Categories and Quantum Informatics exercise sheet 1:
Categorical semantics

Exercise 0.1. Let (P, <) be a partially ordered set. Show that the following is a category: the objects are
the elements = of P, and there is a unique morphism x — y if and only if z < y.

Exercise 0.2. Let M be a monoid: a set M together with an associative binary “multiplication” operation
M x M — M written as (m,n) — mn and an element 1 € M such that Im = m = ml. Show that the
following is a category: there is a single object %, the morphisms * — * are elements of M, and composition
is multiplication. Conversely, show that any category with a single object comes from a monoid in this way.

Exercise 0.3. Let G = (V, E) be a directed graph. Show that the following is a category: objects are vertices
v € V, morphisms v — w are paths v % ... =" with e; € E, and composition is concatenation of paths.
Choose n > 5, and draw a graph with n edges whose category has more than n morphisms.

Exercise 0.4. (a) If P and @ are partially ordered sets regarded as categories, show that functors P— @
are functions f: P — @ that are monotone: if x <y then f(z) < f(y).

(b) If M and N are monoids regarded as categories, show that functors M — N are functions f: P — Q
that are homomorphisms: f(1) =1 and f(mn) = f(m)f(n).

(¢) If G and H are graphs regarded as categories, what are functors G — H?

Exercise 0.5. (a) Show that partially ordered sets and monotone functions form a category.

(b) Show that monoids and homomorphisms form a category.

Exercise 0.6. (a) Show that in Set, the isomorphisms are exactly the bijections.

(b) Show that in the category of monoids and homomorphisms, the isomorphisms are exactly the bijective
morphisms.

(c) Show that in the category of partially ordered sets and monotone functions, the isomorphisms are not
the same as the bijective morphisms.

Exercise 0.7. Consider the following isomorphisms of categories and determine which hold.
(a) Rel ~ Rel?
(b) Set ~ Set°?
(c) For a fixed set X with powerset P(X) regarded as a category, P(X) ~ P(X)°P

Exercise 0.8. Let (P, <) be a partially ordered set, and regard it as a category.

(a) Show that a product of z and y is a greatest lower bound: an element = A y such that © Ay < z and
x ANy <y, and if any other element satisfies z < z and z < y then z < x A y.

(b) Show that a coproduct of z and y is a least upper bound.

Exercise 0.9. In any category with binary products, show that A x (B x C') ~ (A x B) x C.



Categories and Quantum Informatics exercise sheet 1 answers:
Categorical semantics

Exercise 0.1. Composition arises from transitivity: if x < y and y < z then < 2. This is automatically
associative. Identities arise from reflexivity: = < z. (We don’t actually need anti-symmetry, pre-orders also
induce categories this way.)

Exercise 0.2. Associativity of the composition of the category is precisely associativity of the monoid mul-
tiplication.

Note: pre-orders and monoids are two ‘extreme’ types of categories. Pre-orders have lots of objects and as
few morphisms as possible. Monoids have as few objects as possible and lots of morphisms. In a sense any
category is a mixture of these two extremes.

Exercise 0.3. Concatenating paths is associative. Identities arise from paths v — v of length 0.

Exercise 0.4. (a) A functor P— (@ by definition consists of a function f: P— @ (on objects) that maps
morphisms to morphisms. This means precisely that if x < y is a morphism in P, then there must be
a morphism f(z) < f(y) in Q.
(b) A functor M — N by definition consists of a function {*} — {*} (on objects), and a function
f+ M—N (on morphisms). The latter has to preserve composition (f(mn) = f(m)f(n)) and identities
(f(1) =1).
(c) Functors G — H by definition consist of a function f: Vertices(G)— Vertices(H) (on objects), and a
function g: Edges(G) — Paths(H). The latter induces a function Paths(G)— Paths(H) that respects
associativity of composition and identities by definition of composition and identities in the category

G.

Exercise 0.5.  (a) Composition of monotone functions is monotone, and the identity is a monotone
function.

(b) Composition of homomorphisms is a homomorphism, and the identity is a homomorphism.

Exercise 0.6. (a) Isomorphisms are clearly bijections. Conversely, suppose f: A— B is a bijection. Then
there exists a function f=1: B— A with f(f~1(b)) = b and f(f~!(a)) = a. So f is an isomorphism.

(b) Isomorphisms are clearly bijective morphisms. Conversely, suppose f: M — N is a bijective
morphism. Then there exists a function f~!': N — M that inverts it. We have to show that f~!
is a homomorphism. Clearly f~1(1) = f~1(f(f~*(1)) = f~1(f(1)) = 1. Similarly f~'(ay) =
FREGH @) = U @) W) = fH @) fH ).

(c) Let P be the partially ordered set {0,1} where 0 and 1 are incomparable: 0 £p 1 nor 1 £p 0. Let Q
be the set {0, 1} partially ordered by 0 <¢g 1 (but not 1 <g 0). Let f: P—Q be the function f(0) =0
and f(1) = 1. Then f is bijective and monotone. Its inverse would have to be the set-theoretic
function @Q — P given by 0 — 0 and 1 — 1, but that function is not monotone.

Exercise 0.7.  (a) True: the functor that sends a set A to itself, and a relation R C A x B to
{(b,a) | (a,b) € R} C B x A, is its own inverse.
(b) False: if there were an isomorphism, then Set(A, B) ~ Set(B, A) for any sets A, B. But for e.g.



A= {x} and B = {0,1} these two (hom)sets have different cardinality.

(¢) True: the assignment on objects that sends U € P(X) to its complement X \ U € P(X) is functorial,
and its own inverse.

Exercise 0.8. (a) A product of x and y is by definition an object « A y such that z > z Ay < y. It has
to satisfy the universal property: if there is another object z with « > z <y, then there is a (unique)
morphism z < z A y.

(b) Reverse all the inequality signs.

Exercise 0.9. The universal property of A x B provides a morphism that we’ll call id4 X pg:

Ax (BxC)
p rida X pp B O PBxC
‘
A < AxB > B
ba bB

The universal property of (A x B) x C now provides a morphism f: A x (B x C)— (A x B) x C:

Ax (BxC)
idga x p :f C °PBxC
v
AxB+—— (AxB)xC >
X PAxB (4 B) x pc ¢

Similarly we find a morphism g: (A x B) x C— A x (B x C).
Now pao(go f) =pacidaxsxc) and ppxc o (go f) = pxc ©idax(Bxc). But the universal property of
A x (B x C) says there is only one morphisms that can satisfy this, so we must have g o f = id. Similarly

fog=id.



Categories and Quantum Informatics exercise sheet 2:
Hilbert spaces, monoidal categories

Exercise 1.1. Show that in FHilb, the isomorphisms are precisely the bijective morphisms.

Exercise 1.2. Prove that direct sums form products and coproducts in FHilb.

Exercise 1.3. Show that the Kronecker product of matrices f, g, and h, satisfies (f ® g) @ h = f ® (¢ ® h).

Exercise 1.4. Let A, B,C, D be objects in a monoidal category. Construct a morphism
(A)®@B)C)®D—AR (B® (C®(I®D))).

