
Categories and Quantum Informatics exercise sheet 1:
Categorical semantics

Exercise 0.1. Let (P,) be a partially ordered set. Show that the following is a category: the objects are
the elements x of P , and there is a unique morphism x y if and only if x  y.

Exercise 0.2. Let M be a monoid : a set M together with an associative binary “multiplication” operation
M ⇥ M M written as (m,n) 7! mn and an element 1 2 M such that 1m = m = m1. Show that the
following is a category: there is a single object ⇤, the morphisms ⇤ ⇤ are elements of M , and composition
is multiplication. Conversely, show that any category with a single object comes from a monoid in this way.

Exercise 0.3. Let G = (V,E) be a directed graph. Show that the following is a category: objects are vertices
v 2 V , morphisms v w are paths v

e1 · · · en
w with ei 2 E, and composition is concatenation of paths.

Choose n � 5, and draw a graph with n edges whose category has more than n morphisms.

Exercise 0.4. (a) If P and Q are partially ordered sets regarded as categories, show that functors P Q

are functions f : P Q that are monotone: if x  y then f(x)  f(y).

(b) If M and N are monoids regarded as categories, show that functors M N are functions f : P Q

that are homomorphisms: f(1) = 1 and f(mn) = f(m)f(n).

(c) If G and H are graphs regarded as categories, what are functors G H?

Exercise 0.5. (a) Show that partially ordered sets and monotone functions form a category.

(b) Show that monoids and homomorphisms form a category.

Exercise 0.6. (a) Show that in Set, the isomorphisms are exactly the bijections.

(b) Show that in the category of monoids and homomorphisms, the isomorphisms are exactly the bijective
morphisms.

(c) Show that in the category of partially ordered sets and monotone functions, the isomorphisms are not
the same as the bijective morphisms.

Exercise 0.7. Consider the following isomorphisms of categories and determine which hold.

(a) Rel ' Relop

(b) Set ' Setop

(c) For a fixed set X with powerset P (X) regarded as a category, P (X) ' P (X)op

Exercise 0.8. Let (P,) be a partially ordered set, and regard it as a category.

(a) Show that a product of x and y is a greatest lower bound: an element x ^ y such that x ^ y  x and
x ^ y  y, and if any other element satisfies z  x and z  y then z  x ^ y.

(b) Show that a coproduct of x and y is a least upper bound.

Exercise 0.9. In any category with binary products, show that A⇥ (B ⇥ C) ' (A⇥B)⇥ C.
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Categories and Quantum Informatics exercise sheet 1 answers:
Categorical semantics

Exercise 0.1. Composition arises from transitivity: if x  y and y  z then x  z. This is automatically
associative. Identities arise from reflexivity: x  x. (We don’t actually need anti-symmetry, pre-orders also
induce categories this way.)

Exercise 0.2. Associativity of the composition of the category is precisely associativity of the monoid mul-
tiplication.

Note: pre-orders and monoids are two ‘extreme’ types of categories. Pre-orders have lots of objects and as
few morphisms as possible. Monoids have as few objects as possible and lots of morphisms. In a sense any
category is a mixture of these two extremes.

Exercise 0.3. Concatenating paths is associative. Identities arise from paths v v of length 0.

Exercise 0.4. (a) A functor P Q by definition consists of a function f : P Q (on objects) that maps
morphisms to morphisms. This means precisely that if x  y is a morphism in P , then there must be
a morphism f(x)  f(y) in Q.

(b) A functor M N by definition consists of a function {⇤} {⇤} (on objects), and a function
f : M N (on morphisms). The latter has to preserve composition (f(mn) = f(m)f(n)) and identities
(f(1) = 1).

(c) Functors G H by definition consist of a function f : Vertices(G) Vertices(H) (on objects), and a
function g : Edges(G) Paths(H). The latter induces a function Paths(G) Paths(H) that respects
associativity of composition and identities by definition of composition and identities in the category
G.

Exercise 0.5. (a) Composition of monotone functions is monotone, and the identity is a monotone
function.

(b) Composition of homomorphisms is a homomorphism, and the identity is a homomorphism.

Exercise 0.6. (a) Isomorphisms are clearly bijections. Conversely, suppose f : A B is a bijection. Then
there exists a function f

�1 : B A with f(f�1(b)) = b and f(f�1(a)) = a. So f is an isomorphism.

