

Proof: First, ZG is commutative, so multiplications are G-maps. Since
ND = DN = x* — 1 =0, we do have a complex.

Since kere = g = 1m D (Theorem 5.19), there is exactness at the first step.

Suppose u= ¢ mx' e ker D. Computing gives mq, = my=--"=m._,,
so that u =myN € 1mN

Finally, if u € ker N, then 0 = uN = Y%2§ (3524 m)x/, so that Ym; = 0,
and

u=—Dmol + (my +m)x+ -+ (my+-- +m_ )x*"*JeimD. |
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Exercises: 10.20. Prove Lemma 10.34 using Gruenberg’s resolution with
respect to the presentation (x|x¥) of G.
10.21. If G is finite cyclic, and 4 is a G-module, then DA = gA4.

Theorem 10.35: Let G be a finite cyclic group of order k. If A is a G-module,
define yA = {ae A:Na = 0}. Then
HYG,A)= 4%,  H™ YG,A) = yA/DA, H*(G,4) = AS/NA.
Proof: Apply Homg( , 4) to the resolution of Lemma 10.34. |
Corollary 10.36: Let G be a finite cyclic group of order k and let A be a
trivial G-module. Then
HY%G 4) = A,
H* }G,A) = A = {aec Arka =0},
H(G, A) = A/kA.
In particular,

HYG,Z)=27, H* YG,Z)=0, and H?G,Z)=Z/KZ.

Corollary 10.37: If G is finite cyclic (of order 1), then c¢d(G) = 0.
Proof: Take A = Z considered as a trivial G-module; by Corollary 10.36,
H>™G,Z)s 0foralln. ||

Corollary 10.38: If c¢d(G) < o0, then G is torsion-free.

Proof: If G contains an element x s 1 of finite order, then Corollary 10.33
shows cd({x}>) < ¢d(G), contradicting Corollary 10.37. |

Exercises: 1022. If G is finite cyclic, then H,(G, 4) = H"" (G, A) for all
G-modules 4 and all n > 1. (Compare with the Duality Theorem 10.30.)
10.23. If G is finite cyclic, then pd(Z) = o0 and D(ZG) = c0.
1024. If R = Z[x]/(x* ~ 1), then D(R) = 0.
10.25. (Barr-Rinehart) Define H"(G, A) = Ext}s(g, A). Prove that

HY%G, A) = Der(G, A) and H"G, A) = H"" (G, A), n> 1.
(Hint: Theorem 5.21.)
What are the groups of cohomological dimension 1? Stallings [1968]

proves the following results.

Theorem. A finitely related torsion-free group G is a nontrivial free product
if and only if HYG,(Z/2Z)G) has more than two elements.
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The hypothesis on G can be considerably relaxed [Cohen, 1972]; the
important point here is that Stallings discovered a homological criterion
for certain groups to be free products; he used this criterion to prove the
next two theorems.

Theorem. If G is fg., then cd(G) < 1 if and only if G is free.

This theorem was a conjecture of Eilenberg and Ganea. Observe that
this generalizes the Schreier—Nielsen theorem.

Lemma. If S is a subgroup of finite index in G, then
HS,(Z/27)S) = H(G,(Z,/2Z)G).

This is an easy result which we quote to make the next result plausible.

Theorem. If G is f.g. torsion-free, and if G has a free subgroup of finite
index, then G is free.

This theorem was a conjecture of Serre who proved that if G is torsion-free
and § is a subgroup of finite index, then ¢d(G) = cd(S). Swan [1969], using
Stallings’s results, was able to remove the hypothesis that G be f.g. in the
last two theorems. .

We end this chapter by voicing the reader’s discontent; one must compute
homology in order to use it, and there is still difficulty even in determining
whether a homology group is nonzero. A technique is needed, and, in fact,
a technique exists: spectral sequences. While it does not solve all problems,
it is a powerful tool.




11 Spectral Sequences

Spectral sequences (invented by Leray and Koszul) are certain types of
sequences of homology modules; however, one often abuses language by
saying spectral sequences is a technique of computing homology. Actually,
there are two main techniques. The first gives a useful exact sequence, the
“five-term exact sequence of terms of low degree”. The second technique
involves a notion of convergence of a spectral sequence to a limit module
H. We shall be more precise later, but we wish to indicate now to what
extent the limit H is determined by the approximating sequence. It is a
familiar procedure in group theory to consider a normal series of a group G,

G=Gy2G;2G,>---,

and its corresponding factor groups G;/G;.,. It is also a familiar procedure
to consider a series of submodules of a module H,

H=H,>H,oH,> ",

now called a “filtration” instead of a normal series, and its factor modules
H;/H,, ;. The limit of a spectral sequence is H only in the sense that one
obtains the factor modules of some filtration of H. Of course, this usually
does not determine H to isomorphism, but it does provide information.

EXACT COUPLES AND FIVE-TERM SEQUENCES

We begin with some simple definitions.

299
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Deﬁnition A graded module is a sequence of modules M = {M,:p e Z}.If

= {M,} and N = {N,} are graded modules and a is a fixed mteger, then
a sequence of homomorphisms f = {f,:M,— N,,,} is a map of degree a.
One writes f:M — N.

A complex C=---— Cpf’é C,.,— - determines a graded module
C = {C,:p € Z} if one ignores the differentiation d = {d,:p € Z}. The map
d:C — C has degree —1.If (C’,d") is another complex, a chain map f:C— C'
gives a map of degree 0 (with fd = df’), while a homotopy is a certain type
of map of degree + 1. A second example of a graded module is the homology
of a complex C:H(C) = {H,(C):p € Z}. One may reverse this procedure:
given a graded module {4,:p € Z}, define a complex

A=---—->AFEE>AF_1—->

in which each d, = 0; one says A is a complex with zero differentiation.

Exercises: 11.1. Degrees add under composition: if f: M — N has degree
a and g:N— K has degree b, then gf:M —K is a map of degree a +b.

11.2. All graded modules (over a fixed ring) and all maps having a
degree comprise a category. Note that

Hom(M,N) = | J (ﬂHom(Mp, Np+,,)>.
aeZ \ p
Recall a mnemonic introduced when we first saw long exact sequences:
exact triangles. If 0 — AL B5 C-0is a short exact sequence of com-
plexes, then the long exact sequence may be written

H.(A) y—L—n +(B)

N

Regarding the vertices as graded modules, the maps f, and g, have degree 0
and 0 has degree —1. Conversely, given any exact triangle, one may write
down a long exact sequence if he knows the degrees of the maps.

Defipition: A bigraded module is a doubly indexed family of modules
M={M,, (p9)e Z xZ} If M={M,,;} and N={N,,} are bigraded
modules and if (a,b) is a fixed ordered pair of integers, then a family of
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homomorphisms f = {f,,:M,;— N1, 4+5} 15 a map of bidegree (a,b).
One writes f: M — N.

Exercises: 11.3. Bidegrees add under composition: if f:M — N has
bidegree (a, b) and g: N — K hasbidegree (@', b’), then gf : M — K has bidegree
(a+a,b+b)

11.4.  All bigraded modules (over a fixed ring) and all maps having a
bidegree comprise a category.

In the category of bigraded modules, there are subobjects and quotient
objects. If M, , = N, , for all p, g, then M = {M, ,} is a (bigraded) submodule
of N ={N,,}; visibly, the inclusion map M — N has bidegree (0,0). De-
fine the (bigraded) quotient module N/M as {N, /M, }; the natural map
N — N/M also has bidegree (0,0).

There is a consequence of this elementary definition. Given f:M — N
with bidegree (g, b), im f should be a (bigraded) submodule of N; what is
(im f),,? Since (im f),, < N, ,, we are forced to define

(imf)p,q =fp~a,q~b(Mp~a,q~b) = im(fp—-a,q—b) < Np,q'

(Thus, (im f),,, is not im(f,,,), which lies in N, ,.,). On the other hand,
there is no problem with indices of ker f': if one defines

(ker f),,q = ker(f,,0);

then ker f is a (bigraded) submodule of M. It is now clear how to define
exactness of a sequence of bigraded modules.

We defer giving examples of bigraded modules; later, we shall define a
“bicomplex” which will determine bigraded modules in much the same
way that a complex determines graded modules (ignore differentiation;
homology).

Definition: An exact couple is a pair of bigraded modules D and E, and
maps o, B, v (each of some bidegree) such that there is exactness at each
vertex of the triangle

Obviously, an exact couple generalizes the notion of exact triangle (since
one does not generalize merely for the sake of generalization, there are not
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three distinct bigraded modules at the vertices; in practice, an exact couple
is what one encounters). Given an exact couple D = {D, }, E = {E, ,}, and
maps o, B, v of bidegrees (a,a’), (b,b'), (c,c), respectively, one may write
down a long exact sequence for each fixed p, g:

8 y a B Yoo,
o E —9Dp,q"’Dp+a,q+a‘—->Ep+a+b,q+a‘+b"-> .

p=cg=c
Conversely, given infinitely many long exact sequences as above, they may
be assembled into one exact couple.

Let us now use this barrage of notation (actually, a clever organization
of a maze of data, due to Massey) to obtain concrete results. The next
theorem is due to Kreimer, while the notion of acyclicity when dealing with
composite functors was first formulated by Grothendieck.

We maintain our (too restrictive) hypothesis that all functors are additive
functors between categories of modules (one may replace module categories
by certain more general categories).

Definition: Let F:B — € be a functor of either variance. A module B in
B is right F-acyclic if (R?F)B = 0 for all p > 1, where RPF is the pth right
derived functor of F; a module B in B is left F-acyclicif (L,F)B = 0 for
all p > 1, where L,F is the pth left derived functor of F.

If F is covariant, recall that (R?F)B = H?(FEg), where Eg is a deleted
injective resolution of B. It follows from Theorem 7.6 that every injective
module is right F-acyclic.

Exercises: 11.5. Every projective module is left F-acyclic for any co-
variant functor F, and 1s right F-acyclic for any contravariant functor F.
116. If F = A®jz , then every flat module B is left F-acyclic.

A composite of functors may give an exact couple. Observe first that if
G:¥ - B, then (R"G)A € B for every module A in A (if - — X, B X,_, - -

1s a deleted resolution in U, then - --— GX, S, 6x s—1— " 1s a complex

in B, whence ker Gd,/im Gd,,.. , € B).

Theorem 11.1: Let G: W — B and F:B — € be functors such that F is left
exact and whenever E is injective in W, then GE is right F-acyclic. For each
module A in W, choose an injective resolution 0 - A —E®° - E' - --- and
define

79 = ker(GE? — GE2*1).
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Then there exists an exact couple with
E — (RPF)(RIG(A)) if p=0, ¢=0,
70 ~ otherwise,
(RP* 1)z~ 1 if p>0, g=>1,
RPYY(FG)A if p=-1, g=1,
0 otherwise,

and maps o:D — D of bidegree (—1,1), f:D — E of bidegree (1, —1), and
y:E — D of bidegree (1,0).

D

g

Remarks: 1. Visualize a bigraded module as a family of modules, one
sitting on each lattice point in the p-¢ plane. Thus, E lives in the first quad-
rant and D lives above the line ¢ = 1 and to the right of p = —1.

2. The basic idea is just to assemble the long exact sequences arising
from the obvious short exact sequences [1] and [4] below.

Proof . Abbreviate R?G, RPF, RP(FG) to G¥, F?, (FG)?, respectively. Our
task is to exhibit, for each g > 0, an.exact sequence (since every D, , occurs)

E 1 g1 Do ge1 2Dy gea>Eggur >
=Dy g1 2Dy g2 Epger =
By definition of E and D, we want exact sequences
0+ F1Z9— (FGE*'4A - F(G*r14) —- -
- FPY1Z8 5 FPZI% L FAGIY I A4) - -,

Now G94 isjust the gth homology of the complex -+ GEI—»GEI* ! -+,
We have already denoted the g-cycles of this complex by Z?; denote the
g-boundaries, im(GE?~* — GE?), by B% There are short exact sequences

[1] 079> GE1 5 B1* 0

which give rise to exact sequences (since F is left exact and GE? is right
F-acyclic)

[2] 0— FZ%— FGE?—» FB*"*! - F'79 5 (, all ¢=0,
and isomorphisms
[3] Frpavixy prrize all p>1, ¢g=0.

The definition of homology gives short exact sequences

[4] 0—-BI*t 5 79t 5 Gatlg 5,
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which yields long exact sequences
0— FBi*1  FZ9*1 o, F(GI*14)—» F'B?* 1 » F1Z9% s FHGI 1 A) — - -,

Using [3] to replace each term F?B?*! by its isomorphic copy F?*'Z4, for
p = 1, almost leaves us with the desired exact sequences; only the first two
terms are not correct.

Consider the diagram

FGE? = FGE?
F2 h
0__)FB‘q'+1 Fu xFZ"q-G-l Fv > F(G1*14) > F?Z1— -+
[
0——>F1"Z‘1 W >»F(GI*14)— F?Z9 —- -~
A 4 v
0 0

where the first column is the end of the exact sequence [2], the map h is
the composite FuFA = F(GE?— B! & Z9*1) and W = cokerh. Com-
mutativity of the top square and exactness of the columns provide a unique
map F1Z7 - W (Exercise 2.7) making the bottom square commute; that
Fv o h =0 implies the existence of a map W — F(G?*!4) which makes the
remaining square commute, Exactness of the middle row implies, by diagram-
chasing, exactness of the bottom row. It remains to identify W with
(FGY* 1 A.

Now Z9*! =ker(GE?*! — GE?*2), so that left exactness of F gives
FZ%%! = ker(FGE**' —» FGE**?). Therefore

W = coker(FGE? — FZ9*1) = FZ4*im(FGE? — FZ1*1)
= ker(FGE®*! — FGE®*?)/im(FGE? — FZ*%),
Using left exactness of F once again, Z?%' ¢, GE?** implies FZ9*' o,

FGE®!, and thus im(FGE? — FZ9*1) = im(FGE? — FGE®*1). Therefore,
W = H*{(FGE,) = (FGY*14. |

Exercise: 11.7. Give explicit formulas for the maps F!Z?9— W and
W — F(G?*! A); give explicit formulas for these maps once W has been
identified with (FG)?* 1 A.

Theorem 11.2 (Cohomology Five-Term Sequence): Let G:UA—B and
F:B — Q€ be left exact functors such that E injective in W implies GE is right
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F-acyclic. Then there is an exact sequence
0— (RF)(GA) —» RYFG)A — F(R'GA) — (R*F)(GA) — R(FG)A
for every module A in W.

Proof: We return to the abbreviated notation above. Consider the exact
sequences in Theorem 11.1 forg=0and g=1:

0 F1Z° »(FG)'A - F(G'A) - F2GA - F*Z* >+ -
and
0+ F'Z' - (FG)?A - -
Just splice these two sequences together at F*Z', and remember that
Z° = ker(GE® — GEY) = GA, for G is left exact. |
Remark: If G is not left exact, one must replace GA by (R°G)4 in the
sequence.
The following variant of Theorem 11.2 is useful.
Theorem 11.3: Let G:U — B and F:B — € be left exact functors such that

E injective in W implies GE is right F-acyclic. If A is a module in W with
(R\G)A = 0 for 1 < i < g, then there is an exact sequence

0 — (RIF)(GA) - RYFG)A — F(RIGA) — (RT+1F)(GA) — R1* {FG)A.

Proof: Let us return once again to the abbreviated notation for derived
functors. We shall only prove the special (though most important) case
when G'A = 0 (the rest being an exercise for the reader). Consider the exact
sequences in Theorem 11.1 for g = 0, 1, and 2:

0— F'Z° - (FG)'A - F(G'4) » F?Z° - F'Z' » F{G'4) - - - -,
0— F'Z' > (FG*A - F(G*A) » F*Z' - F'Z? - - - -

and
0 F1Z2 5 (FGPA—---.

Splice the last two sequences together at F*Z? to obtain exactness of

0— F'Z! »(FG)*A — F(G*A) —» F?Z' - (FG)*A.
Since G*A4 = 0, the first sequence (g = 0) gives an isomorphism
F*7Z°= F'Z.

Recalling that Z° = GA, the sequence now begins with FX(GA). Let us deal
with the fourth term F2Z!. Since G*4 = Z*/B*, the hypothesis gives Z* = B!
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and hence F2Z* = F2B!, But isomorphism [3] in the proof of Theorem 11.1
gives F2B' = F3Z° = F3GA. |

An important use of this last result occurs in the cohomology of algebras,
involving Hilbert’s “Theorem 907 and the Brauer group.