Can you find another?

Exercise 1.5. Convert the following algebraic equations into graphical language. Which would you expect
to be true in any symmetric monoidal category?

(a) (g®@id)ooo (f®id) = (f®id) oo o (g®id) for AL A.

(b) (f®(goh))ok=(id® f)o ((g® h)ok), for A B C, C* B and BL% B.

() id®h)ogo(f®id) = (d® f)ogo (h®id), for AL Aand A®w AL A® A
)

(d) ho(id®N)o(ild® (f®id))o(id® A Hog=hogolo(f®id)o A1, for AL B®C, 15T and
B®C-D.
() pco(id ® f) o ac.ap o (oac ®@idp) = Ac o (f®id)oagls oo (id ®ocp)oancs for A BL 1.

Exercise 1.6. Consider the following diagrams in the graphical calculus:

a
N

(a) Which of the diagrams (1), (2) and (3) are equal as morphisms in a monoidal category?
(b) Which of the diagrams (1), (2), (3) and (4) are equal as morphisms in a braided monoidal category?



(c) Which of the diagrams (1), (2), (3) and (4) are equal as morphisms in a symmetric monoidal category?

Exercise 1.7. We say that two joint states I —> A ® B are locally equivalent, written u ~ v, if there exist
invertible maps A £, A, B-% B such that

L]
N~

(a) Show that ~ is an equivalence relation.

(b) Find all isomorphisms {0,1} — {0,1} in Rel.

(c) Write out all 16 states of the object {0,1} x {0,1} in Rel.
)

(d) Use your answer to (b) to group the states of (¢) into locally equivalent families. How many families
are there? Which of these are entangled?

Exercise 1.8. Complete the following proof that p; = A; in a monoidal category, by labelling every arrow,
and indicating for each region whether it follows from the triangle equation, the pentagon equation, naturality,
or invertibility. Head-to-tail arrows are always inverse pairs.

Ar
1< SIwel
] )\;1 4+~
PI
A7 .
IQI —E 5 I(Ie)+—IxIx1)1
A Io(Iol)®I)
I Q. IRUI(I]) ——I(IR)+— ()R — I®1

/

IeII)

[0 ——— (IR — (I )]

™~

1

~. !
=11




Categories and Quantum Informatics exercise sheet 2 answers:
Hilbert spaces, monoidal categories

Exercise 1.1. Clearly isomorphisms are bijective morphisms. Any bijective morphism f: H — K has a
set-theoretical inverse f~!: K — H; we have to prove that it is a morphism. It is additive: f~(z +y) =
FTHS @)+ FU ) = FH U @)+ W) = f7H (@) + f~ (y)- It respects scalar multiplication:
Fi(sz) = fYsf(f~Hx)) = fFHf(sf~Hx))) = sf~1(x). (And it is automatically bounded as H and K
are finite-dimensional.)

Exercise 1.2. The projections and injections are given by

pu: H&K—H pu(z,y) =
pk: HO K —H pr(T,y) =y
ig: H—H®K ig(x) = (z,0)
ix: H—>H®K irx(y) = (0,y)
and the universal properties
A
()
P \9
pH v PK
H He K K
Ty | 1K
(h )
B

are given by

(b E): (x,y) = f(z) 4+ g(y).

Exercise 1.3. Both (f® g) ® h and f ® (g ® h) expand to

fuigiithin fugnhie fuigizhin fuigizhie fizguhi fizgiihie fizgizhin fizgizhae
Ju1gither  fiigiihoa  frigiohar  fuigizhee  fi2gi1her  fizguihoz  fiagizhar  fi2g12ho0
Ju1921h11 fiig2ihiz fiigeohir fiigezhie fi2g21han fi2gerhiz fizge2hir  fi2922h12
J11921ho1  fi1g21ho2  fi1922h21 fi1g22h22  fi2921ho1 fi2ge1ho2  fi2ga2ha1  fi2922h00
f21911h11 f21911h12 f21912h11 f21912h12 f22911h11 f22911h12 f22912h11 f22912h12
farg11ho1  forg11hee  forgiohor  fargi2hos  foagiihar  foogiihoo  faagi2hor  foagiahao
forg21h1r farge1hiz fa1g922h11 farg22hi2 fazgorhir fa2g21hi2 fa2gechin  fa2go2haa
fa1921h21  fa1g21ho2  fo1920h21  forga2hoe  fa2921ho1 fo2gorhoz  faagoshar  fa2g22hoo




Note: we might try to take cardinal numbers pu, v, ... as objects in Matc, and p-by-v matrices of complex
numbers such that each row and column is square summable as morphisms p— v. That is a fine category.
But it is not monoidal in the same way as above. Taking uv as tensor product of objects is fine. The issue is
with tensor products of morphisms. To write down the Kronecker product of a u-by-r matrix f and a x-by-A
matrix g, you need functions ¢, : g x & —p and P : p X K— kK to say (f @ 9)ij = fo,. (i).0x()Ien (i) (). 1N
the finite case, we took ¢, (i) = |i/m]| and ©,,,(i) =4 mod m (so that i = m - ¥, (1) + ¥, (7). But it seems
unlikely that functions ¢, and 1, exist for all cardinals p that satisfy this associativity.

Exercise 1.4. For example:

(A1) ® B)® C) ® D ((pa®idp)®idc)®idp (A®B)®C)® D
L8084, A @ (B® C))® D

LAPECD, A @ ((B® C) @ D)

ida®ap,o,p A® (B ® (C@D))

da®(dp®(ido®Ap), 4 o (B® (C® (I® D))

Because of coherence, this is the only morphism of this type built from the data of a monoidal category. So
unless we have more information about the category than just that it’s monoidal, we cannot find another
morphism with the same domain and codomain.

Exercise 1.5. Recall that the swap map is natural.
(a) Taking A = {0,1}, f = ids and ¢g(0) = 1 and g¢g(1) = 0 in (Set,x) shows that

4]

4]

(b) Taking A = C = {a}, B ={0,1},k(a) = (0,a), f =idp and ¢g(0) =1, g(1) = 0 in (Set, x) shows that

c) Taking A = {0,1},9 = idaxa,f = ida and h(0) = 1, h(1) = 0 in (Set,x) shows that

B



en R

-
(d) The equation presented below:

g g
calculus for monoidal categories.

H-f E-f
(e) The equation presented below:

for symmetric monoidal categories.

is clearly true in the graphical

is clearly true in the graphical calculus

Exercise 1.6. (a) In monoidal categories, equalities of the diagrams hold iff they can be continously
deformed into each other using 2-dimensional isotopy. Diagram (1) can be continously deformed into
diagram (2), so they are equal. In diagram (3), the scalar k is stuck between the wires of j and h, so
it is not equal to (1) and (2).