(b) Isomorphisms are clearly bijective morphisms. Conversely, suppose f : M N is a bijective
morphism. Then there exists a function f

�1 : N M that inverts it. We have to show that f
�1

is a homomorphism. Clearly f
�1(1) = f

�1(f(f�1(1))) = f
�1(f(1)) = 1. Similarly f

�1(xy) =
f
�1(f(f�1(x))f(f�1(y))) = f

�1(f(f�1(x)f�1(y))) = f
�1(x)f�1(y).

(c) Let P be the partially ordered set {0, 1} where 0 and 1 are incomparable: 0 6P 1 nor 1 6P 0. Let Q
be the set {0, 1} partially ordered by 0 Q 1 (but not 1 Q 0). Let f : P Q be the function f(0) = 0
and f(1) = 1. Then f is bijective and monotone. Its inverse would have to be the set-theoretic
function Q P given by 0 7! 0 and 1 7! 1, but that function is not monotone.

Exercise 0.7. (a) True: the functor that sends a set A to itself, and a relation R ✓ A ⇥ B to
{(b, a) | (a, b) 2 R} ✓ B ⇥A, is its own inverse.

(b) False: if there were an isomorphism, then Set(A,B) ' Set(B,A) for any sets A,B. But for e.g.
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A = {⇤} and B = {0, 1} these two (hom)sets have di↵erent cardinality.

(c) True: the assignment on objects that sends U 2 P (X) to its complement X \U 2 P (X) is functorial,
and its own inverse.

Exercise 0.8. (a) A product of x and y is by definition an object x ^ y such that x � x ^ y  y. It has
to satisfy the universal property: if there is another object z with x � z  y, then there is a (unique)
morphism z  x ^ y.

(b) Reverse all the inequality signs.

Exercise 0.9. The universal property of A⇥B provides a morphism that we’ll call idA ⇥ pB :

A⇥ (B ⇥ C)

A BA⇥B

pA pB � pB⇥C

pA pB

idA ⇥ pB

The universal property of (A⇥B)⇥ C now provides a morphism f : A⇥ (B ⇥ C) (A⇥B)⇥ C:

A⇥ (B ⇥ C)

A⇥B C(A⇥B)⇥ C

idA ⇥ pB pC � pB⇥C

pA⇥B pC

f

Similarly we find a morphism g : (A⇥B)⇥ C A⇥ (B ⇥ C).
Now pA � (g � f) = pA � idA⇥(B⇥C) and pB⇥C � (g � f) = pB⇥C � idA⇥(B⇥C). But the universal property of
A ⇥ (B ⇥ C) says there is only one morphisms that can satisfy this, so we must have g � f = id. Similarly
f � g = id.
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Categories and Quantum Informatics exercise sheet 2:

Hilbert spaces, monoidal categories

Exercise 1.1. Show that in FHilb, the isomorphisms are precisely the bijective morphisms.

Exercise 1.2. Prove that direct sums form products and coproducts in FHilb.

Exercise 1.3. Show that the Kronecker product of matrices f , g, and h, satisfies (f ⌦ g)⌦ h = f ⌦ (g ⌦ h).

Exercise 1.4. Let A,B,C,D be objects in a monoidal category. Construct a morphism

(((A⌦ I)⌦B)⌦ C)⌦D A⌦ (B ⌦ (C ⌦ (I ⌦D))).

Can you find another?

Exercise 1.5. Convert the following algebraic equations into graphical language. Which would you expect

to be true in any symmetric monoidal category?

(a) (g ⌦ id) � � � (f ⌦ id) = (f ⌦ id) � � � (g ⌦ id) for A
f,g

A.

(b) (f ⌦ (g � h)) � k = (id ⌦ f) � ((g ⌦ h) � k), for A k B ⌦ C, C h B and B
f,g

B.

(c) (id ⌦ h) � g � (f ⌦ id) = (id ⌦ f) � g � (h⌦ id), for A
f,h

A and A⌦A
g
A⌦A.

(d) h � (id ⌦ �) � (id ⌦ (f ⌦ id)) � (id ⌦ ��1
) � g = h � g � � � (f ⌦ id) � ��1

, for A
g

B ⌦ C, I
f

I and

B ⌦ C h D.

(e) ⇢C � (id ⌦ f) � ↵C,A,B � (�A,C ⌦ idB) = �C � (f ⌦ id) � ↵�1
A,B,C � (id ⌦ �C,B) � ↵A,C,B for A⌦B

f
I.

