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Preliminaries on bicategories and
double categories



Bicategories

A bicategory is a category enriched by categories. [Bénabou 67’]. Has:

Objects, (1-) morphisms, and morphisms between morphisms
(2-morphisms)

Horizontal composition of 1-morphisms. Horizontal 1 dim identities.

Vertical composition of 2-morphisms. Vertical identities.

Horizontal composition on 2-morphisms induced by horizontal 1-dim
composition. Horizontal 2 dim identities.

Vertical composition is assumed to be strictly associative and unital.
Horizontal composition is only assumed to be associative and unital up to
compatible natural isomorphisms. Vertical and horizontal composition
satisfy the exchange property. Notation: We denote by bCat the
category of bicategories and pseudofunctors.



Pictorial representation

Let B be a bicategory. We represent objects, 1-morphisms, and
horizontal 1 dim composition as:

◦ ◦◦ ◦ ◦ ◦

Represent 2-morphisms, vertical composition, and horizontal composition:

◦ ◦
ψ

ϕ ◦ ◦
ϕ

◦ ◦ϕ ◦ψ

Exchange relation:

ψ
◦ ◦

ϕ

ψ′

◦
ϕ′



Double categories

A double category is a category internal to categories. [Ehresmann 63’].
A double category C thus has:

1. Category of objects and category of morphisms C0,C1.

2. Source, target functors s, t : C1 → C0.

3. (Horizontal) dentity functor i : C0 → C1.

4. (Horizontal) composition functor ∗ : C1 ×t,s
C0

C1 → C1.

Satisfying functorial versions of usual conditions defining a category.
Think of: Categories with every set turned into a category and structure
function into a functor. Non-strict version: Pseudo-double category.
Write dCat for the category of double categories and double functors.



Pictorial representation

C double category. Objects and morphisms of C0 are referred to as the
objects and vertical morphisms of C . Objects and morphisms of C1 are
referred to as the horizontal morphisms and the squares of C . Drawn as:

◦ ◦

◦ ◦

◦

◦

◦ ◦◦

Vertical and horizontal composition are implemented by vertical and
horizontal concatenation, i.e. as:

◦ ◦

◦ ◦

◦

◦

◦ ◦

◦ ◦

◦ ◦



The horizontal bicategory
Let C be a double category. A square in C is globular if it is of the form:

◦ ◦

◦ ◦

Objects, horizontal morphisms and globular squares of C form a
bicategory, denoted by HC and called the horizontal bicategory of C .
The function C 7→ HC extends to a functor H : dCat→ bCat.

H admits
right inverses, e.g. Let B be a bicategory. We write HB for the double
category whose squares are of the form:

◦ ◦

◦ ◦

ϕ

where ϕ is a 2-morphism in B. HB referred to as the trivial double
category associated to B. The function B 7→ HB extends to an
embedding H : bCat→ dCat. H and H are related via H a H.
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Another right inverse to H
Let B be a 2-category. Write QB for the double category whose squares
are of the form:

◦ ◦

◦ ◦

α

γ η

β

ϕ

where ϕ is a 2-morphism, in B, from ηα to βγ. We denote any such
square by a quintet (ϕ;α, γ, β, η) and we call QB the Ehresmann double
category of quintets of B. Thus defined QB satisfies the equation
HQB = B. The double category QB is edge-symmetric and admits a
connection [Brown,Mosa 99’]. The function B 7→QB extends to an
equivalence from bCat to the category dCat! of edge-symmetric double
categories with connection. When B is a proper bicategory QB is not a
double category but a Verity double category.

The main difference between Q and H is the category of objects of the
corresponding double category. Both minimal filling of squares with
globular data.



The bicategory of algebras

Write Mod for the bicategory whose 2-morphisms are of the form:

A B

N

M

ϕ

where A and B are unital complex algebras, AMB and ANB are
bimodules and ϕ : M → N is a bimodule morphism. Horizontal
identity and horizontal composition in Mod are defined by the
functions A 7→A AA and (MB ,B N) 7→ M ⊗B N. The exchange
identity in Mod follows from functoriality of M ⊗B N on M and N.