(b) In braided monoidal categories, equalities of the diagrams hold iff they can be continously deformed

into each other using 3-dimensional isotopy. From (a) we have (1) = (2). Using 3-dimensional isotopy,
we can show (1) = (2) = (3) by taking the scalar k out in the third dimension and then moving it
over the enclosing wires.
However, we can’t show that (4) is equal to the other three diagrams using the axioms of a braided
monoidal category. We can still move the scalar k out of the enclosing wires, but we can’t uncross the
wires themselves. Note, that removing the crossing of the wires in (4) requires that op 4004 p =idagn
which is always true for symmetric monoidal categories, but not necessarily for braided monoidal
categories.

(c) So, in (c) all diagrams are equal, but in (b) (1) = (2) = (3) # (4).

Exercise 1.7. Two joint states are locally equivalent when then can be transformed into one another using
only uncorrelated local operations. So if two joint states possess a different ‘amount of correlation’, they will
not be locally equivalent.

(a) Taking f = g = id shows that u ~ u. If u ~ v because v = (f ® g) o u, then also (f ' ® g~ 1) ov =u,
whence v ~ w. Finally, if u ~ v and v ~ w because v = (f ® g) ou and w = (k ® h) o v, then
w=((kof)®(hog))ou by the interchance law, so that u ~ w.

(b) Isomorphisms in Rel are the graphs of bijections: {(0,0),(1,1)} and {(0,1),(1,0)} are the only
isomorphisms {0,1} — {0, 1}.
(c) States of {0,1} x {0,1} are its subsets.

(d) Simply starting with one state we haven’t classified yet, and generating all possible locally equivalent
ones by pre- and/or postcomposing with all bijections, we find the following 7 local equivalence classes.

0
(0,00} ~{(0,1} ~ {(1,0)} ~ {(1,1)}
{<Ov O)a (07 1)} ~ {(170)7 (17 1>}’



~
——

,0
70)7(0 1) (1 1)} ~ {(0,0),(170),(1,1)} ~ {(071)7(170)7(171)}

Notice that local equivalence respects cardinality (but states of the same cardinality need not be locally
equivalent).

Exercise 1.8. The axiom applying to each region can be deduced from its number of non-identity sides: 2
for invertibility, 3 for triangle, 4 for naturality, and 5 for pentagon. To save space below we write I ® f for
idy ® f.
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Categories and Quantum Informatics exercise sheet 3:
Scalars

Exercise 2.1. Show that the following defines a dagger category:
eobjects (A, p) are finite sets A equipped with prior probability distributions, functions p : A— Rt such
that 3, 4 pla) = 1
emorphisms (A,p)L(B, q) are conditional probability distributions, functions f : A x B—R=? such that
for all a € A we have ), f(a,b) = 1, and for all b € B we have q(b) = >_,c 4 p(a)f(a,b);

ecomposition is composition of probability distributions as matrices of real numbers;

ethe dagger is the Bayesian converse, acting on f : A x B—R20 to give fT: B x A—R29 defined as
f1(b,a) = f(a,b)p(a)/q(b).
Note that the Bayesian converse is always well-defined since we require our prior probability distributions to
be nonzero at every point.

Exercise 2.2. Show that all joint states are product states when A ® B is a product of A and B and I is
a terminal object. Conclude that monoidal categories modeling nonlocal correlation such as entanglement
must have a tensor product that is not a (categorical) product.

Exercise 2.3. Let A2 B be a morphism in the dagger category Rel.
(a) Show that R is unitary if and only if it is (the graph of) a bijection;
(b) Show that R is self-adjoint if and only if it is symmetric;
(¢) Show that R is positive if and only if R is symmetric and a Rb = a Ra.
(d) Is every isometry A— A in Rel unitary?

Exercise 2.4. Is Matc a monoidal dagger category?

Exercise 2.5. Fuglede’s theorem is the following statement for morphisms f,g: A— A in Hilb: if fo fT =
ffofand fog=gof, then also ff o g=go ff. Show that this does not hold in Rel.

Exercise 2.6. Recall the notion of local equivalence from Exercise Sheet 2. In Hilb, we can write a state
C-%C2®C? as a column vector

QU O o

or as a matrix
a b
(2 8),

(a) Show that ¢ is an entangled state if and only if My is invertible. (Hint: a matrix is invertible if and
only if it has nonzero determinant.)

(b) Show that Miq_,ef)0p = Mg o T, where C? L, €2 is any linear map and fT is the transpose of f in
the canonical basis of C2.



(c) Use this to show that there are three families of locally equivalent joint states of C? @ C2.



Categories and Quantum Informatics exercise sheet 3:
Scalars

Exercise 2.1. The composition of two morphisms is a well-defined morphisms. The dagger is well-defined
and involutive, and respects composition.

Exercise 2.2. We will show that we can write any state ¥ : I — A ® B as the product state v =
(proyy ®p1 o) o /\I_l. Since the tensor product is a categorical product, v : I — A x B makes the
diagram below comute. The map < p; o0 ¥,py 0 ¢ > oA~! makes the diagram commute as well for the
following reason: Since I = I x I and I is the terminal object, I x I is the terminal object; hence, there
is one unique arrow I — I x I, so A~! makes the lower triangle commute. By definition of the product,
< p1 o1, py ot > makes the upper square commute. It follows from the universal property of products that

Y =<piot,pror) >0t
A
p10¢|
I

Exercise 2.3. (a) First, Rf o R = id4 implies that R relates every element a of A to some element of B.
If it was related to two elements of B, that would violate R o Rf =idp. Finally, R o Rt = idp means
that every element of B is related to some element of A. So all in all, R relates each element of A to
precisely one element of B, and vice versa.

(b) By definition, R being self-adjoint means that aRb if and only if aR'b, which in turns holds if and
only if bRa.

(c) If R is symmetric and satisfies a Rb = a Ra, setting

D2
_—

B
D2 0¢|
D2

I

3
>

N
Sy

—

P1
b1

<
€

~
~N--» X ------=2 X
~

/
\

S={(a,(v,y)) |a€ A, (r,y) € R,a=xora=y}

gives R=ST085.
(d) No; R = {(e,0),(e,1)}: {#} — {0,1} satisfies R o R = id(,}, but is not (the graph of) a subset
inclusion.
Exercise 2.4. Transposition gives a dagger, and the Kronecker product of matrices respects transposition.

Exercise 2.5. Take A = {0,1}, R = {(0,0),(1,0),(1,1)}, and S = {(1,0)}. Then Rf o R = Ro R' and
RoS=SoR, but not Rf o § =80 R".



(%) (y)

Exercise 2.6. (a) Notice that ¢ is the product state of C —> C? and C - C? precisely when

a uzx
bl | uy
cl  |vx
d vy

In this case, det(My) = ad — be = uzvy — uyve = 0, so ¢ is invertible.

Conversely, suppose ad — bc = 0. If a # 0, then we may take u = 1, v = ca™, z = a, and y = b
to show that ¢ is a product state. Similar choices work when one of b,c or d is nonzero. Finally, if
a=b=c=d=0, we may takeu=v=x=y=0.