Exercise 1.6. Consider the following diagrams in the graphical calculus:

f

g h

jk

f

gh

j k

h

k

j

f

g

h

k

j

f

g

(1) (2) (3) (4)

(a) Which of the diagrams (1), (2) and (3) are equal as morphisms in a monoidal category?

(b) Which of the diagrams (1), (2), (3) and (4) are equal as morphisms in a braided monoidal category?
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(c) Which of the diagrams (1), (2), (3) and (4) are equal as morphisms in a symmetric monoidal category?

Exercise 1.7. We say that two joint states I
u,v

A⌦ B are locally equivalent, written u ⇠ v, if there exist

invertible maps A
f

A, B
g
B such that

u

f g
=

v

(a) Show that ⇠ is an equivalence relation.

(b) Find all isomorphisms {0, 1} {0, 1} in Rel.

(c) Write out all 16 states of the object {0, 1}⇥ {0, 1} in Rel.

(d) Use your answer to (b) to group the states of (c) into locally equivalent families. How many families

are there? Which of these are entangled?

Exercise 1.8. Complete the following proof that ⇢I = �I in a monoidal category, by labelling every arrow,

and indicating for each region whether it follows from the triangle equation, the pentagon equation, naturality,

or invertibility. Head-to-tail arrows are always inverse pairs.

I ⌦ I

I I ⌦ I

I ⌦ I

I ⌦ (I ⌦ I)

(I ⌦ I)⌦ I ((I ⌦ I)⌦ I)⌦ I

(I ⌦ (I ⌦ I))⌦ I

(I ⌦ I)⌦ I

(I ⌦ I)⌦ (I ⌦ I)

I ⌦ (I ⌦ I)

I ⌦ ((I ⌦ I)⌦ I)

I ⌦ (I ⌦ (I ⌦ I))

I

I ⌦ I

I I ⌦ I

�I

⇢I

�I

⇢I

⇢�1
I

��1
I

��1
I⌦I

↵I,I,I

��1
I

I ⌦ ⇢I

↵I⌦I,I,I

(I ⌦ I) ⌦ �I

⇢I⌦I↵I,I,I ⌦ I

⇢I⌦(I⌦I)

(I ⌦ ⇢I) ⌦ I
↵I,I⌦I,I

I ⌦ (⇢I ⌦ I)
I ⌦ ↵I,I,I

I ⌦ (I ⌦ �I)

↵I,I,I

↵I,I,I⌦I

⇢I⌦I ⌦ I

⇢(I⌦I)⌦I

⇢I⌦I

⇢�1
I ⌦ I

I ⌦ �I
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Categories and Quantum Informatics exercise sheet 2 answers:

Hilbert spaces, monoidal categories

Exercise 1.1. Clearly isomorphisms are bijective morphisms. Any bijective morphism f : H K has a

set-theoretical inverse f
�1

: K H; we have to prove that it is a morphism. It is additive: f
�1

(x + y) =

f
�1

(f(f
�1

(x))+f(f
�1

(y))) = f
�1

(f(f
�1

(x)+f
�1

(y))) = f
�1

(x)+f
�1

(y). It respects scalar multiplication:

f
�1

(sx) = f
�1

(sf(f
�1

(x))) = f
�1

(f(sf
�1

(x))) = sf
�1

(x). (And it is automatically bounded as H and K

are finite-dimensional.)

Exercise 1.2. The projections and injections are given by

pH : H �K H pH(x, y) = x

pK : H �K H pK(x, y) = y

iH : H H �K iH(x) = (x, 0)

iK : H H �K iK(y) = (0, y)

and the universal properties

A

B

H KH �K

f g

h k

✓
f

g

◆

�
h k

�

pKpH

iKiH

are given by

✓
f

g

◆
: a 7! (f(a), g(a))

�
h k

�
: (x, y) 7! f(x) + g(y).