It should be clear that the proofs just given dualize; we merely state the
results for right exact covariant functors.

Theorem 11.4 (Homology Five-Term Sequence): Let G:U —B and
F:B - § be right exact functors such that P projective in W implies GP is
left F-acyclic. Then there is an exact sequence
LAFGA— (LZF)(GA) — F(L;GA)— L{(FG)A — (L,F)(GA)— 0
Sor every module A in W. Moreover, if (L;G)A =0 for 1 < i< g, then there
is an exact sequence
L+ 1(FG)A— (Lys  FYGA) ~ F(L,GA) — L{FG)A — (L F)(GA)— 0.

Let us illustrate these general results. Assume I1 is a group with normal
subgroup N. Clearly, every II-module 4 may be regarded as an N-module,
so that Homy(Z, A) 1s defined. Recall

Homy(Z,A) = A" ={ae A:n-a=aforallne N}.

For a I1-module A4, the module A" is actually a IT/N-module: if x € IT has
coset X ¢ I1/N, define
X-a=Xx-aq, ae AY
(one checks this is well defined). Therefore Homy(Z, ), and its derived func-
tors Exthy(Z, ) = H(N, ) are functors from I1-modules to I1/N-modules.
What is the action of II/N on HYN, 4) for a II-module 4? Take a II-
projective resolution of Z

P=----P, -P,-Z-0

(which is automatically N-projective, by Exercise 10.9), and let us compute
HYN, A) by examining the complex Homy(P,, A). Exercise 10.7 tells us a
reasonable way to make each Homy(P;, 4) into a I1/N-module:

&Ny =x-f(x"'h), xell/N, beP,.
Hence, H{(N, A) becomes a IT/N-module by
X(z; + B)=X-z;+ B;,

where z; € Homy(P;, A) is a cycle and B; is the submodule of boundaries.
(Observe that the action of Exercise 10.7 coincides with the action of II/N
on Homy(Z, A) given above.)
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A similar discussion, now using Exercise 10.8, shows how II/N acts
on the homology groups Hi(N, A) when 4 is [1-module:

Xb®a)=bx"'®@xa, Xell/N, beP,.

Remark: One may prove [Gruenberg, 1970, p. 151] that if N < Z(II) and
A is Tl-trivial, then H?(N, A) and H,(N, A) are II/N-trivial for all p. The
proof of this is not difficult, but involves a longish digression. This fact
will be used several times in the sequel.

Theorem 11.5: If N is a normal subgroup of T1 and A is a Tl-module, then
there is an exact sequence

0 — HY(II/N, AY) —» HY(I1, A) - HY(N, A)™¥ - H¥II/N, A") - HX(TI, A).
Moreover, if H(N,A) =0 for 1 < i< q, there is an exact sequence
0 — HYII/N, A") —» H4(I1, A) - HYN, A)™N - H2* Y(I1/N, AY) —» H?* {(T1, A).

Proof: Let A be the category of Il-modules and B the category of
I1/N-modules; define G: A - B by G =Homy(Z, ) and F:B - Ab by
F = Homyy(Z, ). It is clear that G and F, being Hom's, are left exact.

If E is an injective IT-module, we claim GE = EX is I1/N-injective (hence
right F-acyclic). Consider the diagram

0 > EN >E
+

|
-

f |

|

0 > M’ - > M

i

where f and i are II/N-maps. By change of rings ZII — Z(II/N), every
I1/N-module may be regarded as a IT-module and every I1/N-map may be
regarded as a IT-map. Since E is Il-injective, there is a IT-map f:M — E
extending f. But imf < E¥:n- f(x) = f{n- x) = f(x), since each x e M is
fixed by every ne N. It follows that f:M — EN is a ITI/N-map, and E is
IT/N-injective.

The hypotheses of Theorem 11.2 (or 11.3) hold. To apply these theorems,
one must evaluate the composite FG. It is a simple matter, however, to see
that (AN = 4" ie, FG = Homy(Z, ), and we are done. |

Remark: One may identify the map H(II/N, AY) - HY(I1, A) as “inflation”
and the map H'{IT, A)—HN, A" as “restriction”, both of which are familiar
to specialists. The map H'(N, AN — HX(TI/N, A") is called “transgression”.
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There are formulas for these maps in terms of the bar resolution B; recall
that B; is the free II-module on all symbols [x,, ..., x], x; € II, x; # 1, and
cocycles are certain functions f with domain B;. It may be shown [ Weiss,
1969, §2.5] that if clsf e H(II/N, A"), then inflation sends clsf+clsg,
where

glxi, - xi] =% . -.H X,

X; is the coset of x; in II/N, and cls f denotes the homology class of f. If
cls fe HY(I1, A), then restriction sends cls f i cls &, where

hixy, .., x]=f[x1 -0 xi), x;eN, j=1,2,...,L
Finally, if 4 is a II-module, and cls f € HY(N, A4), thenT e I/N acts by
E-Nlxes--oxi] =t It %48, ..., t7 t], x;eN, j=1,2,...,i0
In particular, this last formula shows that the action of II/N on HY(N, 4)

is trivial when 4 is I1-trivial and N < Z(I1).
Here is the corresponding result for homology.

Theorem 11.6: If N is a normal subgroup of I1 and A is a I1-module, then
there is an exact sequence

H,(I1, 4) = Ho(I/N, Ay) = Hy(N, Ayyyw — H,(I1, A) — H,(TI/N, 4y) - 0.
Moreover, if Hi(N,A) =0 for 1 < i< g, there is an exact sequence
Hq+ I(HaA) - Hq+ I(H/N7 AN) - Hq(N7 A)H/N - Hq(H7 A) - Hq(H/N7 AN) - 0

Proof: Recall that Ay = Z®y A = A/nA, where n is the augmentation
ideal of N.

Let U be the category of II-modules and B the category of IT/N-modules.
Define G:U — B by G = Z &y . Note that Z ®y A4 is a II/N-module if one
defines G- (m®@ a) = m® g - a, where ge II/N is the coset of g eI, a lies
in the II-module 4, and me Z. Define F:B —Ab by F=Z ®yy . It is
clear that G and F, being tensors, are right exact.

If P is a projective IT-module, we claim GP = Z ®y P is II/N-projective,
hence left F-acyclic. If P = ZIT, then Z ®y P = P/mP = ZI1/mZI1 = Z{JII/N).
It follows that if P is II-free or II-projective, then Py = Z ®y P is II/N-free
or IT/N-projective.

The hypotheses of Theorem 11.4 hold. To apply it, one must evaluate
the composite FG. It is a simple matter to see that (4y)yy = 4y, iLe.,
FG =7 ®y , and the theorem is proved. ||

Theorem 11.7 (=Theorem 10.12): For any group G,
Hy(G,Z) = (R n F')/[F,R],
where F is free and F/R = G.
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Proof: Since R is a normal subgroup of F, Theorem 11.6 applies to give
exactness of

H,(F,Z)— Hy(G,Zg) > Hy(R, Z)g —> H\(F,Z) > - - - .

Now Zg = Z, since Z is F-trivial, hence R-trivial, and Corollary 10.5 gives
H,(F,Z) = 0 since F is free. Thus,

H,(G,Z) =ker(H,(R,Z); — H,(F,Z)).

Corollary 10.3 shows H,(F,Z)= F/F' and H,(R,Z)= R/R’; moreover,
R/R’ = r/rf as G-modules, by Lemma 10.10 and the remark immediately
thereafter. With the further aid of Lemma 10.11, we have

Hy(R,Z)s = Z @ R/R = Z Qg /rf = (v/rf)/f(r/xf)
= (t/rf)/(fx + tP/rf = v/fr + of = R/[F,R].
Therefore,
H,(G,Z) = ker(R/[F,R] — F/F").

We now cheat, asserting the map is just enlargement of coset, from which
the result follows. |

Our little cheating is just that; it is not difficult to identify the map.
Accepting this, the reader may begin to appreciate the power of the five-term
sequence.

Here is another application of the five-term sequence. Let Q be the
quaternion group of order 8:

Q = (x,y|x* = y%, xyx = ).
We recall the following properties of Q: there is a normal subgroup N of
order 2, namely, {x2}, with Q/N = G, where G is the 4-group; center Q =
N = @', the commutator subgroup of Q; Q has a balanced presentation

(exhibited above). It follows from Corollary 10.16 that H,(Q,Z) = 0.
The five-term sequence with 4 = Z is

H(Q,2)~ Hy(G, Z) % H\(N, Z)s ~ H\(Q. 2) 5 H(G, Z) - 0.
Since H,(Q,Z)=0, the map « is monic. By Corollary 10.3, H,(Q,Z) =
0/Q =Q/N =G and H,(G,Z)= G/G' = G; since both of these groups
have order 4 and § is epic, § must be monic. It follows from exactness that
is epic, L.e.,
H,(G,Z)= H\(N,Z)s.
Now Q acts on n={n—1:ne N} by conjugation: if xe Q, then x-n=

xnx~1; since N is the center of Q, however, xnx™! = n. It follows that
G = Q/N acts trivially on n and hence on n/m? = H,(N,Z). Therefore,
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H,N,Z); = H/(N,Z)= N/N' = N, and the multiplier of G has order 2
(as we saw in Chapter 10).

We shall return to composite functors, so let us give a simple necessary
condition guaranteeing acyclicity.

Theorem 11.8: Assume (F, G) is an adjoint pair of functors, where F. % — B
and G:B - U.

() If G preserves epimorphisms, then F preserves projectives;
(ii) If F preserves monomorphisms, then G preserves injectives.

Proof: Let P be projective in ¥, and consider the diagram in B
FpP

B————B >0

If 1:Homgy(F, )— Homg(,G) is the natural bijection, then there is a
diagram in ¥

GB o GB’ >0

The row is exact, since G preserves epimorphisms, and so projectivity of P
provides a map ' € Hom(P, GB) with

(Ge) o ¥ = ().

We claim t~()): FP — B completes the original diagram, Naturality of ¢
gives commutativity of

Hom(FP, B) ————————>Hom(P, GB)
Ex (Ge)y

Hom(FP, By ——————— Hom(P, GB')
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Evaluating on ¢~ "/, we have e, (¢t~ 1Y) = (Gg),v(r ™ 'y"). But the left side is
(g o T 14", while the right side is (Ge) ' = (Ge) o = 1(p). Since 7 is a
bijection,

got Y =g,
as desired. The dual proof gives the second statement. [
Exercises: 11.8. Show that the functor Homy(Z, ) of Theorem 11.5
satisfies the hypothesis of Theorem 11.8.

119. Show that the functor Z ®y of Theorem 11.6 satisfies the
hypothesis of Theorem 11.8.

DERIVED COUPLES AND SPECTRAL SEQUENCES

The main observation in this section is that an exact couple is more than
a clever organization of long exact sequences; it determines other exact

couples. .
Consider the exact couple, with maps of the indicated bidegrees:
(1,-1)
D———"———D
(-L0) ) 5 00
E

Define d':E— E by d* = By (first y and then B!). Since y8 = 0, it follows
that d'd' =0 and E has homology groups H(E,d') = kerd'/imd*. One
usually denotes H(E,d") by E? and regards it as a bigraded module. In
more detail,

A}y E,, 5D, ,BE, .
so that d* has bidegree (—1,0). By definition of bigraded quotient module,
Ej, =kerd} /imd},, ,.

Define a second bigraded module D? = ima. Since « has bidegree (1, —1),

the definition of bigraded image gives

2 .
Diy= %p-1,q+1(Dp-1,q+1) =0y g4y < Dy
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We next define «?, 2, y? as pictured below:

DZ——“‘—'—“'"'*DZ

A

Set a? to be the restriction of « (for D? = ima < D). Since the inclusion
map i:D? =ima o D has bidegree (0,0), the map «® = @ o i has the same
bidegree as a, namely, (1, —1). Define 5%:D? - E2 by

By = [Ba""y],
where bracket denotes homology class (more details in a moment), and
define y2: E? - D* by
'qu[qu] Vp.a? pqEDp 1,9

It is a brief exercise that y? is well defined, so that y? has the same bidegree
as y, namely, (—1,0). Let us return to B2 If yeD?,, then y=
-1, q+1(Xp—1,4+1); define

pq?

ﬁﬁ,q = Bp—l,q+ 10‘;—11,q+13y = [Bp—l,q+ 1(Xp-1, 4+ V]e Efa—l,qﬂ-

Again, we let the reader check a map is well defined. Visibly, 2 has bidegree
(-1,1).

Observe that the bidegrees of o2, 2, y2 are the same bidegrees occurring
i the exact couple of Theorem 11.1. Note also that all definitions make
sense if we begin with an exact couple whose maps have any bidegrees.

Theorem 11.9: With the definitions above,

DZ_______________)DZ

N4

is an exact couple; a® has bidegree (1, —1), B* has bidegree (—1,1), and >
has bidegree {—1,0).

Proof: This is a simple diagram chase. The reader may verify that suc-
cessive composites are 0, ie. im < ker, and we shall prove the reverse
inclusions. We drop subscripts.
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Assume x € D? = ima and a?x = ax = 0. Then x € kera = imy, so that
x =7yy for some yec E. But x eima = ker 8 implies 0 = fix = fyy =d'y.
Therefore, y is a cycle and x = y?[ y].

Assume x € D? = ima and f%x = 0. Thus, x = ay and By = d'w = fyw.
Hence y—ywekerf=ima=D? and a®(y—yw)=a(y —yw) =ay =x
(for oy = 0).

Assume x e E? and y’x=0. Now x=[y]e E? and y’x=1yy = 0;
hence y e kery = im f8, so y = Bw. One checks that fXaw) = [y] = x.

Definition: The exact couple (D2, E?, a2, £, y2) is called the derived couple
of (D, E, o, B,7).

Of course, we may (and do) iterate this construction to get a sequence of
exact couples

Dr_________________)Dr

N

where, by definition, the (r + 1)st exact couple is the derived couple of the
rth one.

1t is useful to have more explicit descriptions of the data of the rth derived
couple.

Theorem 11.10: Let (D, E, o, f3,7) be an exact couple, where a, B, y have
bidegrees (1, —1), (0,0), and (—1,0), respectively. If the rth derived couple is
(D, E", o, B,y7), then
(1) o has bidegree (1, —1), B* has bidegree (1 — r,¥ — 1), and y" has
bidegree (— 1, 0);
() d" = By" has bidegree (—r,r — 1) and is induced by Bo~""1y;
(i) ELr'=kerd) /imdy., g-rsi-

Proof: An easy induction on r, using the fact that bidegrees add. ||

Definition: A spectral sequence is a sequence {E",d":r > 1} of bigraded
modules and maps with d"d” = 0 such that
Er+1 — H(Er, dr)

as bigraded modules.
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Of course, one may denote the original E by E' (as we have just done),
Thus, every exact couple determines a spectral sequence.
An elementary definition is useful here.

Definition: A subquotient of a module M is a module of the form M'/M”,
where M" = M’ are submodules of M.

Obviously, one may also speak of subquotients of graded modules or of
bigraded modules. In our context, the most obvious example of a subquotient
is homology: if Cis a complex, then for each g, H (C) is a subquotient of C,.

Exercises: 11.10. Subquotient is transitive: if B is a subquotient of 4 and
C is a subquotient of B, then C is a subquotient of 4.

11.11. Ifan abelian group G has any of the following properties, then so
does every subquotient of G:

(i) G = 0; (i) G finite; (iii) G f.g.; (iv) G torsion; (v) G p-primary; (vi) mG = 0
for some m > 0; (vii) G cyclic.

Returning to spectral sequences, we see that each E" is a subquotient of
E = E*, or of E?, indeed, of any earlier term This remark can be pictured.
Write E? = Z?/B? (actually, E2, = Z2 /B2 ). Since E* = Z*/B® is a sub-
quotient of E2, the third isomorphism theorem allows us to assume

0cB*cB3cZ°cZ2<cE.

Iterating,
0cB?c--cBcB"'c--cZ'cZ'c---cZ?cEL
Deﬁniﬁon: m ZP q" U Pq’ - Z:Q/B;?q

The bigraded module E® is called the limit term of the spectral sequence
{E"}, and it is clear that, as r gets large, the terms E" do “approximate” the
limit term.

There are other descriptions of the modules Z}, ,, B, ,, E}, ,, for r < co;
indeed, many accounts of spectral sequences use these descriptions as their
starting point. The appropriate context is that of “dfg-modules” (differential,
filtered, graded). It is instructive to see this approach, and the reader is
advised to look since other viewpoints are valuable [MacLane, 1963, XI.1
and XL3].