Observation: A,B algebras. A,B are isomorphic in Mod if and
only if A and B are Morita equivalent.



The double category of algebras

Write [Mod] for the double category whose squares are of the form:

A B

C D

M

f g

N

ϕ

where A,B,C and D are algebras, AMB and CND are bimodules,
f : A→ C and g : B → D are unital algebra morphisms, and ψ : M → N
is a linear transformation such that the equation:

ϕ(aξb) = f (a)ψ(ξ)g(b)

holds i.e. the squares of [Mod] are equivariant bimodule morphisms.

Horizontal identity and horizontal composition in [Mod] are defined by
the obvious functorial extensions of A 7→A AA and (MB ,B N) 7→ M ⊗B N.
Mod and [Mod] are related by the equation [Mod] = Mod.
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Symmetric monoidal structure on Mod

Why is the example H[Mod] = Mod interesting?

Tensor product of algebras, vector spaces, and linear transformations
morally provide Mod with the structure of a symmetric monoidal
bicategory. We should have: Coherence invertible bimodules satisfying
a bunch of very complicated equations presented by, e.g. [Kapranov,
Voevodski 94’], [Baez, Neuchl 95’], [Crans 98’], [Schommer-Pries 11’], A
bit excessive for our purposes. Coherence data for ⊗ of algebras is
naturally defined in terms of unital morphisms, and satisfies MacLane
equations strictly. Need a different language to express this.

Tensor product on vertices, edges and squares of [Mod] provide [Mod]
with the structure of a symmetric pseudomonoid in dCat, i.e. of a
symmetric monoidal double category. Moreover, [Mod] is fibrant and
thus the coherence isomorphisms of [Mod] descend to coherence
isomorphisms of a symmetric monoidal structure on Mod with tensor
porduct H⊗. Shulman M. A., Constructing symmetric monoidal
bicategories. arXiv:1004.0993. [Mod] is the correct framework to equip
algebras with a 2 dim symmetric monoidal structure.
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Mod-like bicategories

Observation: There are essentially two types of bicategories, exemplified
by Cat and Mod. Cat has objects, ’functions’ between objects as
1-morphisms, and morphisms between these ’functions’ as 2-morphisms.
Mod has objects, ’other objects’ as 1-morphisms, and ’functions’ between
1-dimensional ’objects’ as 2-morphisms. There is a correct notion of
morphism between objects in Mod, not directly included in Mod.

Bicategories fitting the above description of Mod are called Mod-like
bicategories in Shulman M. A. Framed bicategories and monoidal
fibrations. Theory Appl. Categ. 20 (2008), No. 18, 650–738.
Bicategories whose objects are algebras of some sort, 1-morphisms are
bimodules, and 2-morphisms bimodule morphisms are Mod-like

Slogan: A Mod-like bicategory B should have a category of
’function/correct’ morphisms B∗. It is expected that there should be a
clear lift of B to a double category C , such that C0 = B∗ and such that
HC = B. A natural symmetric monoidal structure on B should better be
expressed as a symmetric monoidal structure on C .
:
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The bicategory of von Neumann
algebras



von Neumann algebras

H Hilbert space. Write BH for the set of bounded operators on H, i.e.
||T ξ|| ≤ M||ξ||, ∀ξ ∈ H, and some M ∈ R+. BH is a unital ∗-algebra.

X ⊆ BH. Write X ′ for {T ∈ BH : Tx = xT , x ∈ X}. X ′ commutant of
X . X ′ set of symmetries of X . Observe: X ⊆ X ′′.

Definition
Let H be a Hilbert space. A von Neumann algebra on H is ∗-subalgebra
A of BH such that A = A′′.

von Neumann algebras model algebras of observables associated to
regions of space-time in AQFT, e.g. CFT.
Examples:

BH is a vN algebra for any Hilbert space H. In particular Mn(C).