Exercise 1.3. Both (f ⌦ g)⌦ h and f ⌦ (g ⌦ h) expand to

0

BBBBBBBBBB@

f11g11h11 f11g11h12 f11g12h11 f11g12h12 f12g11h11 f12g11h12 f12g12h11 f12g12h12

f11g11h21 f11g11h22 f11g12h21 f11g12h22 f12g11h21 f12g11h22 f12g12h21 f12g12h22

f11g21h11 f11g21h12 f11g22h11 f11g22h12 f12g21h11 f12g21h12 f12g22h11 f12g22h12

f11g21h21 f11g21h22 f11g22h21 f11g22h22 f12g21h21 f12g21h22 f12g22h21 f12g22h22

f21g11h11 f21g11h12 f21g12h11 f21g12h12 f22g11h11 f22g11h12 f22g12h11 f22g12h12

f21g11h21 f21g11h22 f21g12h21 f21g12h22 f22g11h21 f22g11h22 f22g12h21 f22g12h22

f21g21h11 f21g21h12 f21g22h11 f21g22h12 f22g21h11 f22g21h12 f22g22h11 f22g22h12

f21g21h21 f21g21h22 f21g22h21 f21g22h22 f22g21h21 f22g21h22 f22g22h21 f22g22h22

1

CCCCCCCCCCA

.
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Note: we might try to take cardinal numbers µ, ⌫, . . . as objects in MatC, and µ-by-⌫ matrices of complex

numbers such that each row and column is square summable as morphisms µ ⌫. That is a fine category.

But it is not monoidal in the same way as above. Taking µ⌫ as tensor product of objects is fine. The issue is

with tensor products of morphisms. To write down the Kronecker product of a µ-by-⌫ matrix f and a -by-�

matrix g, you need functions 'µ : µ⇥  µ and   : µ⇥   to say (f ⌦ g)ij = f'(i),'�(j)g'(i) �(j). In

the finite case, we took 'm(i) = bi/mc and  m(i) = i mod m (so that i = m ·'m(i) + m(i)). But it seems

unlikely that functions 'µ and  µ exist for all cardinals µ that satisfy this associativity.

Exercise 1.4. For example:

(((A⌦ I)⌦B)⌦ C)⌦D
((⇢A⌦idB)⌦idC)⌦idD

((A⌦B)⌦ C)⌦D

↵A,B,C⌦idD
(A⌦ (B ⌦ C))⌦D

↵A,B⌦C,D
A⌦ ((B ⌦ C)⌦D)

idA⌦↵B,C,D
A⌦ (B ⌦ (C ⌦D))

idA⌦(idB⌦(idC⌦��1
D ))

A⌦ (B ⌦ (C ⌦ (I ⌦D)))

Because of coherence, this is the only morphism of this type built from the data of a monoidal category. So

unless we have more information about the category than just that it’s monoidal, we cannot find another

morphism with the same domain and codomain.

Exercise 1.5. Recall that the swap map is natural.

(a) Taking A = {0, 1}, f = idA and g(0) = 1 and g(1) = 0 in (Set,⇥) shows that

6=

f

g

g

f

(b) Taking A = C = {a}, B = {0, 1}, k(a) = (0, a), f = idB and g(0) = 1, g(1) = 0 in (Set,⇥) shows that

6=
k k

h

g

f

f

g h

(c) Taking A = {0, 1}, g = idA⇥A, f = idA and h(0) = 1, h(1) = 0 in (Set,⇥) shows that

6=g g

h

f h

f
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(d) The equation presented below:

=

g

h h

g

f

f

is clearly true in the graphical

calculus for monoidal categories.

(e) The equation presented below:

=

f f

is clearly true in the graphical calculus

for symmetric monoidal categories.

Exercise 1.6. (a) In monoidal categories, equalities of the diagrams hold i↵ they can be continously

deformed into each other using 2-dimensional isotopy. Diagram (1) can be continously deformed into

diagram (2), so they are equal. In diagram (3), the scalar k is stuck between the wires of j and h, so

it is not equal to (1) and (2).

(b) In braided monoidal categories, equalities of the diagrams hold i↵ they can be continously deformed

into each other using 3-dimensional isotopy. From (a) we have (1) = (2). Using 3-dimensional isotopy,

we can show (1) = (2) = (3) by taking the scalar k out in the third dimension and then moving it

over the enclosing wires.

However, we can’t show that (4) is equal to the other three diagrams using the axioms of a braided

monoidal category. We can still move the scalar k out of the enclosing wires, but we can’t uncross the

wires themselves. Note, that removing the crossing of the wires in (4) requires that �B,A��A,B = idA⌦B

which is always true for symmetric monoidal categories, but not necessarily for braided monoidal

categories.

(c) So, in (c) all diagrams are equal, but in (b) (1) = (2) = (3) 6= (4).