(b) Compute

1

v _ f(au+bv azx+by
Myo f _(qurdv cr+dy)’

and
u v 0 0 a au + bv
. |z y 0 O bl  [|ax+by
(ide2 @ f)o b= 0 0 u v c|  |eu+dv
0 0 =z y d cx + dy

1
(c) First, we show that all entangled states ¢ are locally equivalent to 1 = <§>. Indeed, if My is

. . _ . —1
invertible, then M, = (§9) = Mgo ((Mg)~H)T)T = M(idc2®(M;1)T)o¢, s0 ¢ = (ide2 @ (M3 1)T 0 ¢.
Also, product states can never be locally equivalent to entangled states, so all entangled states form
one equivalence class.

0
Second, the zero state | J ) is an equivalence class of its own: if any state is locally equivalent to the

0
zero state, then it must have been the zero state to begin with.
a1

Third, we show that all nonzero product states are locally equivalent. Indeed, if states Zf and

C1
(f{‘i) are nonzero, there exist invertible maps taking (al) to <Cl>, and (bl) to <d1).
da az Co by da



Categories and Quantum Informatics exercise sheet 4:
Dual objects

Exercise 3.1. Pick a basis {e;} for a finite-dimensional vector space V, and define CLVQVand VoV-5C
by n(l) =3, e; ®e; and e(e; ® e;) = 1, and e(e; ® e;) = 0 when i # j.
(a) Show that this satisfies the snake equations, and hence that V' is dual to itself in the category FVect.

(b) Show that f* is given by the transpose of the matrix of the morphism V Ly (where the matrix is
written with respect to the basis {e;}).

(c) Suppose that {e;} and {e;} are both bases for V, giving rise to two units 1,7’ and two counits ¢, &’.
Let V==V be the ‘change-of-base’ isomorphism e; — ¢;. Show that n = 7" and € = ¢’ if and only if f
is (complex) orthogonal, i.e. f~1 = f*.

Exercise 3.2. Let L 4 R in FVect, with unit 7 and counit €. Pick a basis {r;} for R.

(a) Show that there are unique [; € L satisfying n(1) =), 7 ® ;.

(b) Show that every I € L can be written as a linear combination of the /;, and hence that the map R L,
defined by f(r;) = l;, is surjective.

(c) Show that f is an isomorphism, and hence that {l;} must be a basis for L.

(d) Conclude that any duality L 4 R in FVect is of the following standard form for a basis {l;} of L and
a basis {r;} of R:

77(1):27%@11‘7 e(li ® ;) = bij. (1)

%

Exercise 3.3. Let L 4 R be dagger dual objects in FHilb, with unit 7 and counit .
(a) Use the previous exercise to show that there are an orthonormal basis {r;} of R and a basis {l;} of L
such that n(1) = >, r; ®; and e(l; ® ;) = 0i;.
(b) Show that e(I; ® r;) = (I;]l;). Conclude that {I;} is also an orthonormal basis, and hence that every
dagger duality L 4 R in FHilb has the standard form (1) for orthonormal bases {l;} of L and {r;} of
R.

Ex?rcise 3.4. Show that any duality L 4 R in Rel is of the following standard form for an isomorphism
R—L:

n={(e,(r, f(r)IreR}, e={(1f'(1),e) [l eL}.
Conclude that specifying a duality L 4 R in Rel is the same as choosing an isomorphism R — L, and that
dual objects in Rel are automatically dagger dual objects.

Exercise 3.5. A terminal object is an object 1 such that there is a unique morphism A — 1 for any object
A. In a monoidal category with a terminal object, show that: if L 4 R, then R® 1 ~1~1® L.

Exercise 3.6. Show that the trace in Rel shows whether a relation has a fixed point.

Exercise 3.7. Let C be a compact dagger category.
(a) Show that Tr(f) is positive when A L Aisa positive morphism.



(b) Show that f* is positive when AL Aisa positive morphism.
(¢) Show that Tra«(f*) = Tra(f) for any morphism AL a4
(d) Show that Tr(g o f) is positive when A 19, A are positive morphisms.

Exercise 3.8. Show that if L 4 R are dagger dual objects, then dim(L)" = dim(R).



Categories and Quantum Informatics exercise sheet 4:
Dual objects

Exercise 3.1.  (a) Evaluating the snake equation on each ey gives

(idv ®@¢€) o (n®@idy)(ex) = (idv @ 5)(2 e ®e; ®ey)

= Zei ®e(e; ®ex)
= €k,
so indeed (idy ® €) o (p ® idy ) = idy; the other snake equation is verified similarly.

T
(b) Let (f;,;) be the matrix of f. So e; EN > fiaej and e; EAN > figes.
When we evaluate on each e we get

f*(ek) = (idv ®e)o (idv Rf® idv) o(N® idv)(ek)
=({dy ®e)o(idy ® f ® ldV)(Z e Qe ®ey)

— Z(idv ®e)(e; @ fler) ® ex)
— Zei ® fi]f(e]‘ (39 ek)

J
=Y fues
= T (ex),

and so f* = fT.

(¢) By Lemma 3.5 we may focus on 7 = 7’ and forget about € = &. Because ¢; =, f;je;, we get

n'(1) = Zeg ® e = Z fijfire; @ ex.

7 N
This equals 7(1) = >°, e; ® e; precisely when ). fi; fir = ;i for all j, k. But this happens precisely
when fT o f = idy, since
fir oo fan firn o fin Yufinfie oo 2 fiifin
flof=| ¢ - Lot = z z
fl,n s fn,n fn,l B fn,n Zl fi,nfi,l cee Zi fi,nfi,n

Because f is invertible, this means fT = f~1.

Exercise 3.2. Like any vector in R® L, we can write n(1) as Z;nzl zjx; @y for z; € C, z; € R,and y; € L,
where m is some finite number. Developing each z; on the basis {r;} and using bilinearity of the tensor



product, we see that we can also write it as Y., 7; ® I; for n = dim(V') and I; € L. If we could also write
it as Y1 | r; ® 1}, then we would have 0 = >""" | r; ® (I; — I}). Because r; forms a basis, it would follow that
l; =1, for each i. Hence the I; are unique.

(a) Use the snake equation:

l=1id.(l)
= (e®idg) o (idp ® n)(1)
= (e® idL)(Zl 71 @ 1)

= 28(1 ® 1)l

(b) Similarly, it follows from the snake equation that r; = Y, e(lx ® r;)ry. Suppose that l; = [;. Because
{ri} are linearly independent, then ¢(l; ® ;) = 1, and (I, ® r;) = 0 for k # . Hence e(l; @ ;) = 1,
and it follows that ¢ = j, and so r; = r;. So f is injective.

(c) First notice that the standard form unit and counit indeed satisfy the snake equation. For the converse,
combine the previous parts with 77?.

Exercise 3.3. (a) A Hilbert space is in particular a vector space. In the previous exercise, we may start
by choosing {r;} to be orthonormal.

(b) First, compute that n'(r; ® ;) = (;]1;):

) @ 1) =Y (ralra) (el

k
= (lill;)
(Ln*(rs @ 1))

Hence dagger duality shows that e(l; @ ;) = ' oo (l; ® ;) = nf(r; ® ;) = (I;|1;). But part (a) shows
that also e(l; ® ;) = d;;. Hence (l;|l;) = d;;, making {l;} orthonormal.