Exercise: 11.12. Ifd}, =0 for all p, g, then E" = E**1. If 4}, , = O for all
P, g and all r > s, then E°° =E; forallp,gq.
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FILTRATIONS AND CONVYERGENCE
Definition: Let 2 be a category and let 4 be an object in 2. A filtration of
A is a family of subobjects of 4, {F?A:p € Z}, such that

e FPTlAc FPAC FPY 4,

We are especially interested in two special cases: U = complexes;
A = graded modules. Thus, a filtration of a complex C is a family of sub-
complexes {FPC:p e Z} with FP~1C < F?C for all p. A filtration of a graded
module H = {H,:n € Z} is a family of graded submodules {FPH:p € Z} with
FP~1H < FPH for all p. Note that this last condition merely says that there
are (ordinary) submodules FPH, of H,,, for each n, such that FF~'H, = FPH,,
all p.

Theorem 11.11: Every filtration {FPC:pe Z} of a complex C determines
an exact couple

in which o has bidegree (1, — 1), B has bidegree (0,0), and y has bidegree (— 1,0).

Proof: Let us abbreviate FPC to FP. For each fixed p, there is a short exact
sequence of complexes

0-s FP=1 5 Fr s FP/FP=1 0,
The corresponding long exact homology sequence is
v Hy PP S Hy fF) 5 Hy (PP ) 5 Hy g (F71)

Observe that there are only two types of terms: homology of some F? or
homology of some quotient F?/F?~!, Accordingly, define

D,,= prq(FP) and E,, = Hp+q(F"/F"“1)_
The long exact sequence now reads
a 8
=Dy, g4 ‘“’Dp,q-ﬁEp,ql)Dp_lyq_)- .

The reader may now equip the maps «, 8, y with bidegrees, namely, (1, — 1),
(0,0), and (— 1, 0), respectively. All has been verified. |
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1t is at this point the reader may begin to feel that he could have invented
exact couples; he also sees why the bidegrees before Theorem 11.9 were so
chosen.

Corollary 11.12:  Every filtration {FFC} of a complex C determines qa
spectral sequence.

Proof: The filtration determines an exact couple with maps of the proper
bidegrees; Theorem 11.9 gives a sequence of derived exact couples whose
terms E2, E3, ..., E', ... form aspectral sequence. ||

It would be pleasant to know the E* term of this spectral sequence. Let
us be content for thé’ moment with exhibiting the differential d} :E,, —
E,_,, ,- By definition, d' = By; with subscripts,

d;laq = Bp 1, qyp q:Hp+q(Fp/Fp_1)“) Hp+q_1(Fp—1/Fp—Z).

moreover, y,, is the connecting homomorphism H,, (FF/FP~ Ho
H,,,—((F?~%), while §,_, , is the map induced by the natural map
FP-1_, Fp-1 /Fp 2

Exercise: 11.13. Consider the short exact sequence of complexes
0— FP=1/FP=2  FP/FP=2  FP/FP™1 .

Show that the map d} , is the connecting homomorphism H,, (F?/F?~1) -
H,,,_,(FP~1/FP~2) Hint: Use naturality of the connecting homomorphism
in the situation

0 > -1 > FP > FP/FP~1 50

0——>FP=1/FP=2—— s FP/FP~2 — S FP/FP=1 5

A filtration {F?C} of a complex C defines a filtration of the (graded)
homology module H,(C) in the following obvious way. If i,: FC — C is the
inclusion map, then there is the induced map H,(i,): H,(FPC) — H,(C) for
each #n. Clearly im H,(i,. ;) = im H,(i,) for all p, i.e., the (graded) submodules
{im H(i,)} form a filtration of H,(C). Wouldn’t it be nice if the spectral
sequence of {F?C}, whose E' term is H (F?/F?'), determined the factor
modules of this filtration of H,(C)? If so, the spectral sequence would allow
us to commute homology and filtration, better, homology and factor
modules.
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Definition: Let H be a graded module. A spectral sequence {E"} roughly
converges to H, denoted EZ > H,,,,if thereis some‘ﬁltration {®’H} of H

such that
E:q = q)pHp+q/®p_ 1Hp+q

for all p, g.

There is a universal notational agreement in this subject that
n=p+gq.

Hence, the isomorphisms in the definition of rough convergence are written
Ep, = ®"H,/® " 'H, The index p written under the arrow E;,— H is
called the filtration degree; it tells which of the two subscripts index the
filtration of H, and this is necessary because Ey, and EZ, may not be iso-
morphic.

Let us state some difficulties implicit in the notion of rough convergence
by considering a filtration {FC} of a complex C and its corresponding
spectral sequence {E’}. First, we need some criterion to guarantee rough
convergence. Next, even if we have rough convergence, it may be useless. For
example, define FPC = 0, the zero subcomplex, for all p. Clearly0 = E = E* =
E®=--- so that EZ, =0 for all p, g. Moreover, the “obvious” filtration
{im H(i,)} of H,(C) consists of zero submodules, hence has zero factor
modules. Thus, we do have rough convergence, and the information it
conveys is 0 = 0. Plainly, some hypothesis is needed on the filtration { F?C}. In
most applications, the following condition does hold.

Definition: A filtration {F?H} of a graded module H is bounded if, for each
n, there exist integers s = s(n) and ¢ = t(n) such that

FFH,=0 and F'H,=H,.

Since a complex C is a graded module if we forget its differentiation, it
makes sense to say that a filtration {F?C} of C is bounded.

In any filtration, F?~'H < FPH for all p. In particular, if {FPH} is
bounded, then for each n, FPH, = Oforallp < s, FPH, = H forallp > t,and
there is a finite chain

0=FH,cF''H,<---cFH,=H,.

Definition: Let H be a graded module. A spectral sequence { E"} converges to
H,denoted EZ ,= H,,, ifthere is some bounded filtration {®7H } of H such that
p

E®, ~ O°H, /0"~ 'H,

2

for all p, g (remember, n = p + g).
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The previous notion of rough convergence may be forgotten; convergence
is the important notion.

Theorem 11.13:  Assume {FPC} is a bounded filtration of a complex C, and let
{E"} be the spectral sequence it determines. Then

(i) for each p, q, we have E, = E, , for large r (depending on p, g);
() EZ,=H,(C)

Proof: (i) How can we say anything at all about E} ,? The one thing we
do know is that its differentiation d" has bidegree (—r,» — 1), Choose p
large, ie, p > t(n). For any such p, FP~! = F? and F?P/FP~! =0. Hence
E, = p+q(FP/FP 1y=0, and so E} , = 0 for all r, all such p (for E}, ,is a
subquotlent of E, ). Similarly, choosing p small, ie., p < s(n), gives E 7 =0
for all r.

Now choose any p, g. Since d" has bidegree (—r,r — 1), d'(E} ) =
E;, r.q+r—1. For large r, the index p — ris small and E,_, ,.,-; = 0. Hence

» o = ker d;, , for large r. Let us now compute Ejh' = kerd;, ,/imdy, ., 4,4 1.
When r is large, the index p+r is large, and so im dj., jopsy =
d(E, 4y, g-r+1) = 0. Therefore, Eph' = kerd,, , = E, , for large r (depending
on p and q). The spectral sequence is thus ultlmately constant, whence E;, =

E, , forlarger.
(i) Equip H,(C) with the obvious filtration

©7H,(C) = im(H,(F'C) —» H,(C)),
where the map is induced by the inclusion FPC — C. That F is bounded
implies @ is bounded:
0=0HC)c®"'H(C)c < ¥H,(C)= H,(C).
Consider the exact sequence arising from the rth derived couple (the

indices are determined by the bidegrees of the maps, which were calculated
in Theorem 11.10):

.. r L 2 B pr r
(*) ——)Dp+r'-2 q~r+2——)Dp+r—l,q~r+l——)E “’Dp 1, q

Recall that D" = a0 - - - o aD (r — 1 factors equal to o) and that o has bidegree
(1, —1). It follows that

Dyt g-rer =00 --0aD,,  (r—1factors of )

=im(H, 4 (F?)— H,, (FP*"" 1)),

for «,, , is just the homology map induced by inclusion F? — F?*1. For fixed
1,9, boundedness of the filtration gives F?*"~1C = C for large r. We con-
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clude that for large r
D;a+r- 1,g=r+1 = q)pI{p—Fq(C)'

A similar calculation shows that, for large r, the first term in the exact se-
quence (x) is ®*~*H,, ,(C). Substituting, exact sequence (*) becomes

o O H, (C) > @°H () > By = Dy g =

If we can show that D},_, , = O for large r, then we have

®*H,, (C)/®* 'H,, (C)= E, , = EJ,,
and we are done. But this is essentially the same calculation:

Dy = o oaD

[ (r — 1 factors of o)
=aoc--roaH,, _4(FF7'C)  (r— 1 factors)
=0, if p—r<s |

In practice, the vast majority of spectral sequences arise from a bounded
filtration {F?C} of a complex C; moreover, the typical application involves a
certain complex (the “total complex™) associated to a “bicomplex”. For this
reason, we proceed to bicomplexes. (The reader finding a more general
spectral sequence in his hands is referred to any other textbook treating
spectral sequences; we maintain that an understanding of the special case
suffices for an understanding of the general.)

BICOMPLEXES

Definition: A bicomplex (or double complex) is a bigraded module M =
{M,,} with maps d’,d": M — M of bidegree (— 1,0) and (0, — 1), respectively,
such that

dldl — 0’ d”d” — 0’ and dldu + dndl — 0'

As usual, picture a bigraded module as a family of modules in the p-q
plane. The maps d;, ,:M,, , — M ,_, , go one step left; the maps d}, ;i M, , —
M, ,- go onestep down. The first two conditions d'd’ = 0 and d"d” = 0 say
that each row and each column is a complex. Before giving examples of
bicomplexes, let us associate a complex to M in order to explain the anti-
commutativity equation d'd” + d"d' =0.

Definition: If M is a bicomplex, its total complex Tot(A/) is the complex
defined by
TotM),= ] M,,,

ptqg=n
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and
d,:Tot(M), - Tot(M),-,
is given by
Z d;sq + dgq
ptq=n

Lemma 11.14: If M is a bicomplex, then Tot(M) is a complex.
Proof: Begin by drawing a picture.

q

% (p,q)
?

n

Tot(M), is the sum of all M p o lying on the 45° line p + g = n. Note that if
p+q=n, then imd, , = M,_, , and imd, , = M, ,_; in either case, the
sum of the indices 1s p + g—1l=n-1,s0 that imd, = Tot(M),- . Finally,
we must show that dd = 0. But

dd = Z(d’ + d//)(d/ + d”) = Zdrd/ + Z(d/d// + dudr) + Zd”d”,
and each of the summands is zero, by definition of bicomplex. |

The first example of a bicomplex is very general, and we state it as a very
trivial lemma.

Lemma 11.15 (Sign Lemma): Let M be a bigraded module with maps
d', d":M — M of bidegree (—1,0) and (0, —1), respectively; assume d'd’ = 0,
d"d" =0, and the diagram commutes. If d, is replaced by A, , = (—1)°d}, ,,
then (M, d’,A"} is a bicomplex.

Proof: Changing sign does not alter kernel or image, so that A”"A”" = 0.
For the remaining identity,

dp, g=18pq = (=1Pd}, go1dp = (—1)Fdy; - d
_( l)p( l)p_lAp 1, qd;q A; 1, qd;’q I

In short, a big commutative diagram whose rows and columns are
complexes can be modified by a simple sign change to be a bicomplex.
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Examples: 1. LetAdbea right R-module and B a left R-module; let
PA="—->P P "'—->P0—->0

be a deleted projective resolution of 4, and let

Q== Q Qg > Q=0
be a deleted projective resolution of B.
Define a bigraded module M by M, , = P, ® Q,; the reader may check
that M becomes a bicomplex if one defines
dpy =8,®1, and dy,=(—1)?1,® A,

where 1, and 1, are identity maps on Q, and P, respectively.

Observe that M, , = 0if p < 0 or g < 0; such a bicomplex is an example
of a first quadrant bicomplex.

2. Nowhere in the construction just given did we use the hypothesis
that the complexes were deleted projective resolutions. Thus, if A and B are
complexes, we may form a bicomplex M as above. Tot(M) is usually called
the tensor product of the complexes A and B, and one defines

A®B = Tot(M).
Thus if A = (A,A’) and B = (B,A”), then
Aa®B,= Il 4,8,

p+q=n
and
dn:(A ® B)n - (A ® B)n— 1
is given by
a, ®b,— ANa,®b, + (—1)fa, ® A'D,,
where a, € 4, and b, € B,.
3. The Eilenberg—Zilber theorem [MacLane, 1963, VII1.8] states that if
X and Y are topological spaces, then H,(X x Y)= H,(S(X)® S(Y)), where
S(X) is the singular complex of X.
4. Let A and B be left R-modules, let
PA=...__,pp_éé_,pp_l_,..._,Po__,0
be a deleted projective resolution of 4, and let
Eg =0 E°—--- p1-24, pa+1

be a deleted injective resolution of B.
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Define a bigraded module M by

M_, _,=Hom(P,, E%;
define
' d’_, -y = (A, ,)*:Hom(P,, E%9) > Hom(P,, ,, E%)
and
d”,—g =(=1P"1"Y(A)),:Hom(P,, E)— Hom(P,, E4" ).

First of all, the signs of the indices have been chosen to ensure that d' has
bidegree (—1,0) and d"” has bidegree (0, —1). Second, the sign does give
anticommutativity so that M is, indeed, a bicomplex (the reason for the more
complicated exponent will be seen soon),

Since M, , =0 for p > 0 or ¢ > 0, M is an example of a third quadrant
bicomplex.

As usual, we eliminate negative indices by raising them. Thus, write
MP4 instead of M _ , _,. In visualizing M, replace points (—p, —g) by points
(p, g), so the original picture (third quadrant) is replaced by a new picture
(first quadrant) by reflection through the origin. In particular, all arrows
retain their slope but reverse their direction.

Example: 5. If (A,A’) and (C,A") are arbitrary complexes, define a
bicomplex M having modules

M, ,=Hom(4, C),
and differentiations
dpg= (AL, )*:Hom(4_,,C)— Hom(4_,,,,C)
and
dy,= (=11 (AY), :Hom(4_ ,,C,)— Hom(A _,,C,_,).

Because interesting maps between complexes usually involve infinitely many
indices (see Exercise 11.2), Tot(M) is not the reasonable complex to associate
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to M (but see Exercise 11.14). Define
Hom(A,C), = [| Hom(4_,,C)
p+g=n
Thus, f € Hom(A, C), is a family of maps f = { f,,,}, where f, ,:4_,— C, and
p + q = n. Observe that a harmless notational change yields
Hom(A,C), = [] Hom(4,,C)= H Hom(4,,C,..),
g=-p=n

which is precisely the maps A — C of degree n as usually defined.

Definition: If (A,A’) and (C,A”) are complexes, then Hom (A, C) is the
complex defined by
Hom(A, C),,)‘= [ Hom(4-,,C)
p+g=n

and
D, :Hom(A, C), —» Hom(A, C), -,

is given by
f={foad = Duf = {gp,q}»
where g, ,:A_,— C, (With p + g = n — 1) is defined by

gp,q = (_ 1)p+qu+ l,qA,“P + A(;,—F 1fp,q+ 1

It is a mechanical check that Hom(A, C) is a complex. Moreover, the defini-
tion of D, is just
D= JI [(=DP AL+ (A+ 1]

ptg=n-1

= [I [(=1*%,.,, ,+ (=) P D=tgy ]

ptg=n-1

== J1 g+ dpp.

ptq=n

Exercises: 11.14. If A is a positive complex (e.g., a deleted projective
resolution) and C is a negative complex (e.g., a deleted injective resolution)
then Hom(A, C), = (Tot(M)), (where M is the bicomplex with M, ,

Hom(4.- ,,C,)) and the differentials agree up to sign. Conclude that, in thlS
case

H, (Hom(A,C)) = H (Tot(M)).
(Hint: For each , there are only finitely many (p, g) with p + g = n.)
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11.15. If A, B, and C are complexes, there is an isomorphism of com-
plexes

Hom (A ® B,C) = Hom(A,Hom(B, C)).

Here is the strategy. Given a bicomplex M, consider the complex Tot(M).
There are two rather natural filtrations of Tot(M), each of which gives rise to
a spectral sequence. If M is either first or third quadrant, then we shall see
both spectral sequences converge to H,(Tot(M)). Moreover, the E? terms of
these spectral sequences can be computed explicitly, and, in each case,
E,is E, , for large r.