Exercise 1.7. Two joint states are locally equivalent when then can be transformed into one another using

only uncorrelated local operations. So if two joint states possess a di↵erent ‘amount of correlation’, they will

not be locally equivalent.

(a) Taking f = g = id shows that u ⇠ u. If u ⇠ v because v = (f ⌦ g) � u, then also (f
�1 ⌦ g

�1
) � v = u,

whence v ⇠ u. Finally, if u ⇠ v and v ⇠ w because v = (f ⌦ g) � u and w = (k ⌦ h) � v, then

w = ((k � f)⌦ (h � g)) � u by the interchance law, so that u ⇠ w.

(b) Isomorphisms in Rel are the graphs of bijections: {(0, 0), (1, 1)} and {(0, 1), (1, 0)} are the only

isomorphisms {0, 1} {0, 1}.
(c) States of {0, 1}⇥ {0, 1} are its subsets.

(d) Simply starting with one state we haven’t classified yet, and generating all possible locally equivalent

ones by pre- and/or postcomposing with all bijections, we find the following 7 local equivalence classes.

;
{(0, 0)} ⇠ {(0, 1} ⇠ {(1, 0)} ⇠ {(1, 1)}
{(0, 0), (0, 1)} ⇠ {(1, 0), (1, 1)}
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{(0, 0), (1, 0)} ⇠ {(0, 1), (1, 1)}
{(0, 0), (1, 1)} ⇠ {(0, 1), (1, 0)}
{(0, 0), (0, 1), (1, 0)} ⇠ {(0, 0), (0, 1), (1, 1)} ⇠ {(0, 0), (1, 0), (1, 1)} ⇠ {(0, 1), (1, 0), (1, 1)}
{(0, 0), (0, 1), (1, 0), (1, 1)}

Notice that local equivalence respects cardinality (but states of the same cardinality need not be locally

equivalent).

Exercise 1.8. The axiom applying to each region can be deduced from its number of non-identity sides: 2

for invertibility, 3 for triangle, 4 for naturality, and 5 for pentagon. To save space below we write I ⌦ f for

idI ⌦ f .

I ⌦ I

I I ⌦ I

I ⌦ I

I ⌦ (I ⌦ I)

(I ⌦ I)⌦ I ((I ⌦ I)⌦ I)⌦ I

(I ⌦ (I ⌦ I))⌦ I

(I ⌦ I)⌦ I

(I ⌦ I)⌦ (I ⌦ I)

I ⌦ (I ⌦ I)

I ⌦ ((I ⌦ I)⌦ I)

I ⌦ (I ⌦ (I ⌦ I))

I

I ⌦ I

I I ⌦ I

�I

⇢I

�I

⇢I

⇢
�1
I

�
�1
I

�
�1
I⌦I

↵I,I,I

�
�1
I

I ⌦ ⇢I

↵I⌦I,I,I

(I ⌦ I) ⌦ �I

⇢I⌦I
↵I,I,I ⌦ I

⇢I⌦(I⌦I)

(I ⌦ ⇢I) ⌦ I

↵I,I⌦I,I

I ⌦ (⇢I ⌦ I)
I ⌦ ↵I,I,I

I ⌦ (I ⌦ �I)

↵I,I,I

↵I,I,I⌦I

⇢I⌦I ⌦ I

⇢(I⌦I)⌦I

⇢I⌦I

⇢
�1
I ⌦ I

I ⌦ �I
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Categories and Quantum Informatics exercise sheet 3:
Scalars

Exercise 2.1. Show that the following defines a dagger category:

•objects (A, p) are finite sets A equipped with prior probability distributions, functions p : A R+
such

that
P

a2A p(a) = 1;

•morphisms (A, p)
f
(B, q) are conditional probability distributions , functions f : A⇥B R�0

such that

for all a 2 A we have
P

b2B f(a, b) = 1, and for all b 2 B we have q(b) =
P

a2A p(a)f(a, b);

•composition is composition of probability distributions as matrices of real numbers;

•the dagger is the Bayesian converse, acting on f : A⇥ B R�0
to give f†

: B ⇥ A R�0
, defined as

f†
(b, a) = f(a, b)p(a)/q(b).

Note that the Bayesian converse is always well-defined since we require our prior probability distributions to

be nonzero at every point.