Exercise 3.4. First notice that the standard form indeed satisfies the snake equations.

Second, if 7 and € witness L 4 R, then for each r € R there exists [ € L such that (e, (r,1)) € n by one snake
equation. But there can be at most one such [ because of the other snake equation. Thus f(r) = [ defines
an isomorphism R - L that makes 7 of the standard form. By 7?7, also € must be of the standard form.
Third, observe that if f # f/, then 5 # n’. Hence different choices of isomorphism R ~ L yield different
(co)unit maps.

Finally, notice that any isomorphism is a unitary.

Exercise 3.5. We will prove that L ®0 is the initial object; that is: for every object X, there exists a unique
morphism L ® 0 — Z. The isomorphism L ® 0 = 0 follows the from uniqueness of the initial object. The
isomorphism 0 40 ® R is done analogously.

Exercise 3.6. Let X & X. Compute:

Tr(R) =



So Tr(R) = 1 when R has a fixed point, and Tr(R) = 0 otherwise.
Exercise 3.7.  (a) Say f = g' o g for A% B. Now use dagger duality:

Tra(f) =cao (gl @ida)o (g @ida-)00oa-a0na

ca0(g9t ®@ida-)ooa- po(ida @g)ona
=7l 0o o(gf ®ida-)00a- po(ida- ®g)ona
=1}y o (ida- ® g) o (ida- ® g) 0 na.

(b) If f = g" o g, then f* = g* o (g7)* = (") o (¢")T.
(c)
Tra-(f*) =ca-o(f"®ida) 004 4+ 0 Na-
=¢c4-0(idax ® f) oo ax 0Na-

=cg004,4+0(lda- @ f) ® 04,4+ 004+ 40N,
=Tra(f).

(d) This is graphically immediately clear.
(e) Suppose f = al oa and g = b' o b; use the cyclic property to see Tr(go f) = Tr((bf 0a)' o (bf 0a)), and
then use part (a) to see that this scalar is positive.

Exercise 3.8. Graphically:

dim(L)T = = = = dim(R).



Categories and Quantum Informatics exercise sheet 5:
Monoids and comonoids

Exercise 4.1. Let (A,d,e) be a comonoid in a monoidal category. Show that a comonoid homomorphism
I-% A is a copyable state. Conversely, show that if a state [ % A is copyable and satisfies e o a = idj, then
it is a comonoid homomorphism.

Exercise 4.2. This exercise is about property versus structure; the latter is something you have to choose,
the former is something that exists uniquely (if at all).
(a) Show that if a monoid (A4, m,u) in a monoidal category has a map 15 A satisfying mo (ida®u') = pa
and Ay = mo (v ®idy), then v’ = u. Conclude that unitality is a property.
(b) Show that in categories with binary products and a terminal object, every object has a unique comonoid
structure under the monoidal structure induced by the categorical product.

(¢) If (C,®,1) is a symmetric monoidal category, denote by cMon(C) the category of commutative
monoids in C with monoid homomorphisms as morphisms. Show that the forgetful functor
cMon(C) — C is an isomorphism of categories if and only if ® is a coproduct and I is an initial
object.

Exercise 4.3. This exercise is about the FEckmann—Hilton argument, concerning interacting monoid
structures on a single object in a braided monoidal category. Suppose you have morphisms A @ A "2 A
and T2 A, such that (A, my,u1) and (A, ms,us) are both monoids, and the following diagram commutes:

(a) Show that u; = us.
(b) Show that my = mo.

(¢) Show that m; is commutative.



Categories and Quantum Informatics exercise sheet 5:
Monoids and comonoids

Exercise 4.1. The comonoid structure on I is given by (I, A;l,idI). The definition of copyability and the
first part of the definition of comonoid homomorphism are both described by the same equation in this case,
namely:

doa=(a®a)o;*

This means that a state a is copyable iff a satisfies the first equation in the definition of comonoid
homomorphism. Note that in general, a copyable state a does not satisfy the other condition, namely
deletion. A counter example is taking a zero state.

Exercise 4.2.  (a) The graphical proof for this part is very simple (simply plug in both v and u’ into m),
but we present a symbolic one for comparisson.
Observe that the following equation holds because of naturality of p:

pao(u®idr) =wuopy

Since A\; = py, we have:
paoc(u®idr) =uopr =uoAs

Using the same argument, but for A and v’ we get:

)\Ao(id1®u')=u'o)\1:u’op1

We have:
mo (ida @u') = pa
= mo(ida®u)o(u®idr) = pao (u®idy) (compose on right)
= mo(idg®@u')o(u®id;) =uols (above equation)
= mo(u®u)=uols (interchange law)
= mo(u®ida)o (idj@u’) =uol; (interchange law)
= Mo (id;®@u')=uo)s (monoid axiom)
= dwolr=wuol\; (above equation)
= u =u (A is invertible)

Note, that we have used only one of the equations for u'.

(b) We will write the product of f: X — A and g : X — B as (f,g) : X — A x B and the associated
projections will be written as 7 ? and 75> 2.
Recall, that



(fig)oh = (foh,goh)

First, we need to express the monoidal structure induced by the product. It is given in the following
way:
For objects, A and B

AR B:=AxB

For morphisms f: A— B and g: C— D
f@g:=(fom™ gom™C)

The monoidal unit I is the terminal object 1 of the category. Then,

. _1xA
A4 =T,
Ax1
PA =T
A><B (A><B)><C AXB (AxB)xC _(AxB)xC
aa,B,c = (T ™ (75 0 ) )

Next, we need to show that every object in the category has a comonoid structure. Let A be an
arbitrary object. We can assign it a comonoid structure (A, d, e) by defining:

d = (ida,ids) : A— Ax A

e _1A A—1

where 14 is the unique morphism going from A to the terminal object 1. We have to verify that the
axioms for a comonoid are satisfied.

pao(ida®e)od=m{"" o (idsom 4 14 0m*4) o (ida,ida)
—szowAX o (ida,ida)
ZZdA

as required. Next,

Aao(e®ida)od=mi*"o (140w idy om0 (ida,ida)
szowAXA o (ida,ida)

= ZdA
as required. Next, we show coassociativity:

asaa0(dRidg)od=caa40 <do7ri4><A ida 07TA><A> od
= QA,A,A0° <dO7T14><A od,ﬂQAXA od)

QA A,A © <doidA,idA>

AxA AXA)XA7<7T;XAO7T(AXA)XA ﬁéAXA)XA>>o<d,Z'dA>

A (A><A)><A <d ZdA> < AxA O7T§A><A) A,T(éAXA)XA> o <d, ZdA>>

id 4, < AXA d, idA>>

(my

< AX

= (Ao d, (4o ﬂ%AXA)XA o {d, idA>,7T§AXA)XA o{d,ida)))
=

<ZdA, <’LdA,ZdA>>



Also,

Therefore, coassociativity holds and (A, d, e) is indeed a comonoid.

Next, we have to show that the construction is unique. That is, for any other comonoid (A, d’, ¢’) that
d=d and e="¢.