We now give the filtrations 'F and IF of Tot(M), where M is a bicomplex.
Recall that Tot(M), =[], +4=»

Definition: The first filtration 'F is defined by
(FrTot(M)), = LI M; .

i<p

A picture will make this clear.

) %

The degree n term of 'F? Tot(M) consists of the sum of all M e With (p,q)
on the 45° line p + g = n and to the left of the vertical line. To check that
'FP is a subcomplex of Tot(M), recall that d = 2'(d + d"). Thus,

dM;, n-) =(d +d)WM; poy =d'M; o + d"M,
CMi-l,n—i®Mi,n—i—1C(IFPTOt(M))rh-l:

fori—1<i<p.

Definition: The second filtration "F is defined by

("FrTot(M)), = [ m

n—j, e
isp

A picture will make this clear.
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The degree n term of "F? Tot(M) consists of the sum of all M, , with (p,g)
on the 45° line p + g = nand below the horizontal line. One checks, as above,
that "F? is a subcomplex of Tot(M). (Be alert to a possible danger that will
be overcome: p signals the first index, but we are using it to restrict the
second index.)

Lemma 11.16: (1) If M is a bicomplex, then both filtrations of Tot(M)
are bounded if and only if each 45° line p + q = n meets M in a finite number
of points (i.e., there are only finitely many such (p, q) with M, , # 0).

(il) If M is either a first or third quadrant bicomplex, then both filtrations
of Tot(M) are bounded.

Proof: (i) Fixa45°line p + q = n. The first filtration is defined by moving
a vertical line to the right, and collecting all the terms in back of it. If the
45° line meets M in a finite number of points, a vertical line can be drawn
to left of all of them (giving s(n) ) and a vertical line can be drawn to the right
of all of them (giving t(n)). Similarly, the second filtration is defined by
moving a horizontal line upwards, and collecting all the terms below it.

(i) This is obvious from the first part. However, we can give explicit
formulas for s(n) and t(n). If M is first quadrant, then s(n) = —1 and t(n) = n
works for both filtrations; if M is third quadrant, then s(—n) = —n — 1 and
t(—n) = 0 works for both filtrations. |i

Theorem 11.17: Let M be a first or third quadrant bicomplex, and let {'E"}
and {"E"} be the spectral sequences determined by the first and second filtrations
of Tot(M), respectively.

(i) For each p, q, we have 'EY, ='E}, | for large r; similarly for "E®,.
() 'E},= H(Tot(M)) and 'E2,,= H,(Tot(M)).
Proof: Lemma 11.16 and Theorem 11.13. ]

We have created notational monsters, 'E}, , and E}, ; (though they could
be worse; one corner is still undecorated), but the next two theorems will
replace them by something less ugly.
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Having two spectral sequences converging to H,(Tot(M)) is, of course,
an advantage. With Theorem 11.17, we may contemplate calculating factor
modules of H (Tot(M)) as certain subquotients of E?; obviously, we should
at least be able to compute E>. Let us consider the first filtration (we omit
the prescript I). Fix n and recall (F* Tot(M)), = | |;., M; ,-;; the differential
d is, of course, the restriction of the d1fferent1a1 d=Y(d +d") of Tot(M).
Now (F?/F?P~Y), is just M, ,, where p+ g =n, for FZ~! consists of all

(r.q)

p-1 p n-1 n

terms on p+ ¢ =n to the left of the vertical line at p — 1, while F?
consists of all such points to the left of the vertical line at p. Also,
d, M, )< M, «®M, ., (sinceonlyd, , + d, , arerelevant). However,
M, ,< F” 1, so that only d” survives- m F?/F?~! We conclude that
F?/FP- % is the pth column with differential d”. Therefore

E,,= H(FP/FP~1,d)
=ker(dy My q— M, - )im(dy, 4412 My, g1 = M, 0) = H(M,, ., d").
A better notation for E, , is H}, (M).
For each fixed q, H ”, (M) is a complex: the differential d" induces maps
2:H: (M)~ H_, (M) by
a;’-q: [Zp,q] i [d;’squ-q]’
where [ ] denotes homology class. It is a routine exercise (left to the reader)
that d' is well defined. Taking homology of Hj, (M) with respect to d’ gives
a bigraded module {H,H) (M)}, the first iterated homology of M with

respect to the first filtration. In short, first take homology of the pth column,
then take homology of its rows.

Theorem 11.18: If M is a first or third quadrant bicomplex, then
B}, = HH; (M) =>H Tot(M)),

where {*E"} is the spectral sequence arising from the first filtration.

Proof: 1In light of Theorem 11.17, it suffices to compute E*. We have
already verified that E,, = H, (M). Now invoke Exercise 11.13 which
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identifies d* = By with the connecting homomorphism 9 arising from the
short exact sequence of complexes

0— FP=Y/Fp=2 % pr/Fp=2 7 Fp/Fr1_, ()

(where F = 1F). Consider this sequence in degrees n=p + gandn — 1:

T
M, @Mp-1 441 >M,,—0
4 d

0-M,_ ————)Mp La@®M,_

1,9

(actually, there should be a third term, M,_, ., in im(d’ + d"), but it be-
comes 0 upon dividing out F?~?). Let z€ M, be such that x = [z] € H, (M);
thus d"z = 0. Choose 7~ 'z = (z,0). The formula 3 =i~ Yd" + d")n~ ! now
gives

ox=[i"td'z),

since d"'z = 0. This says d* = 9 is induced by &', for i is merely an inclusion
map whose presence guarantees the element lies in the correct place. Thus
= H(E,d') = H'H", the first iterated homology. |I

Let us evaluate the E* term arising from the second filtration of Tot(M).
It is at this point that a little trick enters, necessitated by the “danger alert”
mentioned when the second filtration was defined.

Definition: If M = {M,,,d, ,,d;,} is a bicomplex, its transpose ‘M is the
bicomplex {'M, ,, A, ;, A} ;}, where

‘M, =M, ,, A, ,=dy

P2

"o At
and .Ap,q - dq,p

It is a simple matter to check that 'M is, indeed, a bicomplex; obviously,
'M is just M reflected about the line p = g. There are two elementary, but
important, observations. First, Tot(*M) = Tot(M) as complexes, ie., they
have the same nth terms and the same differential d = ) (d' + d") =) (A" + A").
Also, the second filtration of M is the first filtration of ‘M.

Theorem 11.19:  If M is a first or third quadrant bicomplex, then
"EZq = HyHy (M) = H,(Tot(M),

where {UE"} is the spectral sequence arising from the second filtration.
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Proof: Since the second filtration of M is the first filtration of ‘M, Theorem
11.18 gives H H, (‘M)=- H,(Tot(‘M)) = H,(Tot(M)) (our first observation
above). i

Now Hj (‘M) =kerA, fimA, ., =kerd, ,/imdy,; ,=H; (M) Fi-
nally, A" = 4" yields

H H, (‘M) = H,H, (M). 1

The second iterated homology H,H, (M) first takes homology of the
pth row, and then takes homology of its columns. It is important that E>
terms can be computed, so let us review the procedure. First filtration:
fix p, so that H, , = H,(M,,); now regard this as a complex and take
homology H,H, (M). Second filtration: relabel the modules as M, ,; fix p,
so that H, (M) = H, (M, ,); now compute H,H, (M).

Although both spectral sequences converge to H,(Tot(M)), the corre-
sponding filtrations and factor modules need not be the same, ie., it is
possible that 'EP, 2 "Ep .

Remark: If M is a third quadrant bicomplex, we have already mentioned
that one gets rid of negative indices by raising them: M_, ., = M?* The
same convention applies to the bigraded modules E’, except that r does not
change sign: thus

Er

— FP4
g = EP4.

The differential d,: E, — E, now has bidegree (r,1 — r) and filtrations decrease:
F,> F_,, for all p. The reader is requested to restate the definition of
convergence EP? = H"(Tot(M)) for the spectral sequences arising from either

14
filtration of Tot(M) when M is a third quadrant bicomplex. The proof of the
next lemma will illustrate this sign change and its notational consequences.

Definition: Let M be a bicomplex; {E"} is a usnal spectral sequence of M
if it is the spectral sequence arising from either the first or second filtration
of Tot(M).

The following simple situation arises often enough to deserve a name.

Definition: A usual spectral sequence {E'} of a first or third quadrant
bicomplex collapses if E2 , = 0 for g # 0.

Thus, collapsing says the bigraded module E? can have nonzero terms
only on the p-axis.

Lemma 11.20: Let {E"} be a usual spectral sequence of a bicomplex M,
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where M is first or third quadrant. If {E"} collapses, then
Ep, =E; all pg,  and  H,Tot(M))= EZ,.

P4’

Proof: The differential d” on E" has bidegree (—r,r — 1), so that the arrow
in the p-g plane representing 4}, (connecting (p,q) to (p —r,g + 71— 1)}
has slope (r — 1)/—r. Since the only nonzero terms lie on the p-axis, d" =0
for r= 2, for every dj,, either starts or ends at a 0 module. Therefore,

E'=kerd" =kerd"/imd" = H(E") = E'*! for all r > 2, and so E? = E™.
If M is first quadrant, there is a filtration ® of H,(Tot(M)) with

0=0"'H,c--<®H,=H, and @FH, /0" 'H,=~E} =E.,

where n = p + g. As there is only one such nonzero term, namely, EZ,, the
filtration ® has only one nonzero factor module and H,(Tot(M)) = H, = EZ,.

If M 1s third quadrant, there is a filtration ¥ of H_,(Tot(M)) (Lemma
11.16(1i) gives s(—n) = —n — 1 and t(—n) = 0) with

0=¥""'H ,<c¥'"H_ ,c---c¥ H_ ,c¥°H_,=H_,
and
YPH_/¥YP 'H_, = EY, =E%,.
Raise indices and rename the filtration @, so that ®? = ¥™7, We now have
H" = q)OH"D q)lHnD e (DanD(Dn+lHn= 0
and
QPH"/OP* ' H" = E®, _ = E?

= FPA
—pq E5*.

Again, there is only one nomzero factor, namely, E%® =~ ®"H"; that all
previous factors are 0 says H" = O°H" = O'H" = - = ®"H" and so
H'(Tot(M)) = E%°. |

It is necessary to see the index raising in boring detail one time; we shall
not be so tiresome again!

Remark: There is a similar result to Lemma 11.20 if 2 spectral sequence
collapses on the g-axis.

Let us use spectral sequences to give another proof of Theorem 7.9:
the definition of TorX(4, B) is independent of the variable resolved (we shall
also obtain a bit more mnformation). What is more natural than to resolve
both variables simultaneously?

Theorem 11.21: Let P, and Qg be deleted projective resolutions of a right
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R-module A and a left R-module B, respectively. Then
H,P,®B)=~H,(P,®Qp = H, (AR Qp)
Proof: Consider the first quadrant bicomplex M of Example 1:
{Mp,q} = {Pp ® Qq}’

so that Tot(M) = P, ® Q3.

The first filtration has E? term the iterated homology H,H; (M). Now
HY (M) =Xkerd,,/imd} .1, and this is just the gth homology of the pth
column P, ® Qg. Since P, is projective, hence flat,
0 if g>0,

HopoM) = {PP®B if g=0,

for H} o = coker(P, ® Q; - P, ® Qo) = P, ® B. It follows that
H,H (M) = H,(P, ® B)

P

and

L it g>0,
PO \HP®B) i g=0;

thus, this spectral sequence collapses, and
HP,®Qp = H,(Tot(M)) = lEf,o = H,(P,® B).

A similar argument works for the second filtration, now using the fact
that each Q, is projective, hence flat. Thus

nge _ {0 if ¢>0,
HA®Qs if ¢=0,

pg
this spectral sequence also collapses, and
H,(P,®Qp) = H,(4A® Qp). |

We have actually proved more (namely, Corollary 7.10), for we only used
projectivity of the modules P, and @, to guarantee they are flat.

Corollary 11.22: If P, and Qp are deleted flat resolutions of Az and zB,
respectively, then

HP,®B)= H((P,®Qp = H,(4QQp).

Exercises: 11.16. Let P, be a deleted projective resolution of 4, and Eg
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be a deleted injective resolution of B. Prove that
H'(Hom(P 4, B)} =~ H'(Hom(P,,Eg)) = H'(Hom(4, Ep))

using the third quadrant bicomplex of Example 4 and Exercise 11.14.

11.17. Let M be a first or third quadrant bicomplex all of whose rows
(or columns) are exact. Prove that Tot(M) is acyclic. (One can prove this
without the spectral sequence machine.)

11.18. Let G = G' x G" be a direct product of groups. If P’ is a deleted
G'-projective resolution of Z, and P” is a deleted G"-projective resolution
of Z, then P’ @ P is a deleted G-projective resolution of Z ® Z = Z. (Hint:
Use Exercise 5.5: there is a ring isomorphism ZG = ZG' ®,ZG")

11.19. If G 1s a free abelian group of finite rank r, prove that cd(G) < r.
(Hint: Use induction on r and Exercise 11.18 to construct a G-projective
resolution of Z of length <r.)

1120. Let ¢:R — R* be a ring map and let 4 be an R*-module. Prove

pdg(A4) < pdg.(4) + pdr(R*).

(Hint: Take an R*-resolution of 4, then take an R-resolution of each term,
and construct a bicomplex.)

The added information obtained in Theorem 11.21 allows us to complete
the discussion of anticommutativity of iterated connecting homomorphisms;
we had reached the point, in Theorem 7.26, that a 3 x 3 commutative
diagram of complexes having exact rows and columns yields a certain anti-
commutative diagram involving the homology of its four outside corners.

Theorem 11.23:' Let 0> A'—> A — A" — 0 be an exact sequence of right
R-modules, and let 0— B’ B — B’ — 0 be an exact sequence of left R-
modules. For each n = 0, there is an anticommutative diagram

TOI‘,,(A”, BH) —_— Torn _ 1(AN, B/)

Tor,- (4, B") —————————Tor,_,(4’, B

where the maps are connecting homomorphisms.

Proof: By Lemma 6.20, there are deleted projective resolutions P/, P, P
of A, A, A", respectively, such that 0 — P’ — P — P” — () is an exact sequence
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of complexes. Similarly, there are deleted projective resolutions Q’, Q, Q" of
B’ B, B”, respectively, such that 0 — Q" — Q — Q" — 0 is an exact sequence
of complexes. There results a commutative diagram of complexes having
exact rows and columns

(one has such a diagram in each degree n, for tensor is a bifunctor and each
P, P,, P., Q. etc, is projective, hence flat). This is exactly the situation
to which Theorem 7.26 applies: we obtain the anticommutative diagram
with connecting homomorphisms

HEFP'®Q)— > H,.,(P"®Q)

H, ,P®Q)———H, ,(PPR®Q)
Theorem 11.21 allows us to identify H, (P’ ® Q") with Tor, (A", B"), etc., and
the result follows. |
The dual result holds for Ext, using Exercise 11.16 in place of Theorem
11.21.

Theorem 11.24: Let 0> A" > A—->A"->0 and 0-C' - C—-C"—0 be
exact sequences of left R-modules. For each n > 0, there is an anticommutative
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diagram

Ext'(C’,A") ——————— Ext"*}(C’, 4)

Extn+ 1(C//’ A//) S EXt"+2(C”,A’)

where the maps are connecting homomorphisms.

There is a nice application of this, but it is better if we first present a
general lemma.

Lemma 11.25: (i) A commutative diagram of modules

Ce—It»p

A ¢—————B
J

gives rise to a complex X, where
X=0-D-L"2 coB- a0
(i1) If iismonic, then
H,(X) = ker(j:coker g — coker i).
(1)) If i and j are monic, then
H,(X) = (imi n imj)/im if.

Proof: (i) Ifwereplace g by —g, we obtain an anticommutative diagram
which~may be regarded as a first quadrant bicomplex M (the displayed
terms are at positions (0,0), (0, 1), (1,0), and (1, 1); all other terms are 0), and
Tot(M) is precisely X.

(i) Let us compute the iterated homology H,H/ (M), which may be
displayed as a 2 x 2 matrix. Since i is monic,

0 kerg
cokeri cokerg

Hy (M) = [
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and
0 e
” 2 — " - - i
Epq = HyH, (M) L ker(j:coker g -» coker i)]

Now E}, =0 implies E%,, =0 for all r > 2, since Ej ; is a subquotient
of E} ; therefore, Ej, = 0. We know that E? o =kerj; what is E?,? The
differential d": E" — E’ has bidegree (—r,r — 1), so that

Efol =kerd] o/imdy, 1,

If r = 1, both maps d} , and d}, ,,; _, are O (the first ends at 0, the second
begins at 0, for it is only a question of being outside the little 2 x 2 square).