Exercise 2.2. Show that all joint states are product states when A ⌦ B is a product of A and B and I is

a terminal object. Conclude that monoidal categories modeling nonlocal correlation such as entanglement

must have a tensor product that is not a (categorical) product.

Exercise 2.3. Let A R B be a morphism in the dagger category Rel.

(a) Show that R is unitary if and only if it is (the graph of) a bijection;

(b) Show that R is self-adjoint if and only if it is symmetric;

(c) Show that R is positive if and only if R is symmetric and aR b ) aRa.

(d) Is every isometry A A in Rel unitary?

Exercise 2.4. Is MatC a monoidal dagger category?

Exercise 2.5. Fuglede’s theorem is the following statement for morphisms f, g : A A in Hilb: if f � f†
=

f† � f and f � g = g � f , then also f† � g = g � f†
. Show that this does not hold in Rel.

Exercise 2.6. Recall the notion of local equivalence from Exercise Sheet 2. In Hilb, we can write a state

C � C2 ⌦ C2
as a column vector

� =

0

BB@

a
b
c
d

1

CCA ,

or as a matrix

M� :=

✓
a b
c d

◆
.

(a) Show that � is an entangled state if and only if M� is invertible. (Hint: a matrix is invertible if and

only if it has nonzero determinant.)

(b) Show that M(idC2⌦f)�� = M� � fT
, where C2 f C2

is any linear map and fT
is the transpose of f in

the canonical basis of C2
.
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(c) Use this to show that there are three families of locally equivalent joint states of C2 ⌦ C2
.
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Categories and Quantum Informatics exercise sheet 3:
Scalars

Exercise 2.1. The composition of two morphisms is a well-defined morphisms. The dagger is well-defined
and involutive, and respects composition.

Exercise 2.2. We will show that we can write any state  : I ! A ⌦ B as the product state  =
(p1 �  ⌦ p1 �  ) � ��1

I . Since the tensor product is a categorical product,  : I ! A ⇥ B makes the
diagram below comute. The map < p1 �  , p2 �  > ���1 makes the diagram commute as well for the
following reason: Since I ⇠= I ⇥ I and I is the terminal object, I ⇥ I is the terminal object; hence, there
is one unique arrow I ! I ⇥ I, so ��1 makes the lower triangle commute. By definition of the product,
< p1 �  , p2 �  > makes the upper square commute. It follows from the universal property of products that
 =< p1 �  , p2 �  > ���1.

I

I ⇥ I

A⇥B

I I

A B

p1 p2

p1 p2

p1 �  p2 �  

Exercise 2.3. (a) First, R† �R = idA implies that R relates every element a of A to some element of B.
If it was related to two elements of B, that would violate R �R† = idB . Finally, R �R† = idB means
that every element of B is related to some element of A. So all in all, R relates each element of A to
precisely one element of B, and vice versa.

(b) By definition, R being self-adjoint means that aRb if and only if aR†b, which in turns holds if and
only if bRa.

(c) If R is symmetric and satisfies aR b ) aRa, setting

S = {(a, (x, y)) | a 2 A, (x, y) 2 R, a = x or a = y}

gives R = S† � S.
(d) No; R = {(•, 0), (•, 1)} : {•} {0, 1} satisfies R† � R = id{•}, but is not (the graph of) a subset

inclusion.

Exercise 2.4. Transposition gives a dagger, and the Kronecker product of matrices respects transposition.

Exercise 2.5. Take A = {0, 1}, R = {(0, 0), (1, 0), (1, 1)}, and S = {(1, 0)}. Then R† � R = R � R† and
R � S = S �R, but not R† � S = S �R†.
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Exercise 2.6. (a) Notice that � is the product state of C (uv ) C2 and C
( xy ) C2 precisely when

0

BB@

a
b
c
d

1

CCA =

0

BB@

ux
uy
vx
vy

1

CCA .

In this case, det(M�) = ad� bc = uxvy � uyvx = 0, so � is invertible.
Conversely, suppose ad � bc = 0. If a 6= 0, then we may take u = 1, v = ca�1, x = a, and y = b
to show that � is a product state. Similar choices work when one of b,c or d is nonzero. Finally, if
a = b = c = d = 0, we may take u = v = x = y = 0.

(b) Compute

M� � fT =

✓
au+ bv ax+ by
cu+ dv cx+ dy

◆
,

and

(idC2 ⌦ f) � � =

0

BB@

u v 0 0
x y 0 0
0 0 u v
0 0 x y

1

CCA

0

BB@

a
b
c
d

1

CCA =

0

BB@

au+ bv
ax+ by
cu+ dv
cx+ dy

1

CCA .