(X , µ) ’nice’ measure space. L∞(X , µ) vN algebra on L2(X , µ). All
commutative von Neumann algebras are of this form.

G group, H Hilbert space. λ : G → UH. G ′ is a vN algebra. In
particular if G is discrete, G has left regular representation in `2(G ).
G ′ vN algebra. Group vN algebra of G . L(G ).
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Factors

Let A von Neumann algebra on H. A ∩ A′ center of A. A is a factor if
A ∩ A′ = C1A. Factors are simple vN algebras and also most
noncommutative vN algebras.

Every von Neumann algebra can be built,
in an essentially unique way, from factors through the direct integral

∫ ⊕
operation. Understand von Neumann algebras: Understand factors.
Examples:

BH factor. Mn(C) factor. Closure of M2(C) ⊆ M4(C) ⊆ ... factor.

Let G be ICC, i.e. every non-trivial conjugacy class of G is infinite.
L(G ) factor.

A Subfactor is an inclusion of factors A ⊆ B. Example: If H ⊆ G and
both are ICC, then L(H) ⊆ L(G ) is a subfactor. The Jones index [B : A]
of a subfactor A ⊆ B [Jones 83’] is a generalized quantized dimension,
taking values in

{
4cos(π/n)2 : n ∈ N

}
∪ [4,∞] measuring how A fits into

B. Subfactors express how observables interact when one region is
contained in the other. Index measure this.
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Morphisms and bimodules

Let A,B be vN algebras. f : A→ B be a unital ∗-morphism. We say f is
a normal morphism if f is ’continuous’. Write vN for the category of vN
algebras and normal morphisms. Write Fact for the full subcategory of
factors.

A,B vN algebras, an A,B-Hilbert bimodule AHB is a Hilbert space H
together with normal morphisms A→ BH and Bop → BH such that.
A ⊆ B ′. Given bimodules AHB and AKB an intertwiner from AHB to

AKB is a bounded operator T : H → K such that T (aξb) = aT (ξ)b
∀ξ ∈ H, a ∈ A, b ∈ B. Pictorially:

A B

K

H

T
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The bicategory of von Neumann algebras

We wish to organize the above pictures into a bicategory W ∗. Have:
Pictures, i.e. Objects, 1-morphisms, 2-morphisms and the usual
composition of intertwiners as vertical 2-dim composition. Need:
Horizontal identity and horizontal composition. Highly nontrivial/Very
technical.

Horizontal identity: Haagerup standard form L2(A) for vN algebra
A. vN alg version of AAA/ Coordinate free version of the GNS
construction.

Horizontal composition: Connes fusion tensor product (CFTP).
H�B K for bimodules HB and BK. vN algebra version of relative
tensor product.

With this structure W ∗ is a bicategory. We write W ∗fact for the
sub-bicategory of W ∗ generated by factors. Landsman, N. P.,
Bicategories of operator algebras and Poisson manifolds, Fields Inst.
Comm 30, 271–286 (2001)]. Obviously Mod-like bicategory.
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Things to say about W ∗

• [Bartels, Douglas, Hénriques 14’] prove a subfactor A ⊆ B is such that
[B : A] <∞ if and only if AL

2(B)B is dualizable in W ∗fact and in this case
[B : A] is the square root of the trace of AL

2(B)B .

• [Landsman 01’] proves that two von Neumann algebras A,B are
isomorphic in W ∗ if and only if A,B are strong Morita equivalent [Rieffel
74’], i.e. if and only if there exists a faithful AHB such that A′ = Bop.