Since 1 is a terminal object, then it must be the case that ¢ = ¢ : A — 1. From counitlaity of
(A,d', e’ = e) we have:

idp = pao(idg®e)od

_ 7Ti¢1><1 ° <idA Oﬂ_leAle OW?XA> Odl
—idyom{™ A od
= 7I'i4><A od

and also,

idy :)\Ao(e®idA)od’

=734 o (14 04 idy o mf ) o d’
:idAOW§4XAOd’
_ 7_(_§4><A od

Because of these two equalities and from the universal property of categorical products, it then follows
that d’ must be the unique morphism

d = (idy,ida) = d

which completes the proof.

(¢) RHS = LHS: Since ® is a coproduct, we can simply use the dualized statement of (b) to conclude
that every object A has a unique monoid structure (A, ma,u4).
First, note that the tensor product on two morphisms f: A— B and g : C — D is given by:

f®g:= [ifeaDofJQB@Dog] A C—B@D
and braiding is given by:
oap:=[ig® %% Ao B—>Ba A
The monoidal structure on A is defined by:

ma = [idA,idA] TADA—A



ug:i=14:1— A

where 14 is unique morphism from the initial object to A. Also, recall that:

[f,g)oiy®? = f
[f?g] OiQBEBD =49
holf,gl=[hof hoyg]

We show that every monoid (A, ma,u4) is commutative:

maoaaa=ida,ida]o [iEP4 iBP4 (definition)
= [[ida,id ] 0 iZ®4, [id,id 4] 0 iP®4] (coproduct)
= [ida,id 4] (coproduct)
=my (definition)

We can definie an isomorphism F': C — cMon(C) in the following way:

F(A):=(A,ma,ua)
F(f) =1
It’s clear that this functor is an isomorphism, if it is well-defined. We have already shown it is
well-defined on objects. We just have to show that every morphism in C is a monoid homomorphism.
Let f: A— B be an arbitrary morphism. Now, consider the monoidal structures of the two objects
(A,;ma,ua), (B,mp,up). We have:
up = foua
—
1B = f o 1A

which is clearly true, since I = 1 is an initial object.

foma=mpo(fef)

= folida,ida] = [idp,idg] o [iPPB o f,iB%P o f]
= [f.f] = [lidp,idp] 0 iy®" o f.[idp, idp] 0 iy *" o f]
> [f,f] =lidpo f,idp o f]

= [f.f1=1[/.1]

Therefore, f is a monoid homomorphism and thus F' is an isomorphism. Showing that the functor F
is a monoidal functor is straightforward with all of the definitions we have provided.

LHS = RHS: cMon(C) is monoidally isomorphic to C therefore every object A has a unique monoid
structure which we will denote as (A,ma,ua). Consider objects A, B,C and A ® B and morphisms
fi: A—C, fo : B— C. Since the categories are isomorphic, this implies that f; and fo are monoid
homomorphisms.

First, we define morphisms if®B :A— A® B, i‘24®B : B— A® B given by:

i1 := (ida ®up) o pgl



19 := (ua ®idp) o )\]_31

Define,

[f1, f2] ==mc o (fi ® fa)

We claim that ([f1, f2],41,42) is the coproduct of the morphisms f; and fy. First, we verify:

[f1, fa] 0i1 =m0 (f1 ® fo) 0 (ida @ up) o py* (definition)
=mco(fi®(f20 UB)) opyt (interchange)
=mco (fi ®uc)opy' (monoid homomorphism)
=mc o (idc @ uc) o (fi ®idr) o py* (interchange)
= pc o (f1 ®idr)o p;ll (monoid unitality for C)
= fiopacpy (naturality of p)
=h

In a similar way, we can show that

[f1, f2] 0ia = fo

Finally, we have to show that the construction is universal. That is, if there exists a morphism
h:A® B— C with hOil :fl and hoiz :f2 then h = [fl,fg].

Consider:

[f1, fa] =me o (fi ® fa) (definition)
=mgo((hoiy) ® (hz o)) (assumption)
=mc o (h®h)o (i1 ® i) (interchange)
=homagp o (i1 ®iz) (h — homomorphism)
=ho(ma®mp)o(idaoop aoidg)o
o(ida ®up @us®idg)o (py' @A) (def+interchange)
=ho(ma®mpg)o (idsousoupoidp)o(py' @Az (interchange)
=ho(pa®Ap)o(py' ®@A5") (unitality x 2)
=h (interchange)

We have shown that coproducts exist for any pair of objects A and B. However, we still need to show
that there is an initial object. The initial object is, of course, the tensor unit I. Consider an arbitrary
object A. Since A is a monoid, then there must be a map uy : [ — A. Moreover, if there is another
morphism x : I — A, then it must be a monoid homomorphism. Therefore,

Ug=xour=zxoid; =x

since (I, A7, idy) is the unique monoid on I.
Therefore, I is an initial object, which completes the proof.

Exercise 4.3. For the whole exercise, the graphical proof is very simple and straightforward. However, for
comparisson, we show a symbolic solution instead.



(a) The trick is to plug in the state (u2 @ u; @ u1 & us).

my o (mg ® ma) o (us ®u; @ uy @ ug) =mg o (my @my)o (idaoooida)o (us®u; uy @ ug)

—
mio (Ao (idf ®u1)) ® (pao (ug ®idr)) =mzo (my @my)o (us @ uy ® ug @ us)
.
1o (110 M) (1 0 pr)) = ma o ((pa o (us @ idi)) @ (A o (idy  u)))
—
mi o (u1 ®ur) o (A\r ® pr)) =ma o ((uz 0 pr) ® (uz 0 Ar))
.
Aa o (idr @ uy) o (A ® pr)) =mao (ug ®uz) o (pr ® Ar)
—
Aa o (idr @ uy) = ma o (ug ® uz)
.
Ao (idy ®uy) = Aa o (id; ® ug)
—

UL O AT = U O AT
_—
Uy = U2
(b) From now on we will write u := u; = us.
Plugging in the map (ida ® u ® u ® id4) to both sides of the equation yields the desired result.
my o (may ®ma) o (idg QU uida) =mgo(my @my)o(idaoooida)o (ida @uuida)
=
my o (ma®@ma)o (idg @uu®idy) =mgo(m; @m)o (ida @uuEidy)
.
my o (pa®@Aa) =mgo(pa®Aa)
=
my = My

(c) We will write m := my = ma.
This time, the trick is to plug in the map (u ® id4 ® id4 ® u) to both sides of the equation. We get:

mo(mem)o(u®ids ®idg @u) =mo(m®m)o(idgoooidy)o(u®idg @ida @ u)

.

mo(Aa®pa)=mo(m®m)o(u®ids ®ida ®u)o (idy o o oidy)
.

mo(Ag ®pa) =mo (Mg ®pa)o (idr oo oidy)
_—

mo(Ag®pa)=mocoo(Aa®pa)
.

m=m°oao



Categories and Quantum Informatics exercise sheet 6:
Frobenius structures

Exercise 5.1. Recall that in a braided monoidal category, the tensor product of monoids is again a monoid.