(c) First, we show that all entangled states � are locally equivalent to  =

✓
1
0
0
1

◆
. Indeed, if M� is

invertible, then M = ( 1 0
0 1 ) = M� � (((M�)�1)T)T = M(idC2⌦(M�1

� )T)��, so  = (idC2 ⌦ (M�1
� )T � �.

Also, product states can never be locally equivalent to entangled states, so all entangled states form
one equivalence class.

Second, the zero state

✓
0
0
0
0

◆
is an equivalence class of its own: if any state is locally equivalent to the

zero state, then it must have been the zero state to begin with.

Third, we show that all nonzero product states are locally equivalent. Indeed, if states

✓ a1
a2
b1
b2

◆
and

✓ c1
c2
d1
d2

◆
are nonzero, there exist invertible maps taking

✓
a1
a2

◆
to

✓
c1
c2

◆
, and

✓
b1
b2

◆
to

✓
d1
d2

◆
.
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Categories and Quantum Informatics exercise sheet 4:
Dual objects

Exercise 3.1. Pick a basis {ei} for a finite-dimensional vector space V , and define C ⌘
V ⌦V and V ⌦V " C

by ⌘(1) =
P

i ei ⌦ ei and "(ei ⌦ ei) = 1, and "(ei ⌦ ej) = 0 when i 6= j.

(a) Show that this satisfies the snake equations, and hence that V is dual to itself in the category FVect.

(b) Show that f⇤ is given by the transpose of the matrix of the morphism V
f

V (where the matrix is
written with respect to the basis {ei}).

(c) Suppose that {ei} and {e0i} are both bases for V , giving rise to two units ⌘, ⌘0 and two counits ", "0.
Let V

f
V be the ‘change-of-base’ isomorphism ei 7! e0i. Show that ⌘ = ⌘0 and " = "0 if and only if f

is (complex) orthogonal, i.e. f�1 = f⇤.

Exercise 3.2. Let L a R in FVect, with unit ⌘ and counit ". Pick a basis {ri} for R.

(a) Show that there are unique li 2 L satisfying ⌘(1) =
P

i ri ⌦ li.

(b) Show that every l 2 L can be written as a linear combination of the li, and hence that the map R
f
L,

defined by f(ri) = li, is surjective.

(c) Show that f is an isomorphism, and hence that {li} must be a basis for L.

(d) Conclude that any duality L a R in FVect is of the following standard form for a basis {li} of L and
a basis {ri} of R:

⌘(1) =
X

i

ri ⌦ li, "(li ⌦ rj) = �ij . (1)

Exercise 3.3. Let L a R be dagger dual objects in FHilb, with unit ⌘ and counit ".

(a) Use the previous exercise to show that there are an orthonormal basis {ri} of R and a basis {li} of L
such that ⌘(1) =

P
i ri ⌦ li and "(li ⌦ rj) = �ij .

(b) Show that "(li ⌦ rj) = hlj |lii. Conclude that {li} is also an orthonormal basis, and hence that every
dagger duality L a R in FHilb has the standard form (1) for orthonormal bases {li} of L and {ri} of
R.

Exercise 3.4. Show that any duality L a R in Rel is of the following standard form for an isomorphism
R

f
L:

⌘ = {(•, (r, f(r))) | r 2 R}, " = {((l, f�1(l)), •) | l 2 L}.

Conclude that specifying a duality L a R in Rel is the same as choosing an isomorphism R L, and that
dual objects in Rel are automatically dagger dual objects.

Exercise 3.5. A terminal object is an object 1 such that there is a unique morphism A 1 for any object
A. In a monoidal category with a terminal object, show that: if L a R, then R⌦ 1 ' 1 ' 1⌦ L.

Exercise 3.6. Show that the trace in Rel shows whether a relation has a fixed point.

Exercise 3.7. Let C be a compact dagger category.

(a) Show that Tr(f) is positive when A
f

A is a positive morphism.

1



(b) Show that f⇤ is positive when A
f

A is a positive morphism.

(c) Show that TrA⇤(f⇤) = TrA(f) for any morphism A
f

A.

(d) Show that Tr(g � f) is positive when A
f,g

A are positive morphisms.