• Strong Morita equivalence is not the strictest notion of isomorphism
between vN algebras (∗-isomorphisms is)

• There are obvious tensor product operations on vN algebras/factors,
bimodules and intertwiners morally making W ∗ into a symmetric
monoidal bicategory. Coherence data is defined in terms of ∗-morphisms.
Mod-like bicategory situation: Extend to a (fibrant) double category!
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Lifting to a double category

We follow the construction of [Mod]. Consider squares of the form:

A B

C D

H

f g

K

T

with A,B,C ,D von Neumann algebras, AHB and CKD bimodules,
f : A→ C , g : B → D ∗-morphisms and T : H → K bounded s.t:

T (aξb) = f (a)T (ξ)g(b)

i.e. equivariant bounded intertwiners. The collection of all such squares
is a category under vertical concatenation. [W ∗]1.

We have: Objects,
vertical morphisms, horizontal morphisms, squares, obvious source and
target functors, horizontal identity and horizontal composition On
objects. We need: Horizontal identity functor extending A 7→ L2(A) and
horizontal composition functor extending (HB ,B K) 7→ H�B K. Highly
nontrivial.



Lifting to a double category

We follow the construction of [Mod]. Consider squares of the form:

A B

C D

H

f g

K

T

with A,B,C ,D von Neumann algebras, AHB and CKD bimodules,
f : A→ C , g : B → D ∗-morphisms and T : H → K bounded s.t:

T (aξb) = f (a)T (ξ)g(b)

i.e. equivariant bounded intertwiners. The collection of all such squares
is a category under vertical concatenation. [W ∗]1. We have: Objects,
vertical morphisms, horizontal morphisms, squares, obvious source and
target functors, horizontal identity and horizontal composition On
objects.

We need: Horizontal identity functor extending A 7→ L2(A) and
horizontal composition functor extending (HB ,B K) 7→ H�B K. Highly
nontrivial.



Lifting to a double category

We follow the construction of [Mod]. Consider squares of the form:

A B

C D

H

f g

K

T

with A,B,C ,D von Neumann algebras, AHB and CKD bimodules,
f : A→ C , g : B → D ∗-morphisms and T : H → K bounded s.t:

T (aξb) = f (a)T (ξ)g(b)

i.e. equivariant bounded intertwiners. The collection of all such squares
is a category under vertical concatenation. [W ∗]1. We have: Objects,
vertical morphisms, horizontal morphisms, squares, obvious source and
target functors, horizontal identity and horizontal composition On
objects. We need: Horizontal identity functor extending A 7→ L2(A) and
horizontal composition functor extending (HB ,B K) 7→ H�B K. Highly
nontrivial.



BDH identity and composition

Let A,B factors. f : A→ B ∗-morphism. Observe that f (A) ⊆ B
subfactor. f finite if [f (A) : B] <∞. Fact<∞ category of factors and
finite morphisms. Mod<∞

1 subcat of [W ∗]1 gen. by squares with factor
vertices and finite vertical edges, i.e. finite equivariant bounded
intertwiners.

Theorem (Bartels, Douglas, Henriques ’14)
There exist functors

L2 : Fact<∞ → Mod<∞
1

and

�• : Mod<∞ ×Fact<∞ Mod<∞ → Mod<∞

such that L2(A) is the Haagerup standard form for every A and
�•(HB ,B K) is H�B K for every (HB ,B K).

Technique: Use of the theory of minimal conditional expectations for
finite index subfactors [Kosaki 91’] in an essential way. No version of
these techniques for infinite index avialable!
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The double category BDH

With the above functors (Fact<∞,Mod<∞
1 ) is a double category. We

denote this double category by BDH. BDH satisfies the equation
HBDH = W ∗fact .

Observations:

• BDH is ’easily’ made into a symmetric monoidal double category with
tensor product of von Neumann algebras, ∗-morphisms, and with the
completed tensor product of Hilbert bimodules.
• BDH is the basis for the construction of the Bartels, Douglas,
Hénriques internal bicategory to SMC and thus symmetric monoidal
tricategory of coordinate free conformal nets. Bartels A., Douglas C.L.,
Hénriques A., Conformal nets IV: The 3-category. Algebr. Geom. Topol.
18 (2018) 897-956
• BDH directly recognizes strong Morita equivalence, finite index,
isomorphisms of semisimple von Neumann algebras.
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Questions

Question: Is there a double category of general von Neumann algebras
(not-necessarily factors) and normal ∗-morphisms C such that HC = W ∗

and such that BDH is a sub-double category of C? Strategy: Consider
an easier question: Does there exist a double category of factors and
not-necessarily finite index morphisms D such that HD = W ∗fact and such
that BDH is a sub-double category of D? If so, use direct integral
methods.