(a) Show that, in a braided monoidal category, the tensor product of Frobenius structures is again a
Frobenius structure.

(b) Show that, in a symmetric monoidal category, the tensor product of symmetric Frobenius structures
is again a symmetric Frobenius structure.

(c¢) Show that, in a symmetric monoidal dagger category, the tensor product of classical structures is again
a classical structure.

Exercise 5.2. This exercise is about the interdependencies of the defining properties of Frobenius structures
in a braided monoidal dagger categories. Recall the Frobenius law (5.1).
(a) Show that for any maps AL A® A and A® A™ A, speciality (mod = id) and equation (5.4) together
imply associativity for m.
(b) Suppose A4 A9 Aand A® A" A satisfy equation (5.4), speciality, and commutativity (4.7). Given
a dual object A 4 A*, construct a map I - A such that unitality (4.6) holds.

Exercise 5.3. Recall that a set {x,...,z,} of vectors in a vector space is linearly independent when
St o zix; =0 for z; € C implies 29 = ... = z, = 0. Show that the nonzero copyable states of a comonoid in
FHilb are linearly independent. (Hint: consider a minimal linearly dependent set.)

Exercise 5.4. This exercise is about the phase group of a Frobenius structure in Rel induced by a groupoid.

(a) Show that a phase of G corresponds to a subset of the arrows of G that contains exactly one arrow
out of each object and exactly one arrow into each object.

(b) A cycle in a category is a series of morphisms A; LN Ao REN As--- A, LN A;. For finite G, show that
a phase corresponds to a union of cycles that cover all objects of G. Find a phase on the indiscrete
category on Z that is not a union of cycles.

(c) A groupoid is totally disconnected when all morphisms are endomorphisms. Show that for such
groupoids G, the phase group is G itself, regarded as a group: HIGOb(G) G(z,z). Conclude that this
holds in particular for classical structures.



Categories and Quantum Informatics exercise sheet 6:
Frobenius structures

Exercise 5.1.  (a) We have seen before that the tensor product of a monoid is again a monoid. The same
holds for comonoids. It is left to verify the Frobenius law:

A=A

(b) We will use the fact that the tensor product A® B of two spaces A, B that have duals A*, B*, is dual
to the tensor product A* ® B*. We use the alternative definition of symmetric Frobenius algebras in
symmetric monoidal categories; however, it can also be shown directly.

rf&ﬂ : (ﬁ\jN U\U\\ : Qﬁ?\ ’

(¢) The tensor product of commutative frobenius structures is again a commutative frobenius structure
by (a) and an argument similar to (b). It is left to show that the tensor product of special dagger
Frobenius algebras is special.

Goolll -



S



Define £ = Then:

(Frob.) (comm.)
= 1 = =
A
(Frob.) ) (naturality)
= = (swap invert.)

k
(Sni °) (co?m) (speciality)
= A
3




Exercise 5.3. Suppose {zo, ..., z,} is a minimal nonempty linearly dependent set of nonzero copyable states.
Then 2y = Z?:l z;x; for suitable coefficients z; € C. So

izl $Z®xl Zzl xl
i=1
= d(x )
Z zjx;)

ZZ](JCZ X Ij).

M3 HM:

<
Il
-

%

By minimality, {@1,...,2,} is linearly independent. Hence 27 = z; for all 4, and 2;z; = 0 for i # j. So
zi =0or z; =1 for all . If z; =1, then 2z; = 0 for all ¢ # j, so x¢g = z;. By minimality, then j = 1 and
{zo,z;} = {zo}, which is impossible. So we must have z; = 0 for all i. But then z¢ = 0, which is likewise a
contradiction.

Exercise 5.4. (a) The defining equation for phases gives
{g7'oh|g,heca}={id, |2 € Ob(G)H{goh ' |g,hca}.

The inclusion L C M means: Vg, h € a: cod(g) = cod(h) = ¢g = h. The inclusion M 2O R means:
Vg,h € a: dom(g) = dom(h) = ¢ = h. In other words: there can be at most one arrow in a out
of each object of G, and at most one arrow of a into each object of G. Given this, the remaining
inclusions L O M C R mean: Yz € Ob(G)3g,h € a: dom(g) = x = cod(h). That is: a contains
arrows into and out of each object.

(b) Pick an object x; the phase a contains exactly one arrow x—y. If y = x, we have a 1-cycle. Otherwise,
a contains exactly one arrow y— z, etc. This process has to end, because the groupoid is finite. Delete
all the objects involved in the cycle, and repeat.

For the indiscrete groupoid on Z, there is a phase {n Ln+1 |neZ}



Categories and Quantum Informatics exercise sheet 7:
Complementarity

Exercise 5.1. Let (G,0) and (G, e) be two complementary groupoids (see Proposition 6.9).

(a) Assume that (G, o) is a group. Show that:

N

(b) Assume that (G, o) is a group. Show that:

V)

(¢) Assume that (G, o) is a group and that the corresponding Frobenius structures in Rel form a bialgebra.

Show that:

N

N

Exercise 5.2. Let A be a set with a prime number of elements. Show that pairs of complementary Frobenius

structures on A in Rel correspond to groups whose underlying set is A.

Exercise 5.3. Consider a special dagger Frobenius structure in Rel corresponding to a groupoid G.
(a) Show that nonzero copyable states correspond to endohomsets G(A, A) of G that are isolated in the
sense that G(A, B) = () for each object B in G different from A.
(b) Show that unbiased states of G correspond to sets containing exactly one morphism into each object
of G and exactly one morphism out of each object of G.
(c) Consider the following two groupoids on the morphism set {a,b,c,d}.

a b c d

N N Noa O

e, e e, e
d b

Show that copyable states for one are unbiased for the other, but that they are not complementary.

Conclude that the converse of Proposition 6.11 is false.



Exercise 5.4. A Latin square is an n-by-n matrix L with entries from {1,...,n}, with each i = 1,...,n
appearing exactly once in each row and each column. Choose an orthonormal basis {ei,...,e,} for C™.
Define \¢/: C"—C"®@C" by e; — e;®e;, and by: C"@C"—C" by e;®e; — er,,. Show that the composite

is unitary. Note that ré\ need not be associative or unital.

Exercise 5.5. This exercise is about property versus structure. Suppose that a category C has products.
Show that any monoid in C has a unique bialgebra structure.



Categories and Quantum Informatics exercise sheet 8:
Complementarity

Exercise 5.1.  (a) We have to show L C R. First, note that:
L= {((.fa g)v (fv g)) | fag € A?"T‘(Gl)}

Since GG is a group, this means there is only one object in G;. Therefore, all morphisms in G are
composable (as they are self-loops). Then, computing the relation R, we see that ((f,9),(f,g)) € R
for any two morphisms f,g € G. Thus, L C R.