Therefore EZ , = E},=---= E?, (Exercise 11.12).
Further, Eg .= H,(X). In particular, there is a two-step filtration of H(X)

with factor modules E; = 0 and EY, = ker j. Therefore, H,(X) = ker j.
(1) Recall that

X=0-Dp-L22 cpB-tL,

i+]

A-0,
so that
H(X) = ker(i + j)/im(f, —9g).
Define ¢:ker(i + j) —imi n im j by
@:(c, b) — ic.

Since (¢,b) eker(i+j), ic+jb=0 and ic = —jbeimi n imj. It is clear
that ¢ is epic and im(f, —g) < ker ¢. Therefore, ¢ induces an epimorphism
@:ker(i + j)/im(f, —g) - (imi N im j)/im if
(just compose the epimorphism onto imi  imj with the natural map

mod if). A simple calculation, using i and j monic, shows that @ is monic,
hence is an isomorphism. |i

Theorem 11.26 (Cartan-Eilenberg): Let Ag and zB be modules, and let

0-K35P—->A-0 and 0——»L£>Q——>B—>0 be exact, where P and Q are
fat. Then

(1) Tor A4,B)= Tor,_,(K,L) for n> 2;
(i) Tor,(4, B) = ker(x ® B);
(iii) Tor,(4, B) = [im(x ® 1p) N im(l, ® B)]/im(a ® B).

Corollary 11.27:  Let R be a ring with right ideal I and left ideal J. Then
(i) Tor,(R/I,R/J) = Tor,_,(I,J) for n > 2;
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(i) Tor,(R/I,R/J) = ker(I ® J — IJ);
@) ToryR/LR/Yy=(Un I/

Proof: This follows immediately from the Theorem applied to the exac]
sequences 0 > > R—-»R/[-0and0—-»J—->R->R/J-0. |

As an instance of this, let R be a commutative local ring with maximal
ideal m and residue field k = R/m. Then Tor{(k, k) = m/m?. Of course, ong
may prove this more simply.

Proof of Theorem 11.26: (i) Theorem 11.23 gives an anticommutative
diagram of connecting homomorphisms:

Tor, (4, B) ————— > Tor,_,(4,L)

Tor, _ (K, B ————> Tor,_ (K, L)

If n> 2, these maps are isomorphisms, for all the bordering terms arg
“honest” Tor’s (i.e., not Tor,) which vanish because a variable is flat. There
fore, forn > 2

Tor,(A4, B) = Tor,_,(K, L).

(i) There is a diagram with exact rows and columns that is almost
commutative (the upper left square is only anticommutative):

0 0

v v

0————> Tor,(4, B) ——— Tor (K, B) —————— 0

v A

0————> Tor,(4, L) P K@L—22% ,peL
1K®ﬁ l‘/
0 SK®Q————PRQ

It follows that
Tor,(4,B) = Tor,(4, L) = ker(x ® 1)
=ker(y e (¢ ® 1;)), since y is monic,
= ker(a« ® p).
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(i1i) Apply Lemma 11.25 to the commutative diagram

1 .
P®L‘—q—®L—mK®L /

1@ B 1x®p

PO g, K®¢Q

Since P and Q are flat, the maps i = 1, ® f and j = « ® 1, are monic. But
the map j:coker(lx ® f)— coker(lp ® B) is just « ® 15, whose kernel is
Tor,(4, B). The final part of the Lemma gives the desired isomorphism. |

Exercise: 1121, Let0—K-5P—4—0and 0—>B—E2S L— 0 be exact
sequences with P projective and E injective. Then

(@) Ext%(4,B)=Ext"" %K,L)forn> 2;
(ii) Ext?*(4,B) = coker Hom(a, f);
(iii) Ext!(4,B) = ker Hom(x, f)/(kero* + ker ).

KUNNETH THEOREMS

The Eilenberg—Zilber Theorem (Example 3) poses the problem: given
complexes A and C whose homology is known, find H(A ® C). Even in the
special case that C consists of a module C concentrated in degree 0 (ie.,
C,=Cif g=0and C, = 0 otherwise), the problem is not simple. If one
further assumes R is a hereditary ring and each term 4, of A is a projective
R-module, then the solution is the Universal Coefficient Theorem 8.22. To
indicate why the general problem involving two complexes is difficult, even
with the extra assumptions just mentioned, let us see what goes wrong with
one’s first idea of considering the bicomplex M of Example 2 having
M, ,=A,®C,; after all, Tot(M) = A® C. We compute 'EZ = H,Hj (M).
The pth column of M is 4, ® C; since 4, is projective, hence flat, we know
that H(4,® C)= 4, ® H(C) (Exercise 6.4: homology commutes with
exact functors) Hence H), (M) = 4, ® H,(C). The Universal Coefficient
Theorem now gives

E},=H,AQH/(C)) = H,(A) ® H(C) ® TorX(H,_,(A), H,(C)).

Though it is true that E* = H(A ® C), we are essentially helpless because we
cannot compute E* (the other spectral sequence, arising from the second
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filtration of A® C, is worse: the Universal Coefficient Theorem may not
apply, and one may not even compute E?). Indeed, there seems to be just
one meager result that can be salvaged: if A is projective, ie, each 4, is
projective, and if either A or Cis acyclic, then A ® C is acyclic (either observe
that Ef,,q = 0, or use the much more elementary Exercise 11.17).

We give two solutions to the problem. The first, strong enough for use of
the Eilenberg-Zilber Theorem, does not use spectral sequences (the proof
has been deferred to this chapter since it involves bicomplexes and graded
modules). The second, more general, solution uses spectral sequences, as
well as a special case of the first (Corollary 11.29). It also illustrates a second
technique in using spectral sequences. Our first illustration treated a case in
which both spectral sequences collapse; this proof is an instance in which
only one of them collapses.

Here is a collection of easy exercises which will be used in the forthcoming
proof.

Exercises: 11.22. Consider the diagram of modules

0 Wr\ > X > Y V4
~
\\ //
~ ~
ﬁ\\ /{
SA LT
H

in which the row and the triangle are exact. Prove that there exist unique
maps a:Z — H and f:H — W making the outer triangles commute, and that
there is an exact sequence

>0

O—)ZiHiW—)O

The result remains true if one replaces “modules” by “graded modules”.

11.23. Forfixed k > 0and complexes A and C, show there is a bicomplex
M with M, , = Tor,(4,,C,). (Use the facts that Tor, is a bifunctor that is
additive in each variable, together with the Sign Lemma 11.15.) Denote the
complex Tot(M) by

Tor, (A, C).

1124, If0—-A" - A—A”—0is an exact sequence of complexes, and
if C 1s a complex, then there is an exact sequence of complexes

-+ Tor,(A,C) — Tor,(A”,C) > A’ ®C—>A®C— A" ® C—0.

(Use naturality of connecting homomorphisms and the fact that each Tor,,
k = 0, is a bifunctor.)
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11,25. If A is a complex, then its cycles Z = {Z,} and boundaries B =
{B,} are subcomplexes having zero differentiation (ie., each d, = 0).
11.26. Let(A,A)and (C,d) be complexes. If A has zero differentiation,
then the differentiationin A®@ Cis {+1®d,}.
11.27. Let A be a flat complex (i.e., 4, is flat for each n) having zero
differentiation. Then, for any complex C,
H(A® C)=(A® H,C)),,

where H,(C) is construed as a complex with zero differentiation.

Theorem 11.28 (Kiinneth): Let A be a complex of right R-modules whose
subcomplexes of cycles Z. and boundaries B are flat. Given a complex C, there
is an exact sequence for each n

0— [ HA)@H(C)>H,AC)S [I Torf(H,A)H,C)~0,

ptag=n ptg=n-1

where a:[a] ® [c] > [a®c], a€Z,A), ce Z,(C). Moreover, o and f are
natural in A and C.

Proof: (A. Heller): The usual exact sequences
0-2Z,-A4,-B,_;,—0
give rise to an exact sequence of complexes
0-Z5ALB" -0,

where (B*), = B, ;. Obviously, B flat implies B* flat, so Exercise 11.24
gives an exact sequence of complexes

2L A@C-2LBY@C—0.

0-2Z2®C——

There results an exact triangle of graded modules in which ¢ has degree —1
and the other maps have degree 0:

H,(B" ®C) ——2—— H,(Z®C)

;&A

H,A®C)

Note that H,B* ® C) = H,_,(B® C). Also, Exercise 11.27 permits us to
write

H,B*®C)=B*®H,C) and HI(Z®C)=2Z®H,C),
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where H,(C)is construed as a complex having zero differentiation. Rewriting
with these two observations in mind gives an exact triangle of graded modules

B® H,(C) ————Z® H,(C

(t% ‘A

H,(A®C)

where we now regard (= ® 1), as having degree — 1 and 9 as having degree 0.

The next claim is that the connecting homomorphism 4 is the map induced
by the inclusion B ¢, Z. Let A be the differentiation in A, let d be the differen-
tiation in C, and consider the defining diagram for the connecting homo-
morphism (having replaced B* by B)

A®C,—& @ 0),_,

Z®Chy-y————>ABC)-,

Ignoring needed summation, a typical cycle in (B ® C),- has the form
b®c, wherebeB,_,,ceC,,p+q=nlfAa=>b, then
0b®)=j"'"Da®c)
=j M Aa® c+ (—1)Pa® do)
=70 ®c+ (-1 ®d)(a® ).
But j7! tells us to regard b® ¢ + (—1)’(1 ® d)(a® ¢) in (Z ® C),—;, and
Exercise 11.26 tells us this element is homologous to b ® c¢. The claim is

established.
Finally, consider the exact sequence of complexes

0-B—-Z—-H,(A)—0,

where H (A) is regarded as a complex with zero differentiation. Since Z is
flat, by hypothesis, there is an exact sequence of graded modules to which we
affix our exact triangle (the maps B ® H,(C) — Z ® H,(C) being the same):

Tor¥(H,(A), H(C))—> B H (C)—Z® H (C)—>H, (A) ®z H,(C)—

(n ®VN /

H,(A®C)
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Exercise 11.22 applies at once to give an exact sequence of graded modules
0— H,(A)® H,(C)> H,(A® C) % Tork(H,(A), H,(C)) - 0

in which « has degree 0 and f§ has degree —1 (our substitution of B for B*
forces us to regard (r ® 1), as having degree —1). Translating to ordinary
modules, for each » there is an exact sequence

0- [ HA)@HO)SHMA®O% [[ Tork(H,A)H,C))~0.
ptag=n ptag=n-1

We let the reader verify the formula for « and the naturality of « and f,
using his solution of Exercise 11.22. |

Corollary 11.29: Let A be a complex such that 7. = Z(A) and H(A) are
projective. For all n, and every complex C,

I HA)®H/C)=H,ARC),

ptg=n

the isomorphism being the map o of Lemma 11.28.
Proof: Since H,(A) is projective, the exact sequence
0-B,—»Z,-~H(A)—-0

splits. Thus B, is projective, being a summand of Z,, and so the complexes
Z and B are projective, hence flat. The hypothesis of Theorem 11.28 holds,
and the Tor term in its conclusion vanishes because H,(A) is projective. |

The next result will be used in proving that the Kiinneth exact sequence
splits when R is hereditary.

Lemma 11.30: If R is hereditary and (A, A) is a complex of R-modules, then
there exists a projective complex P and a chain map f:P— A such that
S :H(P)— H,(A) is an isomorphism for every n.

Proof: Fix n, and write Z, < A, as a quotient of a projective V, say,
@:V—Z,. Define W = ¢~'(B,) = V, and consider the diagram
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where j is inclusion. Since R is hereditary, Corollary 4.18 shows W is projec-
tive, and there thus exists ¢’ making the diagram commute. Regard the
top row as a complex X®, where

Vv if p=mn,
XM, =<w if p=n+1,
0 otherwise.
The maps (¢', @) define a chain map f®@:X® — A; moreover, H,(X") =0
if p 5 n, while
H,(X®™) = coker j = V/W = Z,/B, = H,(A).

The lemma is proved by defining P = [ [, X® and f = [ [,/®, and applying
Exercise 6.7. |

Theorem 11.31 (Kiinneth formula): Let R be a hereditary ring, and let A
and C be complexes with A flat. There are natural exact sequences

0— ]I HA®HCO>HA®C)~ ][] Torf(H ,(A), H(C)) -0
ptg=n prq=n-1
that split.
Proof: Since R is hereditary (hence semihereditary), Theorem 9.25 says
that every submodule of a flat module is flat. The hypothesis of Theorem 11.28
holds, and we have the desired exact sequence.
To prove the sequence splits, let us first consider the special case A and
C projective. For each p, the exact sequence
0-+Z,-A4,-B, ;-0
splits, for B,_; is a submodule of the projective module 4,_,, hence is
projective (Corollary 4.18). Therefore
4,=2,87, Y, =B, ;.

The natural map Z,— H,(A) defined by a +— [ a] thus extends (by annihilating
Y,) to amap ¢,:4,— H,(A),s0 ¢,(a) = [a] for every cycle a € Z,,. There are
similar maps ¥,:C, = H,(C). These maps induce

@ ®¢(A® C)n—’I_.[p‘l-q:n Hp(A)® Hq(C):

furthermore, ¢ ®  annihilates boundaries because ¢, and y, do. We
conclude that ¢ ® ¥ induces a map

@@ HA®C)~ [[ HA)®HL(C)

p+q=n
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by
[ap ® cq] > 0,0, ® lﬁqu = [ap] ® [Cq]-
IfueZ, (A)and v e Z,(C), then
@@V [u]® D =@V [u®v] =pu®yp=[u]®[v]

Therefore (p ® ¥),.« = 1 and the sequence splits.
For the general case, Lemma 11.30 provides projective complexes P and
Q and chain maps f:P — A and g:Q — C such that

S H (P) S H,(A) and g H Q)= H(C)

for all p, q. Naturality of « and 8 gives a commutative diagram with éxact
rOWS

- 11HEP) ® HQ) —%— HP ® Q) —L— ] Tor(H(P), HQ) ——0

[ ®4. (f @9 Tor(f,,9+)

~1H(&) ® H(C) —5— H(A ® ) —— [ Tor(H(A), H(C)) ——0

Since f, and g, are isomorphisms, the outer maps are isomorphisms and
hence, by the Five Lemma, the middle map is, too. Splitting of the top
sequence now implies splitting of the bottom. |

Remarks: 1. If X and Y are topological spaces, their singular complexes
S(X) and S(Y) are free complexes over Z, so the Kiinneth formula gives an
expression for H (X % Y) in terms of H,(X) and H,(Y). In particular, if X
and Y are compact triangulable subspaces of euclidean space, each of their
homology groups is f.g.,, and so one may compute the homology groups of
X x Y explicitly (for G ®z H and Tor%(G, H) are computable when G and H
are f.g.).

2. Theorem 11.31 generalizes the Universal Coefficient Theorem 8.22 by
assuming one complex is concentrated in degree 0. Notice also that one only
needs the complex flat, and not projective as in Theorem 8.22.

3. The splitting of the exact sequence need not be natural.

4. Although all the preceding lemmas dualize, we only state the dual of
the last result.

Theorem 11.32 (Kiinneth formula): Let R be a hereditary ring, and let A
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and C be complexes with A projective. Then there is a natural exact sequence
0— J] Exti(H,A),H,C))— H'(Hom(A,C))
g—p=n+1
— ]I Hom(H,A),H,C))—0
g-p=n

that splits.

Exercises: 11.28. Assume R is commutative hereditary and A4, B, C are
R-modules. Writing Tor for Tor¥, prove that

Tor(4,B) ® C® Tor(A® B,C) = A ® Tor(B,C) ® Tor(4,BR C)
and
Tor(Tor(4, B),C) = Tor(A4, Tor(B, C)).

(Hint: Use the Ktnneth formula 11.31 and the associative law for tensor
product applied to deleted projective resolutions of A, B, C, respectively.)

11.29. Assume R is commutative hereditary and 4, B, C are R-modules.
Writing Ext for Ext} and Tor for Tor¥, prove that

Hom(Tor(4, B), C) ® Ext(4 ® B, C) = Hom(4, Ext(B, C))
@® Ext(4, Hom(B, C))

and
Ext(Tor(A, B), C) = Ext(4, Ext(B, C)).

(Hint: Use the Kunneth Formula 11.32 and the adjoint isomorphism,
Exercise 11.15, applied to suitable deleted resolutions.)