Question: Peterson, Ishan and Ruth define von Neumann couplings
between von Neumann algebras in the preprint Ishan I., Peterson J., Ruth
L., Von Neumann equivalence and properly proximal groups.
arXiv:1910.08682 as von Neumann algebras satisfying certain conditions.
Can we define a tricategory of von Neumann algebras, von Neumann
couplings, bimodules and bounded intertwiners? If so, provide this
tricategory with a symmetric monoidal structure and study 3-dualizable
objects. Prospects: Associate 3 dim local TFT’s to von Neumann
algebras. Strategy: Define a bicategory internal to SMC. This must
pass through a double category of von Neumann algebras.



Globularly generated double categories



Finding a double category of factors: Strategy

The theory of von Neumann algebras does not give us direct tools to
extend BDH to general morphisms. Strategy: Solve the problem
categorically, i.e. understand any such extension in terms of its
’surrounding’ categorical structure, i.e. in terms of other double
categories of factors.

Pictorially:

?

Question: Are there double categories of factors at all? i.e. is the above
shaded square 6= ∅?
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Decorated bicategories

A decorated bicategory is a pair (B∗,B) where B∗ is a category and B is
a bicategory such that the objects of B∗ and B are the same. Represent
a decorated bicategory as a bunch of diagrams of the form:

◦ ◦ϕ◦

◦

f

where the sets of vertices of the two types of diagrams are the same.

Example: Let C be a double category. The pair (C0,HC ) is a decorated
bicategory. Write H∗C and call it the decorated horizontalization of C .
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Internalizations

Problem: Given a decorated bicategory (B∗,B). Find double categories
C such that H∗C = (B∗,B). We call any such C an internalization.

Problem of existence of internalizations: Is the decorated
horizontalization construction generic? We think of the above problem as
a problem of coherently ’filling’ ’hollow’ squares of the form:

◦ ◦

◦ ◦

which we form with the 1-dimensional data provided to us by (B∗,B) in
such a way that the 1-dimensional and the globular data we started with
is fixed. Problems of filling squares with globular data appear in Brown’s
proof of the 2-dimensional Seifert-van Kampen theorem [Brown, Higgins,
Sivera 11’]
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The globularly generated piece construction

Let C be a duble category. Write γC for the minimal sub-double category
of C containing all vertical morphisms and all globular squares of C .

Lemma (O 18’)
Let C be a double category.

1. H∗C = H∗γC .

2. If D is a sub-double category of C satisfying the equation
H∗C = H∗D then γC is a sub-double category of D.

C is a solution to internalization for H∗C . 1 says that so is γC . 2 says
that γC is the minimal solution on C .

We call γC the globularly
generated piece of C . Question: Can we understand these ’minimal’
solutions outside of the context of C?
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Globularly generated double categories
We say that a double category C is globularly generated if any of the
following three equivalent conditions is satisfied:

1. γC = C .

2. C is generated, as a double category, by its globular squares.

3. C contains no proper sub-double categories D such that
H∗C = H∗D.

Intuitively C is globularly generated if every square in C admits a
subdivision, say as:

where every smaller square is either a horizontal identity or a globular
square. The equation γ2C = γC is satisfied for any double category C .
Thus γC is globularly generated for every C . Observe: γC is the
maximal globularly generated sub-double category of C .

Lesson: If
interested in internalizations, study basis for γ, i.e. study globularly
generated double categories.
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What can we say about GG double categories?