(b) We have to show R C L. Obviously, L is the same as in (a). Because the two groupoids G; and Gy
are complementary (and share the same morphisms), then there is a bijection:

Arr(G1) — Ob(G1) x Ob(Gs)
a +— (dom(a), doms(a))

However, the groupoid GG; has only one object and thus, this extends immidiately to a bijection
between Arr(G1) = Arr(Gz) and Ob(Gs). Therefore, there is a 1-1 correspondance between the
arrows and objects of G2 which means that G is discrete. Thus, all arrows in G4 are identities. Then:

R ={((idy,id,), (idy,id;)) | * € Ob(G2)}
so clearly R C L.

(speciality)

(a) bialgebra)

N

Note, that the last equation makes use of speciality, which is satisfied by groupoids in Rel.

Exercise 5.2. Let G and H be complementary groupoids. From Proposition 6.8, we have
[A] = |0b(G)| - [Ob(H )

Because |A| is prime, one of the groupoids has one object and the other has |A| objects. Without loss of
generality, let’s assume G has one object. But then, H has as many objects as it has arrows (|A4|) and H
is therefore discrete and therefore its structure is trivial. G has one object and it is therefore a group with
morphisms those of A (and G carries all of the non-trivial structure/information). Thus, the complementary
pair is entirely determined by the group G.



Exercise 5.3. (a) Note, that zero states are copyable, but not of the required form.
Let X = Arr(G).
An arbitrary state u : I — X is given by:

u=A{(Cf) | feUcX}

where U is the subset of X which determines .
Let’s assume u : I — X is copyable and non-zero. Thus, U # (). The definition of copyable state in
Rel, then translates as:

{C.(fr9) [ FeU, geUr={(,(f,9)) | cod(g) = dom(f) = fogecU}

From basic set theory, we get that this means:
feu gelU iff (cod(g) =dom(f) = fogeU)

for every f,g € X.

By making use of this equivalence several times, we can finish the proof.

U is not empty, thus there exists some morphism f € U.

feU= fofeU= dom(f)=cod(f)=A, for some object A € Ob(G). In other words, f must
be a self-loop (or endomorphism).

IfgeU= fogeUandgofeU= dom(g) =cod(g) = A. In other words, all morphisms in U
are endomorphisms on the object A. Therefore, U C G(A, A).

foidy = feU = ids € U. So, the identity on A must be in U.

Vh : A— A we have hoh™! = idy € U = h € U. Thus, all endomorphisms on A are in U. Therefore,
G(A, A) CU. Combining this with the above result, we get G(A4, A) =U.

Finally, we have to show A is disconnected. Consider an arbitrary morphism h : A — B. We have
hoh™ =idy € U= h € U = A = B, which completes the proof.

(b) The right phase shift of a state u : I — X (defined as in (a)) is given by:

P:={(f,fog)| feX, geUdom(f)=cod(g)}

A state is unbiased if its right phase shift is unitary. In Rel this means that the right phase shift is a
bijection.

The fact that P is a function (not merely a relation), means that, for a given object, there can be at
most one morphism in U with codomain this object.

The fact that P is defined everywhere, means that, for every object, there exists at least one morphism
in U with codomain that object.

Combining these two facts, we get for every object in G, there exists exactly one morphism with
codomain that object.

The fact that P is a surjection, means that, for every object, there exists at least one morphism in U
with domain that object.

The fact that P is a injection, means that, for every object, there can be at most one morphism in U
with domain that object (to see that, assuming two morphisms in U have the same domain, compose
each of them with its inverse and then use injectivity).

Combining these two facts, we get for every object in G, there exists exactly one morphism with
domain that object. This completes the proof.

(c) Proposition 6.8 shows that these two groupoids are not complementary. According to (a), non-zero
copyable states do not exist in either of the groupoids and therefore the implication is trivially satisfied.

Exercise 5.4. An n x n Latin square corresponds to an n by n table with entries ranging from 1 to n, in a
way that each row and each column contains each number exactly once.



We can consider this as a multiplication table on the set {1,...,n} in the following sense: the product i * j
is given by the entry indexed by (i,7) in the table (so in the ith row and the jth column). We can extend
this linearly to the map ré\ :C"®@C" — C", taking |i) for ¢ = 1,..,n as a basis of C™. This is a well-defined
function that maps basis elements to basis elements.

For the classical structure, we take the standard classical structure A that copies the basis elements.

We show that the first bialgebra law holds by showing that the equality holds for any choice of basis states

B
(N @) = (&, 5) © O\, 7)), (1)

as ré\(z, j) defines a basis element,so a copyable states of \?J
On the other hand,

) © (9 @9)(i @ ) = ()1 ® J ® i@ ) = (0\(1, ) @ (0, ) (2)

Now we will prove the second bialgebra law. Let a,b be arbitrary basis elements and let ¢ be a x b. The
right-hand-side gives us:

qor&\(a@)b):q;c )
The left-hand-side give us:
Wa®b)=1-1=1 (4)

Consider an equivalence relation on Latin squares that allows changing the order of the rows and the columns
of the latin square, and renaming the symbols. Every latin square is equivalent to one that has 1,2,...,n as
its first row and as its first column. It follows that we can define a map &: I — C™ as &(1) = |1). Using this
map as the unit for ré\v the last two bialgebra equations hold as well.

Now we will show that (id ® /&) o (("¢/ ®id) is unitary.

Note that the multiplication map is injective: if 7% j = 7% 7' then 7 must equal j/, as every row contains every
element exactly once. Similarly, if 7 % j = 4’ % j, then ¢ must equal 7’. Its dagger maps each basis element a
to the sum of n tuples Z(i,j)ela) 1 ® j of basis elements, where I, is the set of all indices of the entry a in
the Latin square. In other words, these tuples correspond to the row and column of each entry a. Note that
¢ and j range over 1,..,n and all tuples are disjoint.

Now it follows that for every two basis states i), |j), where i * j = a for some a.

(b @id)o (id®'\P) o (id®b) o (WWeid)(iwj) = > (4 eid)o(id®'Y)o(ideb)(i®io )

i=1,..,n

S (b ®id)o (id ®'\)(i®a)

a=1,..,n (5)
Y (d@id)(i®bac)

(b,e)el,

—i®j

The last equality holds, because A(z ® b) = 81, and furthermore, the only tuple of the form (i,¢) € I, is

(i, )-



Simultaneously we have

(id® &) o (¢ @id) o (b @id)o(id@\P)(i®j)= Y (d®d)o(¢®id)o (b @id)(i®arb)

(a,b)€l;
> (deb)o (¢ @id)(i®b)

blixb=j (6)
Z (id ® &) (i ®i®b)

blixb=j

=i®j

Exercise 5.5. Assume that the monoidal structure in C is given by the categorical product. Let (A4, m,u)
be a monoid. From an earlier exercise, we already know that A has a unique comonoid structure (A4, d,e)
given by:

d = (ida,ids)
e:1A:AH1

where 1 is the terminal object of C.

To complete the proof, we simply have to show that the bialgebra equations are satisfied. This is lengthy,
but straightforward and can be done simply by expanding the definitions and using the basic algebraic
properties of the categorical product. However, we have to be careful when doing this symbolically (as
opposed to diagrammatically) because we also have to explicitly take into account the associator and unitors

(ava,B,cy Aas pa)-