11.30. Let G be an abelian group with Hom(Q, G) = 0. Such a group is
called cotorsion if G = Ext}(4, B) for some abelian groups 4, B. Prove that G
is cotorsion if and only if Ext3(Q, G) = 0. (Hint: For necessity, use Exercise
11.29; for sufficiency, show G = Ext1(Q/Z, G).)

We seek a generalization of the Kiinneth theorem, but we have already
seen that the “obvious” bicomplex M having M, , = A4, ® C, is too com-
plicated. A constant theme in homological algebra is to replace a module by
a resolution of it. It is thus quite natural to replace a complex by a resolution
of it, and then use this resolution as an ingredient of a bicomplex.

Definition: A projective resolution of a complex C is an exact sequence of
complexes
0<—C<—MO£M1<‘£MZ<—-- .

in which each complex M, is projective.
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A projective resolution of C is thus a large commutative diagram of
projective modules M, , whose rows M, are complexes and whose columns
are exact:

v v d’ v d’ v

M, = < Mo, ¢ M, < M, ¢

. 4" 4" e

v v v v
=% Mg o ¢ Mo Mo

M, 0,0 7 1,0 7 2,0

v v A4 v

C = % CO € C1 € CZ L s

v v v v

0 0 0 0

If we delete C and adjust signs via the Sign Lemma 11.15, then M =
{M,,,d’,d"} is a bicomplex.

We want to make the bicomplex M as nice as possible. Let Z;, B;, H
denote the complexes (with zero differentiation) consisting of the cycles,
boundaries, and homology, respectively, of the gth row M, (the single prime
reminds one of rows). Each of these determines a bicomplex. For example,

0-~Z(C)—Zy +~Z, +~Z5 -+

has the following picture:

v v v
N 0.1 ARE. 2,1 ¢
d’ d’! d!/
w v v
¢ 0,0 1,04 Z50¢
v £ 2 -
¢ Zy(C) Z,(C)+ Z5(C) <

The vertical maps d”’ are just restrictions of the vertical maps in M. It is
foolish to worry about the horizontal maps, for they are all zero. Thus, it is
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only the columns
VA (O) R AP AR AR

that are of interest.

Definition: A proper projective resolution of a complex C is a projective
resolution

0—Ce=My«M; M, -
whose corresponding bicomplex M has the following property: for each p,

(D) OC,e=M,oM,;« -,
(i) 0Z,(C)Z o2, 1",
(i) 0B C)«B, o« B, «" ",
and
(iv) 0H(C)«H, o« H, « -
are projective resolutions.

Of course, condition (i) is part of the definition of projective resolution
of C.

Lemma 11.33:  Every complex C has a proper projective resolution.

Proof: As usual, the complex C determines two families of short exact
sequences:

0—~H,«Z,<B,«0 and 0«B, 1<C,«Z,«0.

For each p, choose projective resolutions H, , and B, , of H,(C) and B,(C),
respectively. The Horseshoe Lemma 6.20 provides a projective resolution
Z,, of Z(C) that fits in the middle. Now use the second short exact
sequences, these resolutions of B,_;(C) and Z,(C), and the Horseshoe
Lemma to obtain projective resolutions M, of C, that fit in the middle.
Defining M, , —~ M, , as the composite

I ’
My, =By 1, g2y 1,07 M1,

we have constructed a proper projective resolution of C. ||

Of course, there is a dual notion of proper injective resolutions, and the
dual proof shows they always exist.

Theorem 11.34 (Kiinneth Spectral Sequence): Let A and C be positive
complexes with A flat. There is a first quadrant spectral sequence

EZ = ][] Tor,(HA) H,C)) = HA®C).

s+i=gq
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Proof: Take a proper projective resolution 6f C with corresponding
bicomplex M (which is first quadrant since C is positive). Form a new
bicomplex K with
K,q,= H A @M,
stit=p

and obvious differentiations: d” is built from the differentiation in A and
the vertical differentiation in M ; d’ is built from the horizontal differentiation
in M. .

Consider the first filtration: H}, (K) is the homology of the pth column.
For fixed s, t with s + ¢ = p, the pth column is

o A QM A QM > A,QM,,—~0.

Now this is just A, ® applied to
e Mz,t—’Ml,t—’MO,t -0,

a deleted projective resolution of C,. Since A, is flat, the pth column is a
deleted flat resolution of A;® C,, and so Hj (K) =[[s+:=p Tor,(4,,C).
Using flatness of 4, once again, we see all such terms vanish for g > 0. We
conclude that

Hp< 11 AS®C,> if ¢=0,

s+t=p

12 _ r LI —
Epa = HH;.K) =1, if ¢>0.

The first spectral sequence thus collapses, and Lemma 11.20 gives
H(Tot(K))="E%, = H,(A ®C).

Since the second spectral sequence also converges to H,(Tot(K)), it is
only necessary to show its E? term HyH, (K) is as stated in the Theorem.
For fixed p (noting the transposing of p and g), we must first consider the
homology of the complex with gth term Hs+t=q A;® M, ,; this complex
is just Tot(A @ M,). Since M arose from a proper projective resolution
of C, the cycles and homology of M, are projective; Corollary 11.29 applies
to give

H, (K)=H(TotA®M,)) = [[ H.,A)® H,M,).

stt=q
We also know that
o= H,M;) » HM,) > H(M,)— H,(C)— 0

is a projective resolution. The homology of this complex tensored by H {A)
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is precisely the definition of Tor:

uEi,q =H ;H;,,p(K)

I

H,,( i HS(A)®Ht(M,,))

stt=q

[1 H,(H(A)® HM,)

= [] Tor,HA),HQ). 1

s+t=gq

We merely state the dual result for cohomology.

Theorem 11.34 (Kiinneth Spectral Sequence): Let A be a positive complex
and C a negative complex. If either A is projective or C is injective, there i

a third quadrant spectral sequence
Ept= [ Ext*(H,(A),H,(C))=H'(Hom(4,C))

st+t=gq ?

We give a second proof of the Kiinneth Theorem 11.28 using spectral
sequences. As the proof will yield an E? consisting of only two columns)
we first dispose of this situation.

Lemma 11.35: Let M be a first quadrant bicomplex for which E* (='E?
consists of two columns: there ist > 0 with E2, = 0 for p # 0 and p # t. Then
(i) E*=E*=---=E%

(i) E™*'=E~™;
(iliy there are exact sequences

0— E4hl — H(Tot(M)) —» EiLL, —0;

n=t
(iv) there is an exact sequence
w1 Hyy f(TOUM)) = E2 i1 -5 B3 = Hy(Tot (M) > B2, - S E3 oy =+

Proof: The differential d":E" — E" has bidegree (—r,r — 1): d" goes r steps
left and r — 1 steps up. It follows that d” = 0 for r # t, since it either begins
or ends at 0. Exercise 11.12 now applies to prove (i) and (ii).

Consider the picture of the E? plane below.

(0,n)
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Since M is first quadrant, we know E. = H,(Tot(M)), ie., -
P

0= 1H,c®H,c--cOH,=H, and O°H,/Q" 'H,~E®,
Thus

©°H, = EZ, < H,.
Also, ®'H,/®°H, = E¥,_, =0, so that ®°H, = ®'H,. Indeed, ®°H, =

®'H,=---=@"'H, When we reach t,
O'H, /o 'H,~ E®,_,,
and then all remains constant again: O'H, = ®'"'H,=---=®"H,=H,,.

We conclude there is an exact sequence
0-Ey,»H,»E>_ ,—0.
In light of (i), this may be rewritten as
(=) 0 Eght = H, > ELL, -0,
which is item (iii).
There is an exact sequence obtained from & = d} ,.; _,:
0—kerd' - Ef .-, L Ej ,, — cokerd' — 0.
By definition,
EN i =kerd; ,.y ~ofimdy, yia—n =kerd; i,
and
Eto.:-n1 = ker d‘o),,/im i i1t = Et()n/n'n d:, a+1-t = COKET di, n+1-t:
The sequence may thus be rewritten
(+#) 0 ESL o > Ef s o S By, o EGHE 0.

Splicing () and (+#) together and remembering that E' = E? yields the
desired exact sequence

2 4 g2 2 ..
‘_)Hn+1—)Et,n+1—t—)EO,n—)Hn—)Et,n—t—)" I

Observe that it is possible that the terms E” of a spectral sequence may
remain constant for a while before moving. Thus, it is not true in general
that E" = E'*! implies E" = E®.

Exercise: 11.31. Let M be a first quadrant bicomplex for which E?
consists of two rows: E2, =0 for g + 0 and g # t. Show there is an exact
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sequence
-+ H,, (Tot(M)) » E2, £ E,. e = H{Tot(M)) - - -~
(Hint: d” vanishes unless r =¢ + 1.)

We really need only a special case of this lemma.

Lemma 11.36: Let M be a first quadrant bicomplex for which E* (='E?
consists of two adjacent columns: E> =0 for p # 0, 1. Then there are exact
sequences

0— E},— H(Tot(M))—> E? ,_, —0.

Remark: If M is third quadrant, arrows are reversed, and there is an exact
sequence under the adjacent column hypothesis:

0— EL"~1 5 HY(Tot(M)) — E3™" — 0.

Here is the fancy proof of the Kiinneth theorem when A and C are
positive complexes.

Theorem 11.37 (=Theorem 11.28): Let A be a positive complex whose
subcomplexes Z. and B are flat. Given a positive complex C, there is an exact
sequence for each n

0- ]I HMM®HC)»HA®C)— [[ Tor,(H,(A),H,C))—0.

p+g=n p+g=n—1

Proof: First, let us show A is flat. For each p, exactness of
0—-Z,-4,- B, — 0 gives exactness, for any module X, of

Tor,(Z,, X)— Tor,(4,, X) - Tor,(B,_;, X).

The outer terms vanish because Z, and B,,_; are flat; hence Tor,(4,,X) =0
for every X, and so 4, is flat.
Since A and C are positive, Theorem 11.34 applies to give

= [] Tor,H, (4).H(C)= H{A® C)

s+t=gq
Now exactness of 0 — B, —» Z, — H(A) — 0 gives exactness of
Tor,(Z,, X) — Tor,(H(A), X) - Tor,_,(B;, X).
If p — 1 > 1, flatness of Z, and B, force the middle term to vanish:

Tor (H(A),X)=0 for p#0,1.
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Thus EZ, = 0for p # 0, 1, which is precisely the adjacent column hypothesis
of Lemma 11.36. There are thus exact sequences P

05 E2, - H(A®C)—E? ,_, -0,

and this is what is sought, once one replaces the E? terms by their values. ]|

GROTHENDIECK SPECTRAL SEQUENCES

The main theorem of this section shows that a composite of functors
often leads to a spectral sequence. For a change, we will prove the third
quadrant (cohomology) version and merely state the dual first quadrant
(homology) version. As usual, all functors are between module categories.

Theorem 11.38 (Grothendieck): Let G: U — B and F:B — § be functors
with F left exact such that E injective in W implies GE is right F-acyclic. For
each module A in U, there exists a third quadrant spectral sequence with

E%? = RPF(RIG(A4)) = R'(FG)(A).
P
Proof: Choose an injective resolution 0 — 4 — E®— E' — - - - and apply
G to its deletion to obtain a complex
GE,=0— GE°—> GE' > GE*—---.

By the dual of Lemma 11.33, there is a proper injective resolution of GE .
The corresponding bicomplex M may be pictured, after indices are raised,
as a diagram of mjective modules M?:4:

”~ > FS

0 > MO > M > M2 >
A ~ 3

0 > M0 > MO > M2 >
>~ > b

0 >GE® > GE* >GE?
3 h ”~
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Consider the bicomplex FM and its total complex Tot(FM). It is very
easy to compute the spectral sequence arising from the first filtration. For
fixed p, the pth column M?* is a deleted injective resolution of GE?. There-
fore, FMP* is a complex whose homology is R4F: we have

H"»4(FM) = HY(FM?*) = (RIF)(GE?).

But E? injective implies GE? is right F-acyclic, so (RZF)(GE?) = 0 for ¢ > 0.
Also, F left exact implies R°F = F. We conclude that

FG(E if ¢g=0,
H”p'q(FM):{o - i g>0
All that survives is on the p-axis: '

0 — FG(E®) — FG(E!) > FG(E®) > -.
Applying H'?, we see that

p : -
gt — RA(FG)(4) {f qg=0,
0 if g>0.
Therefore, the first spectral sequence collapses, and we have
' H"(Tot(FM)) = R(FG)(4).

Now consider the spectral sequence arising from the second filtration.
Let us recall that our choice of a proper injective resolution of GE, means
the following. If the gth row is M4, and Z'¢, B'?, and H"* denote the complexes
with zero differentiation of cocycles, coboundaries, and cohomology, respec-
tively, then for each p there are injective resolutions

0— ZAGE ) — Z'70— Z/Pt - -
0— B”(GEA) > B pgrl_,... ,

and
0— HPGE,)— HP® —» g7l .-

For every p, q, we transpose indices and consider the usual exact sequence
o
0> Z'%P 5 M#P 5 Bathe ()

it splits because all terms are injective. The sequence thus remains split after
applying F, and

ker(Fd'v?) = FZ'%P and im(Fd?~*?) = FB'9P,
Therefore,

H'%(FM) = HY(FMP?) = ker(Fd'#?)/im(Fd's~ ' ?) = FZ'%?|F B4,
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Since
0— B%97 - Z'%?7 - H'9? ()
is also split exact, FZ'#?/F B'%? = FH'®"? We conclude that
H'®*?(FM) = FH'??.

Now "Eg¢ = H"?H'%!(FM) = HP(FH'%?). But the modules H'** form an
injective resolution of HYGE,) = (R?G)(4); by definition of right derived
functor, HP(FH'®?) — RPF(RIG(A)). Hence

(RPF)(RG(A))= RY(FG)(4). 1
P
Here are three more versions; the proofs are the same.

Theorem 11.39: Let G:U - B and F:B — € be functors with F right exact
and P projective in W implies GP left F-acyclic. For each module A in N,
there is a first quadrant spectral sequence

E}y = L,F(L,G(4))= LFG)(4).

Theorem 11.40: Let F.B — € be a contravariant left exact functor, and let
G: N — B be a functor such that P projective in U implies GP right F-acyclic.
For each module A in W, there is a third quadrant spectral sequence

Eg* = RPF(L,G(4)) = R(FG)(A).

Theorem 11.41: Let F:B — & be a contravariant left exact functor, and let
G:AU — B be a contravariant functor such that P projective in U implies GP
right F-acyclic. For each module A in U, there is a first quadrant spectral
sequence

E;y = RFF(R'G(A4)) = L,(FG)A.

There are other Grothendieck spectral sequences for other combinations
of variances whose statements are left to the reader.

Before giving applications of the Grothendieck spectral sequence, let us
give the standard proof of the five-term exact sequence. We could have
given the proof some time ago, but the advantage of waiting is that we may
now give another proof of Theorem 11.2.

Theorem 11.42:  Assume E. = H,(M), where {E"} is a first quadrant spec-
P

tral sequence.




Grgthendieck Spectral Sequences 353

(1) For each n, there is an epimorphism E(z),,, - Eg.;
(i) for each n, there is a monomorphism EXo — EZq;
(i) for each n, there is a monomorphism Eg, — H,(M);
(iv) for each n, there is an epimorphism H (M)— EX;
(v) there is an exact sequence

Hy(M)— 3,5 B, — Hy(M)— E2, 0.

Remark: The maps in (i) and (i) are called edge homomorphisms.

Proof: () By definition, E}, = ker d},/imd3 ,_;. But kerd? a3
E2, ,.: 1s the zero map (since 4 18 first quadrant). Therefore kerd2
E3 , and there is an epimorphism E0 .— E3 ,. The argument can be repeated
for each d":E" — E', using only the fact that 4" has bldegree (—r,r—1).
There is thus a chain of epimorphisms Ej , — E} , —> E§ - —>Ej . This
completes the argument, for we know Ef, = EO,,, for large r.

(i) This argument is the dual of that just given: EZ , & E2, becduse
El}o=kerd?,/fimd?,, _, =kerd?, < E2,. Now iterate, noting that all
md =0.

(it)) The definition of convergence yields

= @®°H, /0" 'H, = ®°H, < H,.
(iv) The definition of convergence yields
EXy = ®'H, /0" 'H, = H,/O""'H,.

(v) There is an exact sequence
a2
0—kerd} o — E3 o> E3, — cokerd; 5 — 0.