Let C be a globularly generated double category. The category of squares
C1 of C is canonically filtrated:

Inductively: Write H0 for the set of all globular and horizontal identity
squares of C . Write V1 for the category generated by H0. Suppose Vn−1

has been defined for some n > 1, define Hn as the sub-pseudo-category of
VC generated by Vn−1 and make Vn to be the subcategory of C1

generated by Hn. We have:

1. Vn ⊆ Vn+1 ⊆ C1.

2. lim−→Vn = C1.

i.e. the chain of Vn’s is a filtration for C1. Call the filtration
... ⊆ Vn ⊆ Vn+1 ⊆ ... of C1 the vertical filtration of C .



What can we say about GG double categories?

Let C be a globularly generated double category. The category of squares
C1 of C is canonically filtrated:

Inductively: Write H0 for the set of all globular and horizontal identity
squares of C . Write V1 for the category generated by H0.

Suppose Vn−1

has been defined for some n > 1, define Hn as the sub-pseudo-category of
VC generated by Vn−1 and make Vn to be the subcategory of C1

generated by Hn. We have:

1. Vn ⊆ Vn+1 ⊆ C1.

2. lim−→Vn = C1.

i.e. the chain of Vn’s is a filtration for C1. Call the filtration
... ⊆ Vn ⊆ Vn+1 ⊆ ... of C1 the vertical filtration of C .



What can we say about GG double categories?

Let C be a globularly generated double category. The category of squares
C1 of C is canonically filtrated:

Inductively: Write H0 for the set of all globular and horizontal identity
squares of C . Write V1 for the category generated by H0. Suppose Vn−1

has been defined for some n > 1, define Hn as the sub-pseudo-category of
VC generated by Vn−1 and make Vn to be the subcategory of C1

generated by Hn.

We have:

1. Vn ⊆ Vn+1 ⊆ C1.

2. lim−→Vn = C1.

i.e. the chain of Vn’s is a filtration for C1. Call the filtration
... ⊆ Vn ⊆ Vn+1 ⊆ ... of C1 the vertical filtration of C .



What can we say about GG double categories?

Let C be a globularly generated double category. The category of squares
C1 of C is canonically filtrated:

Inductively: Write H0 for the set of all globular and horizontal identity
squares of C . Write V1 for the category generated by H0. Suppose Vn−1

has been defined for some n > 1, define Hn as the sub-pseudo-category of
VC generated by Vn−1 and make Vn to be the subcategory of C1

generated by Hn. We have:

1. Vn ⊆ Vn+1 ⊆ C1.

2. lim−→Vn = C1.

i.e. the chain of Vn’s is a filtration for C1. Call the filtration
... ⊆ Vn ⊆ Vn+1 ⊆ ... of C1 the vertical filtration of C .



Vertical length

Let C be a globularly generated double category. Let ϕ be a square in C .
Write `ϕ for min {n : ϕ ∈ Vn}. Call `ϕ the vertical length of ϕ.

Write `C
for Sup {`ϕ : ϕ ∈ C1}. Call `C the vertical length of C . For general C
we define the vertical lenght of C , `C , as `γC .

Intuition: `C measures the complexity of mixed compositions of
horizontal identity and globular squares in C , e.g. `C = 1 iff every square
in C can be written as vertical composition of globular and horizontal
identity squares. Examples: `HB = 1, `QB = 1, γ[Mod] = 1 and
`BDH = 1. Question: Is ` trivial?
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Constructing GG double categories

Let (B∗,B) be a decorated bicategory. We wish to associate to (B∗,B) a
globularly generated double category defined only through the data of
(B∗,B). Idea: Formally reconstruct a vertical filtration with the data of
(B∗,B) and then turn that into a globularly generated double category.

Draw diagrams of the form:

◦ ◦ϕ◦

◦

f

As diagrams of the form:

◦ ◦

◦ ◦

ϕ
◦

◦

◦
◦

=f f
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Constructing GG double categories

Stack the above diagrams vertically. Formally, write F1 for the free
category generated by diagrams of the form:

◦ ◦

◦ ◦

ϕ

◦
◦

◦
◦

=f f

Write E1 for the collection of formal words on compatible elements of F1,
i.e. E1 is the collection of formal expressions of the form:

◦ ◦

◦ ◦

◦

◦

◦

◦

◦

◦

. . .

where the squares are morphisms in F1. Inductively define a chain of
categories F1 ⊆ F2 ⊆ .... Let F∞ be lim−→Fn. Thus defined F∞ is formed
squares quilted from diagrams in (B∗,B) but does not satisfy the
exchange relation and does not contain the information of (B∗,B).
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Free globularly generated double categories

Carefully choose an equivalence relation R on F∞ containing both the
exchange relation and the composition information of (B∗,B). Write
Q(B∗,B) for F∞/R.

We prove:

Theorem (O’19)
Let (B∗,B) be a decorated bicategory. Q(B∗,B) is a globularly generated
double category such that the category of objects of Q(B∗,B) is B∗ and
B ⊆ H∗Q(B∗,B).

We call Q(B∗,B) the free globularly generated double category associated
to (B∗,B). Warning: The equlity H∗Q(B∗,B) = (B∗,B) does not hold in
general. Example: Let A be an abelian group. Let G be a group.
H∗Q(ΩG ,Ω2A) = (ΩG ,Ω2(G ∗ A)).
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Saturated decorated bicategories

We say that a decorated bicategory (B∗,B) is saturated if the equation
H∗Q(B∗,B) = (B∗,B) holds. We have easy tests to decide if a decorated
bicategory is saturated.

Example: If B∗ has no sections or retractions, i.e. (B∗,B) is reduced. In
particular if B∗ is free or ΩM for a reduced monoid M then (B∗,B) is
saturated.

Lemma
Let (B∗,B) be a decorated bicategory. QH∗Q(B∗,B)

= Q(B∗,B) and thus
H∗Q(B∗,B) is saturated.

If (B∗,B) is not saturated we can always enlarge (B∗,B) canically in
order to obtain a saturated decorated bicategory.
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An internalization of factors
Write Fact for the category whose objects are factors and whose
morphisms are possibly infinite ∗-monomorphisms. Recall that W ∗fact is
the bicategory of diagrams of the form:

A B

K

H

T

with corners being factors, H and K bimodules and ϕ a bounded
intertwiner. Thus defined (Fact,W ∗fact) is a decorated bicategory.

We
prove:

Theorem (O’ 19)
The decorated bicategory (Fact,W ∗fact) is saturated, i.e. Q(Fact,W ∗fact)

is a
double category of factors and general ∗-morphisms.

There exist compatible functors L2 : Fact → Q(Fact,Mod fact)1
and

� : Q(Fact,Mod fact)1
×Fact Q(Fact,Mod fact)1

→ Q(Fact,Mod fact)1
.

Warning: These functors do not extend the BDH L2 and �• functors,
i.e. Q(Fact,W ∗fact)

does not extend γBDH. But: There are double
categories of factors!
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Length is not trivial

We also use the free globularly generated double category construction to
prove that vertical length is non-trivial. Consider the bicategory B:

a aid b bZ2
c cid

Decorate B by the category B∗:

a

b

c

The free globularly generated double category Q(B∗,B) of (B∗,B) has a
square of vertical length 2. Same method: Double categories of
arbitrarily large and infinite length. Length is non-trivial.
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Final remarks

• The free globularly generated double category construction is a free
object in gCat with respect to H∗. We can thus describe every globularly
generated double category as a canonical double quotient of the free
globularly generated double category of its decorated horizontalization.

• We can use this to construct an extension of γBDH to arbitrary
∗-morphisms of factors. This provides a second non-double equivalent
double category of factors. Question: How many of these can we build?
Partial answer: We can build one of vertical length one for every special
endofunctor monoidal fibration. There is evidence that this is somehow
controlled by a cohomology theory. Problem: Build this cohomology.
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