Now kerd3,=kerd},/imd} _, = E},; iterating this argument gives
kerd} o, = Ej , for large 7, and hence is EY,. Dually, :

cokerd} , = E} ,/imd} o =kerd} ;/imd3, = E3 |;
iteration gives cokerdj , = EJ,. The exact sequence is thus
0-EPo—E2o S B2, - E2, 0.
The epimorphism H,(M) — ES; of (iv) gives exactness of
Hy(M)—>E3 .5 E2, > E2, —0.
Finally, the equations
H, =®'H,, o =0'H,/0°H,,
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and

E®, = ®°H /O 'H, = ®°H,
combine to give

H,/E§, = ES,.

Otherwise said, there is a short exact sequence

0 E; — Hy(M) - EZ — 0.
Splicing this to the earlier sequence yields exactness of

Hy(M) - B} 0 %> B3,y = Hy(M) > Eo 0.

An argument as above shows that E¥, = E%,, and this completes the
proof. ]

It is enough to state the dual, and we shall only mention the last part
although the others have true duals as well.

Theorem 11.43:  Assume E3%=> H'(M), where {E,} is a third quadrant
P

spectral sequence. Then there is an exact sequence
0— EL0 - HY(M) - E3* 5 E3° - H(M).

Corollary 11.44 (=Theorem 112); Let G:U — B and F:B - be left
exact functors such that E injective in U implies GE is right F-acyclic. Then
there is an exact sequence for each A in A

0— (R*F)(GA) - RYFG)A — F(R*GA) — (R*F)(GA) - RYFG)A.
Proof: The hypothesis is that of the Grothendieck Theorem 11.3§, so
there is a third quadrant spectral sequence with

E%? = (RPF)(R'G(A) )= R"(FG)A.
7 A

Since H" = R*(FG)4, it is only a matter of substituting values into the
sequence of Theorem 11.43. |

There is no need to formally state as a Corollary that one may combine
Theorem 1142 and the Grothendieck spectral sequence to give another
proof of Theorem 11.4. The next two sections will give more convincing
applications.
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MORE GROUPS

The main result is a spectral sequence discovered by Lyndon in 1948
which was later put into its present form by Hochschild and Serre.

Theorem 11.45 (Lyndon—-Hochschild-Serre): Let II be a group with normal
subgroup N. For each Il-module A, there is a third quadrant spectral
sequence with

Eft = HP(II/N, H(N, 4)) = H"(, 4).

Proof: Let G:II-modules — IT/N-modules be defined by G = Homp(Z, ),
and let F:TI/N-modules — Ab be defined by F = Hompy(Z, ). In the proof
of Theorem 11.5, it was verified that F and G satisfy the hypothesis of the
Grothendieck Theorem 11.38. Since FG = Homg(Z, ), the result is
immediate. ||

Exercise: 1132 If N is a normal subgroup of a group I, then
cd(IT) < cd(N) + cd(IT/N).

It is clear that the five-term sequence, Theorem 11.5, now follows from
Corollary 11.44. There is a similar result in homology, following from
Theorem 11.39,

Theorem 11.46 (Lyndon—Hochschild—Serre): Let II be a group with
normal subgroup N. For each N-module A, there is a first quadrant spectral
sequence with

EZ, = H,(II/N,H (N, A)) = H,(I1, A).
P

Of course, the five-term exact homology sequence arising from this
spectral sequence is precisely the one in Theorem 11.6.

The next results will use the remark just before Theorem 11.5: If N < Z(IT)
and A is Il-trivial, then for all i, the modules H;(N,A) and H{N, A) are
I1/N-trivial.

Theorem 11.47 (Green): If lis a prime and I1 is a group of order 1", then
card(H,(I1, Z)) < M=~ Di2,

Proof: Ifn = 1,thenTlis cyclicand H,(I1, Z) = 0 (either use Corollary 10.16
or Exercise 10.22). We proceed by induction on n.
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As every finite l-group has a nontrivial center, there is a (necessarily
normal) subgroup N of order | with N < Z(IT). Consider the corresponding
Lyndon~Hochschild-Serre spectral sequence with

E;, = H,(II/N,H,(N,Z))= H,(I1, Z).
P

There is thus a filtration
0=0'H, « ®°H, <« ®'H, <« ®*H, = H,
with
O?H, /O 'H, 2 Ey,, p+q=2
Writing | X| for card(X) when X is a set,
[H2(T, Z)| = [ESol [ES 1| [ES .| < [E3,of [ER,] [ER,.|

because EZ, is a subquotient of EZ ;.

In computing EZ ,, we use the remark that H,(N, Z) is I/N-trivial. Now
E3 o= H,(Il/N,Ho(N,Z)) = H,(TI/N,Z), so induction gives |E3 o<
[=D&=2/2 The term E2, = H,(XI/N,HN,Z))= H,(I/N,Z/IZ), for
H,(N,Z)= N/N’' = N. Exercise 10.5 applies: if we write G for IT/N, then
H,(G,Z/IZ) = G/G'G", a quotient of G. It follows that [E? | < [[I/N|=1""1.
Finally, E} , = Ho(I1/N, H,(N,Z)) = 0, for Hy(N,Z) = 0 (case n = 1); hence
|E3 5| = 1. We conclude that

IHZ(H, Z)l < [ Dm=2)2 L pa= 1 peln— 12 I

The next result shows Green’s inequality is best possible. Remember our
labors with the 4-group, when ! =2 and n = 2.

Theorem 11.48:  Let [ be a prime and let I1 be an elementary abelian group of
order 1" (i.e., I is the direct product of n cyclic groups of order ). Then H,(I1, Z))
is elementary abelian of order 1"~ V/2,

Proof: First of all, let us show [H,(I1,Z) = 0. The group IT has the
presentation

= (xg, .., X X5, oo, X, [xa, x5, < ).

Let F be free with basis {x;, . . ., x,}, and let R be the normal subgroup of F
generated by the relators, We proceed as we did when computing the
multiplier of the 4-group. Define K = F/[R,F], so that K' = F'/[R, F] =~
H,(I1,Z) (Hopf’s formula, for F' < R). Define a; = x;[ R, F] and observe (as
in the 4-group discussion) that
, K =(la,a], i<,
laa] e Z(K),  and  dfe Z(K).
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Hence
V= (ag;a V) = ([a, 0;]a)) = [a;,a;]'a5.
Therefore [a;,a;]' = 1 for all i < j, as desired.

The theorem is proved by induction on n, the case n = 1 being covered by
the previous theorem. Choose a subgroup N of IT with IT/N cyclic of order |
(this choice of N differs from that of the previous theorem). The corre-
sponding Lyndon-Hochschild-Serre spectral sequence satisfies

Ez,q = HP(H/‘IVs Hq(N7 Z)) = Hn(H7 Z)
p

I __ .-
ai = aiaiai

Since IT/N is cyclic, E3 o = 0 and hence ES, = 0; the filtration of H,(I1, Z)
thus has only two steps. The usual bidegree argument shows E, = E ,
and E?; = E? ;. There is thus an exact sequence

0—-E}, > H,(IL,Z)—> E}; > 0.

As [H,(I1,Z) = 0, the middle term H,(IT,Z) is a vector space over Z/IZ;
thus the outside terms are also vector spaces and the sequence splits. It only
remains to compute dimensions. Now

H,N,Z)= N/N' =N =[] Z/1Z,
n-1

so Exercise 10.5 gives
E}, =H,/N,H,N,Z)) = [[ H,(TyN,Z/1z) = [] Z/IZ,
n~1 n—1

for N is elementary abelian of order "~ *. The term
E} , = Ho(Il/N, Hy(N,Z)) = Hy(N, Z);

by induction, E3 , is elementary abelian of order [#~1¥"~2/2_ Therefore
H,(IT,Z) has dimension (n — 1)+ 3(n — 1)(n — 2) = 4n(n — 1) and order
ln(n—l)/Z. I

Theorem 11.49:  If I1 is free abelian of finite rank k, then H'(I1, Z) is free
abelian of rank (¥), the binomial coefficient. (If n > k, we interpret (¥) as 0.)

Proof: First of all, Exercise 11.19 shows H'II,Z) =0 for n>k We
proceed by induction on k.

If k=1, then Nz Z Now HYI,Z)=Z"=7 and H'{ILZ)=
Hom(I1, Z) = Z, so the induction begins.

For the inductive step, choose a subgroup N with IT/N = Z (N is neces-
sarily free abelian of rank k — 1). The Lyndon-Hochschild-Serre spectral
sequence satisfies

E%e = HY(II/N, HYN, Z))=p> H'(I1, Z).
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Since IT/N =~ Z, we know E%? = 0 for p # 0, 1. Therefore, the “two adjacent
column” hypothesis of Lemma 11.36 (rather, the third quadrant version of
that Lemma) holds, so there are exact sequences

(%) 0 Ey" ! - HYI1,Z) - E9" — 0.

Now Ei:"~1 = HYII/N,H""*(N,Z)). By the remark before Theorem 11.5,
H*" YN, Z) is II/N-trivial, and so

H'II/N, H"" (N, Z)) = Hom(Z, H"" (N, Z)) = H"" }(N, Z);

by induction, this group is free abelian of rank (¥71). The term E$" =
H°(ITI/N,H'(N,Z)) = H"(N, Z), using the remark once again. By induction,
this group is free abelian of rank (,* ). It follows that the exact sequence (x)
of abelian groups splits, whence H™(II,Z) is free abelian of rank (¥I1) +

DE A |
Corollary 11.50: If Il is free abelian of finite rank k, then
od(IT) = k.
Proof: Exercise 11.19 shows c¢d(IT) < &, while Theorem 11.49 shows this
inequality cannot be strict. J

Lyndon [1948] computes H"(I1, Z) for any f.g. abelian group I1.

MORE MODULES

We now examine composites- of suitable pairs of functors and the corre-
sponding Grothendieck spectral sequences. Let R and S be rings, and
consider the situation (Ag, zBs, sC); the associative law for tensor product
gives a natural isomorphism

A ®r(B®sC)=(4Q®rB)®sC.

Thus, if G=B®s:sW— I and F =4 Rz: g IM— Ab, then FG =
(A ®gr B)®;5 . Clearly F is right exact, so Theorem 11.39 applies when there
is acyclicity.

Theorem 11.51:  Assume Ag and ¢Bs satisfy TorXA,BRsP) =0, all i > 0,
whenever P is projective. Then there is a first quadrant spectral sequence
for every sC:

TorX(A, Tor(B, C)) = Tor3(4 @z B, C).
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In this case, let us write down the five-term exact sequence, so the reader
may see it is not something he would have invented otherwise:
Torj(A ®g B, C)— Tor}(4, B ®g C) — A ®g Tor3(B, C)
- Tor$(A ®z B, C) — Tor(4,B®; C) - 0.
We can do something more interesting. Assume Ay is flat (which ensures

the hypothesis of Theorem 11.51). The spectral sequence collapses on the g-
axis and Lemma 11.20 gives

A ® TorS(B, C) = Tor(4 @ B, C),
which is the isomorphism of Theorem 9.43.
Observe that there is a second way to look at the associative law. If
I'= @B > W and &= ®5C:Ws > Ab, then O = R (B®sC).
Here is the corresponding Grothendieck spectral sequence.

Theorem 11.52: Assume gzBg and C satisfy Tor;(Q ®z B,C) =0, all i > 0,
whenever Qg is projective. Then there is a first quadrant spectral sequence
Jor each Ag:

Tor(TorX(4, B), C)= Tork(4, B ®sC).
P
There is a second way to force these spectral sequences to collapse.

Theorem 11.53:  [f zBs is flat on either side, then
Tory(4 ®g B, C) = Tor(4, B ®s C).

Proof: If gB is flat and Qp is projective (hence flat), then Q ®, B is a flat
right S-module, and the hypothesis of Theorem 11.52 holds. Moreover, the
spectral sequence collapses and we obtain the desired isomorphism. If By is
flat, a similar argument works using Theorem 11.51. |

The same idea applies for other “associativity” laws. For example,
consider the adjoint isomorphism in the situation (zA4, ¢Bg,sC):
Homg(B ®4 4, C) = Homg(A4, Homg(B, C)).

If G=B®s and F =Homyg(,C), then FG = Homg( ,Homg(B, C)). Ob-
viously F is left exact, being a Hom, and Theorem 11.40 applies.

Theorem 11.54: Assume ¢By and ¢C satisfy Exty(B®z P,C) =0, all i >0,
whenever g P is projective. Then there is a third quadrant spectral sequence for
every gA:

Extg(TorS(B, 4), C) = Ext(4, Homg(B, C)).
p
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Looking at the adjoint isomorphism another way gives I' = Homg(B, ),
® = Homg(4, ), and ®I" = Homz(B®z 4, ).

Theorem 11.55: Assume zA and ¢By satisfy Exts(4, Homg(B,Q)) =0, all
i > 0, whenever Q is injective. Then there is a third quadrant spectral sequence
Jor every sC:

Ext2(4, Exti4(B, C)) = Ext(B ®s 4, C).
p

Theorem 11.56: If By is projective on either side, then
Exty(4, Homg(B, C)) = Ext5(B ®z 4, C).

Proof: If B is projective on either side, then the hypothesis of either
Theorem 11.54 or 11.55 holds, and the corresponding spectral sequence
collapses. |

This is the isomorphism of Exercise 9.23. If, instead, one assumes A
projective, he obtains the isomorphism of Exercise 9.22:

Ext}(B ®z 4, C) = Homg(4, Ext§(B, C)).

Another isomorphism results if one chooses sC injective. The hypothesis of
Theorem 11.54 holds and the spectral sequence collapses (on the g-axis):
there are isomorphisms

Hom g(Tors(B, A), C) = Exti(A, Homg(B, C)).

Theorem 11.57 (=Theorem 9.51): Let R and S be rings with R left
noetherian, and consider the situation (x4, gBs, Cg) in which A is fg. and C is
injective. Then there are isomorphisms for alln = 0

Homg(Ext(4, B), C) = TorX(Homg(B, C), 4).

Proof: Since R is left noetherian, A fg. implies A finitely related. The
hypotheses of Lemma 3.60 are satisfied, and there is thus a natural
isomorphism

Homyg(B, C) ®z A =~ Homg(Hompg(A4, B), C).

Let G = Homg(,B) and F = Homg(,C), so that FG = Homg(B,C) ®% .
Now G: U — ¢W, where U is the category of all £g. left R-modules (this is the
reason for insisting R be left noetherian: otherwise, there might not exist a
projective resolution of 4 within U, and we would not be able to apply the
appropriate Grothendieck spectral sequence). If P is a f.g. R-projective, then
Exti(Homg(P, B),C) = 0 for i > 0 because C is injective. Having verified
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acydlicity, Theorem 1141 gives
ExtZ(Exti(A4, B), C)= TorX(Homs(B, C), A).
P
Since C is injective, this spectral sequence collapses on the g-axis, yielding
isomorphisms
Homg(Extk(4, B), G) = TorX(Homg(B, C), 4). 1

There is a variation of this technique which may be applied when the
composite functor is neither Hom nor tensor (in which case its derived
functors may be unknown). We illustrate the technique in the next proof; the
result generalizes Theorem 9.50.

Theorem 11.58: Let R be a commutative noetherian ring with subset S, and let
N be finitely generated. Then for every R-module M, there are isomorphisms

S™UEXtA(N, M) = Exti- . x(S™'N,S™'M).

Proof: The hypothesis allows us to assert Theorem 3.84: for every R-
module M, there is a natural isomorphism

S~ Homg(N, M) =~ Homg-:x(S™'N,S™'M).
Let G =Homg(N, )and F=S"!'=S5"'R®; . Now F is left exact (even
exact) and the acyclicity condition holds: if E is injective, then
Tor®(S~*R,Homg(N, E)) =0
for i > 0 (for S™* R is flat). There is thus a spectral sequence
Tor}(S™ 'R, EXtk(N, M) = R(FG)M.

Now letI' = S~ and ® = Homg-:(S™*N, ). Clearly @ is left exact and
the acyclicity condition holds: if E is R-injective, then
Exti-z(ST'N,S7YE)=0
for i >0 (for ST'E is S~ ! R-injective, by Theorem 3.85). There is thus a
spectral sequence
Ext§-z(S™'N, TorX(S™ 'R, M)) = R(®IM.
P

Since S™'R is R-flat, both spectral sequences collapse, yielding isomor-
phisms:
S™'R ®g Exti(N,M) = R"(FG)M,
Exti-1g(STIN,STIR ®x M) = RY(OIM.
But Theorem 3.84 asserts the natural equivalence of FG and @I, hence the
natural equivalence of their derived functors: RYFG)M =~ R(®I')M. By
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definition, S™' =S7!'R®; , s0
STYExth(N, M) = Exti_ x(ST'N,S7'M). ]

Our final aim is a discussion of “change of rings”. Recall that a ring
map

@:R->T

defines an exact functor U:,3t — ;I (in essence, every T-module and T-
map may be viewed as an R-module and R-map, respectively). If M is
a T-module and r € R, define

r-m=oe- m meM.

At our pleasure, M may be regarded as either a T-module or an R-module
(and we shall not provide different notations).

The ring T plays a special role: it is an (R-T') bimodule, for the associa-

tive law in T gives

e (tity) = @(n)(tstz) = (@Mt )t = (r - 1,)t,.
Similarly, one may equip T with a right R-module structure, namely, ¢ -r =
tp(r), and T becomes a (T-R) bimodule.

Since a T-module may also be regarded as an R-module, one may ask
about the relation between “homological properties” of a module over T
and over R.

Although it is not necessary to be fancy, let us put things in proper
context.

Lemma 11.59: Let ¢:R — T be a ring map, and let U: ;I — g9 be the cor-
responding change of rings functor. Then (U, Homg(T, )) and (T ®z ,U) are
adjoint pairs.

Proof: A routine exercise. ||

There is also a change of rings functor My — P, with a similar lemma.

Nature thus tells us to look at Homg(T, ) and T ®3 ; of course, we have
already had reason to deal a bit with these functors. Actually, there are
more cases to consider because of the left-right possibilities due to the non-
commutativity of the rings R and T. Let us assume 4 = Az and B = zB.
Denote

¢B:T®RBETEUI, T:TTR
and

A, = AT €My, T = Ty
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There are also left and right modules resulting from Homg(T, ):
B(P = HOmR(T, B) € SJET, T = RTT,

and
P4 = HOInR(T, A) € Tﬁm, = TTR’

In short, the symbol ¢ is a subscript tensor, is a superscript for Hom, and is set
left or right depending on whether the resulting T-module is left or right.

Lemma 11.60: Let ¢:R — T be a ring map, A = Az, B = zB.
(i) If A is R-projective, then A, is T-projective.
(i) If B is R-projective, then B is T-projective.
(i) If A is R-injective, then ?A is T-injective.
(iv) If B is R-injective, then B? is T-injective.
Proof: (i) and (i1): Exercise 3.10.
(i) and (iv): Exercise 3.22. |

Exercise: 11.33. Use Theorem 11.8 to state assumptions on T (projective
or flat R-module, on the appropriate side) to ensure the change of rings
functors preserve projectivity or injectivity.

Remember that a left T-module L may be viewed as a left R-module,
and a right T-module M may be viewed as a right R-module.

Lemma 11.61: If ¢:R — T isaring map, then there are natural isomorphisms
in the following cases:

() (Ar,7L): A@RL=A4,®rL;

(i) (Mr,xB): M ®gB=M ®:(,B);
(i) (gB,rL): Homg(B,L) = Homy(,B, L);
(iv) (yL,zB): Homg(L, B) = Homy(L,?B).

Proof: (i) and () follow from the associativity of tensor product. For
example,

A, @rL=(AQrT)®r L= ARr(T®rL)= A®gL.

(ili) and (iv) follow from the adjoint isomorphisms:
Homy(,B, L) = Hom(T ®z B, L)
=~ Homg(B,Homy(T, L)) = Homg(B, L);
Homy(L, ?B) = Homy(L, Homg(T, B))
=~ Homg(T @y L, B) = Homg(L, B). ]
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Theorem 11.62 (Change of Rings): Let ¢:R —~ T be a ring map, and let
A = Ap and L = L. There is a spectral sequence

TorX(TorX(4, T), L) = TorX(4, L).
P

Proof: Let G=(),= @gT, and let F= ®;L; by Lemma 11.61,
FG = ®gL. Now F is right exact and left acyclicity holds: if Py is projec-
tive, then P, is T-projective and Tor/(P,,L) =0 for i > 0. Now apply
Theorem 11.39. |

Corollary 11.63: Let ¢:R — T be a ring map; if gT is flat, then there are
isomorphisms for all n = 0,

TorX(4,,L) = Tor(4, L)
Jor A= Ag and L = (L.
Proof: Flatness of T forces the spectral sequence to collapse. |

Here is an elementary proof of this corollary. If P is an R-projective
resolution of 4, there is an isomorphism of complexes:
P T)®rL=P&gL.

Since P @3 T is a flat resolution of 4 ®z T = A4, (because ;T is flat), taking
homology of both sides yields the desired isomorphisms.

Compare this result with Theorem 9.49 when R is commutative and
T=S"'R

The other isomorphisms of Lemma 11.61 also produce spectral se-
quences; it suffices to state the theorems.

Theorem 11.64 (Change of Rings): If ¢:R— T is a ring map, there is a
spectral sequence

TorX(M, Tor(T, B)) = Tory(M, B)
P
for M = My and B = gB. Moreover, if Ty is flat, there are isomorphisms
Tor} (M, ,B) = TorX(M, B).

Theorem 11.65 (Change of Rings): If ¢:R — T is a ring map, there is a
spectral sequence

Ext§(TorX(T, B), L) = Extx(B, L)
P




More Modules 365

for B = gB and L = L. Moreover, if Ty is flat, there are isomorphisms
Ext%(,B, L) = Extg(B, L).

Theorem 11.66 (Change of Rings): If ¢:R— T is a ring map, there is a
spectral sequence

Extg(L, Ext}(T, B)) = Ext’(L, B)
p

for B = gBand L = L. Moreover, if gT is projective, there are isomorphisms
Ext3(L,?B) = Exti(L, B).

We give only three applications of these theorems in order to show how
they may be used. The first is another proof of Shapiro’s Lemma 10.32.
Corollary 11.67:  If S is a subgroup of a group I1 and B is a I1-module, then

H"(S, B) = HYII, Homg(ZI1, B)).

Proof: First of all, the inclusion S ¢, IT induces a ring map ¢:ZS — ZII.
Since HY(I1, ) = Ext}(Z, ), we are in the situation of Theorem 11.66 with
L =7. As ZI1 is a projective S-module (even free, by Exercise 10.9), and
?B = Homg(ZI1, B), one merely asserts the isomorphism of Theorem
11.66. |

Here is the spectral sequence proof of Theorem 9.37 of Rees.

Corollary 11.68: Assume R is a ring and x € R is a central element that is
neither g unit nor a zero divisor; let T = R/xR, and assume B = zB is such

that multiplication B > B is monic. Then there are isomorphisms for all n > 0
Ext%(L, B/xB) = Exty" (L, B)
for every left T-module L.

Proof: Since x is central, multiplication by x is an R-map; since x is not
a zero divisor, there is an R-exact sequence

0-R5R-T-0.
Applying Homg( , B) yields exactness of
0 — Homg(T, B) - Homg(R, B) 5 Homg(R, B) — Ext}(T, B) — Extk(R, B)
and, also, exactness of the sequences

Ext4(R, B) > Ext§" {(T, B) — Ext%* (R, B)
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for all g > 1. Since Homg(R, B) = B and multiplication by x on B is monic,
we have

Homg(T,B) = 0.
Since Exti(R, B) = 0, we also obtain
Extk(T,B) =~ B/xB.
Finally, the other exact sequences give
Exty(T,B) =0, q=2
Consider the change of rings spectral sequence 11.66
E%? = Exth(L, Ext}(T, B)).—; Exti(L, B).
We have just seen that E4? = 0 for all g # 1, so there is collapsing on the
line g = 1. There are thus isomorphisms
Exts™ (L, Bxti(T, B)) = Exty(L, B);
replacing n by n + 1 yields
Ext}(L, B/xB) = Exty" *(L, B). |

Our final application is a solution to Exercise 11.20 = Theorem 9.32.

Corollary 11.69: If ¢:R — T is a ring map and L is a T-module, then
pdg(L) < pdr(L) + pde(T).

Proof: Clearly we may assume both pd,(L) = I and pdg(T) = ¢ are finite.
By Theorem 11.66, there is a spectral sequence

E3* = Ext}(L, Extk(T, B)) = Exti(L, B)

for every R-module B. If n=p + g > | + ¢, then either p> 1 or g > ¢. If
p > I, then E5? = 0 because we have exceeded pd,(L); if g > ¢, then E§7=0
because we have exceeded pdg(T). It follows that E%? = 0 for all p, g with
p + q = n, whence Exti(L,B) =0. As B is arbitrary, pdg(L) <!+t |

The reader should now be convinced that virtually every purely ho-
mological result may be proved with spectral sequences. Even though “ele-
mentary” proofs may exist for many of these results, spectral sequences offers
a systematic approach in place of sporadic success.
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Extension of groups, 150

Extension of modules, 199
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Factor set, 154

Faithfully flat module, 249
Family, 252

fd (flat dimension), 238

FFR (finite free resolution)), 251
f.g. (finitely generated), 25
Filtration, 315

Filtration degree, 317

Finitely generated (f.g.), 25
Finitely related group, 276
Finitely related module, 90
First filtration, 324

First iterated homology, 326
First quadrant bicomplex, 321
Five lemma, 76

Five term sequence, cohomology, 304
Five term sequence, homology, 306
Fixed points, 162

Flat complex, 338

Flat dimension (fd), 238

Flat module, 84

Flat resolution, 85
Fossum~Griffith-Reiten, 236
Frattini subgroup, 268

Free abelian group, 7

Free group. 268

Free module, 57

Free resolution, 60

Frobenius algebra, 132
Functor, §

G

G-module (left ZG-module), 152
Gabel, 140

Generator for category, 82
Generators of module, 4

Generators and relations, groups, 275
Generators and relations, modules, 58
GL(n,A), 138

Global dimension, 235, 236
Golod-Safarevi¢, 278

Goodearl, 250

Graded module, 300

Green, 355

Griffith, 214

Grothendieck spectral sequences, 350, 352
Group ring, 117, 151

Gruenberg resolution, 271
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H™, 21,184,265

H,, 20, 169, 265

Half-exact functor, 171
Helmer, 127

Hereditary ring, 120

Hilbert basis theorem, 108
Hilbert syzygy theorem, 247
Hom, 3,6

Hom, 323

Homology functor, 169
Homology groups of group, 265
Homology groups of space, 20
Homotopy, 177

Hopf"s formula, 274
Hopkins-Levitzki, 114
Horrocks, 142

Horseshoe lemma, 187
Hurewicz, 287

1

IBN (invariant basis number), 58
id (injective dimension), 235
Idempotent, 119
Identity functor, 5
Identity morphism, 3
im (image), 24
Indecomposable module, 131
Induced map, 169
Injection, 29
Injective dimension (id), 235
Injective envelope, 73
Injective equivalence, 236
Injective module, 65
Injective resolution, 71
Inner automorphism, 158
Inv() (category of inverse systems over{),
55
Inverse limit, lim, 50
s
Inverse system, 50
Invertible ideal, 125
Isomorphism theorem, first, 25
Isomorphism theorem, second, 25
Isomorphism theorem, third, 26, 27, 28
Iterated connecting homomorphism, 215

J

Jategaonkar, 236
Jensen, 236
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K

Kaplansky, 121, 135, 139, 236

ker (kernel), 24

Kong, 139

Kulikov, 96

Kiinneth formula, 341, 342

Kilnneth spectral sequences, 345, 347
Kiinneth theorem, 338

L

Laurent polynomials, 295

ID(R) (left global dimension), 235, 236
Left derived functor, 181

Left exact functor, 34

Lifting, 153

l_iLn, 4]

lim, 50

Limit term of spectral sequence, 314
Lindel--Liitkebohmert, 149

Local ring, 133, 259

Localization, 97

Long exact sequences, 172

Lyndon, 358
Lyndon-Hochschild-Serre, 355

M

D (category of left R-modules), 4
IRy (category of right R-modules), 4
MacLane, 227

Map of bigraded modules, 301
Map of graded modules, 300

Map of modules, 4

Mapping cylinder, 175

Maschke, 117, 293
Mayer-Vietoris, 176, 177
McConnell-Roos, 250

Minimal left ideal, 115

Module, 4

Mohan-Kumar, 149

Monic polynomial, 142

Monic, monomorphism, 25
Monoid, §

Morphism, 3

Multiplication, 14, 200
Multiplicatively closed, 98
Multiplier (Schur), 268
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Nakayama, 137

Natural equivalence, 75

Natural map, 25

Natural transformation, 43

Naturality of connecting homomorphism,
173

Nielsen—Schreier, 269

Nobeling, 123

Noether normalization lemma, 144

Noetherian ring, 108

Normalized coboundary, 280

Normalized factor set. 280

Nullhomotopic, 177

Nunke-Rotman, 230

o

Objects in category, 3
Obstruction, 195
Ojanguren—Sridharan, 149
Ol'Sanskii, 278

Operates without fixed points, 285
Opposite orientation, 18
Opposite ring R, 16

Orientation, 17

Osofsky, 237,242

P

pd (projective dimension), 233
PDer(G. A), 159

Perfect group, 279

Perfectring, 114

Presentation, 275

Preadditive category, 6

Principal derivation, 159

Principal indecomposable module, 131
Product, 28

Projection, 29

Projective basis, 64

Projective cover, 75

Projective dimension (pd), 233
Projective equivalence, 234
Projective module, 62

Projective representation, 281
Projective resolution of complex, 343
Projective resolution of module, 71
Proper essential extension, 72
Proper projective resolution, 345
Proper submodule, 24
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Priifer ring, 127
Pullback, 51

Pure exact sequence, 94
Pure submodule, 94
Pushout, 41

Q

Q = rationals
Quasi-Frobenius ring, 130
Quasi-ordered set, 5

Quillen, 146, 147, 149
Quillen-Suslin, 145, 148, 149
Quotient complex, 170
Quotient module, 25

R

R = real numbers

rD(R) (right global dimension), 236

R-sequence, 261, 263
Radical (Jacobson), 136
Rank of free module, 58
Realizes operators, 152
Rees, 248

Regular local ring, 261
Regular ring, 262
Representation of ring, 23
Residue field, 259

Right derived functor, 184, 185
Right exact functor, 34, 35
Right global dimension, 236
Roitman, 146

S

S(X) = singular complex, 167
Schanuel, 92

Schreier transversal, 289
Schur, 281

Schur multiplier, 268
Schur-Zassenhaus, 293
Second filtration, 324
Second iterated homology, 328
Semidirect product, 152
Semihereditary ring, 127
Semiperfect ring, 135
Semisimple module, 115
Semisimple ring, 116

Serre, 141, 253,262, 298
Serre’s problem, 138
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Shapiro, 296

Shelah, 238

Short exact sequence, 27

Sign lemma, 320

Simple module, 115

Simplex, 19

Singular complex, 167

Small, 109

Small module, 82

Snake lemma, 174

Specker, 123

Spectral sequence, 313

Split exact sequence, 33

Split group extension, 152

stab(G, A), 159

Stabilizing automorphism, 158

Stably free, 139

Stallings, 297

Standard basis, 139

Standard resolution, 284

Standard simplex A, 17

Steinitz, 122

Stem cover, 279

Stem extension, 279

Strongly connected sequence of functors,
212

Subcomplex, 170

Submodule, 24

Subquotient, 314

Sum (direct sum), 28

Superfluous, 75

Suslin, 141

Swan, 298

Syzygy, 233

T

3 x 3 lemma (9 lemma), 175
Tensor product of algebras, 16
Tensor product of complexes, 321
Tensor product of modules, 9, 12
Third quadrant bicomplex, 322
Top (category of topological spaces), 4
Top element, 49

TorZ, 181

Torsion-free module, 70, 128, 224
Torsion module, 224

Torsion submodule, 128, 224
Total complex, Tot(M), 319
Transversal, 152, 289

Trivial module, 152

Trivial quasi-order, 40
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U

UFD (unique factorization domain),
127
Unimodular column, 138
Unimodular column property, 138
Universal central extension, 279
Universal coefficient theorems, 228, 229,
230,286
Universal mapping problem, 10

Valuation ring, 127
Villamayor, 90

Virtual degree, 141

von Neumann regular ring, 119

w

wD(R) (weak dimension), 239
Watts, 77,78, 79
Wedderburn, 116
Whitehead's problem, 238

Y
Yoke, 238

z
Z = integers
Z¥G, A), 154

Z.(A) (n-cycles), 169

Z(R) (center of ring), 7

Zero differentiation, 170, 300
Zero morphism, 7
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