Exercise 3.8. Show that if L a R are dagger dual objects, then dim(L)† = dim(R).
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Categories and Quantum Informatics exercise sheet 4:
Dual objects

Exercise 3.1. (a) Evaluating the snake equation on each ek gives

(idV ⌦ ") � (⌘ ⌦ idV )(ek) = (idV ⌦ ")(
X

i

ei ⌦ ei ⌦ ek)

=

X

i

ei ⌦ "(ei ⌦ ek)

= ek,

so indeed (idV ⌦ ") � (⌘ ⌦ idV ) = idV ; the other snake equation is verified similarly.

(b) Let (fi,j) be the matrix of f . So ei
f�!

P
j fj,iej and ei

fT

��!
P

j fi,jej .
When we evaluate on each ek we get

f⇤
(ek) = (idV ⌦ ") � (idV ⌦ f ⌦ idV ) � (⌘ ⌦ idV )(ek)

= (idV ⌦ ") � (idV ⌦ f ⌦ idV )(

X

i

ei ⌦ ei ⌦ ek)

=

X

i

(idV ⌦ ")(ei ⌦ f(ei)⌦ ek)

=

X

ij

ei ⌦ fij"(ej ⌦ ek)

=

X

i

fikei

= fT
(ek),

and so f⇤
= fT

.

(c) By Lemma 3.5 we may focus on ⌘ = ⌘0 and forget about " = "0. Because e0i =
P

j fijej , we get

⌘0(1) =
X

i

e0i ⌦ e0i =
X

i,j,k

fijfikej ⌦ ek.

This equals ⌘(1) =
P

i ei ⌦ ei precisely when
P

i fijfik = �jk for all j, k. But this happens precisely

when fT � f = idV , since

fT � f =

0

B@
f1,1 . . . fn,1
.
.
.

. . .
.
.
.

f1,n . . . fn,n

1

CA

0

B@
f1,1 . . . f1,n
.
.
.

. . .
.
.
.

fn,1 . . . fn,n

1

CA =

0

B@

P
i fi,1f1,i . . .

P
i fi,1fi,n

.

.

.
. . .

.

.

.P
i fi,nfi,1 . . .

P
i fi,nfi,n

1

CA

Because f is invertible, this means fT
= f�1

.

Exercise 3.2. Like any vector in R⌦L, we can write ⌘(1) as
Pm

j=1 zjxj ⌦ yj for zj 2 C, xj 2 R, and yj 2 L,
where m is some finite number. Developing each xj on the basis {ri} and using bilinearity of the tensor

1



product, we see that we can also write it as
Pn

i=1 ri ⌦ li for n = dim(V ) and li 2 L. If we could also write

it as
Pn

i=1 ri ⌦ l0i, then we would have 0 =
Pn

i=1 ri ⌦ (li � l0i). Because ri forms a basis, it would follow that

li = l0i for each i. Hence the li are unique.

(a) Use the snake equation:

l = idL(l)

= ("⌦ idL) � (idL ⌦ ⌘)(l)

= ("⌦ idL)(

X

i

l ⌦ ri ⌦ li)

=

X

i

"(l ⌦ ri)li.

(b) Similarly, it follows from the snake equation that ri =
P

k "(lk ⌦ ri)rk. Suppose that li = lj . Because
{rk} are linearly independent, then "(li ⌦ ri) = 1, and "(lk ⌦ ri) = 0 for k 6= i. Hence "(lj ⌦ ri) = 1,

and it follows that i = j, and so ri = rj . So f is injective.

(c) First notice that the standard form unit and counit indeed satisfy the snake equation. For the converse,

combine the previous parts with ??.

Exercise 3.3. (a) A Hilbert space is in particular a vector space. In the previous exercise, we may start

by choosing {ri} to be orthonormal.

(b) First, compute that ⌘†(ri ⌦ lj) = hli |lji:

h⌘(1)|ri ⌦ lji =
X

k

hrk |riihlk |lji

= hli |lji
= h1|⌘†(ri ⌦ lj)i.

Hence dagger duality shows that "(li ⌦ rj) = ⌘† � �(li ⌦ rj) = ⌘†(rj ⌦ li) = hlj |lii. But part (a) shows
that also "(li ⌦ rj) = �ij . Hence hli |lji = �ij , making {li} orthonormal.

Exercise 3.4. First notice that the standard form indeed satisfies the snake equations.

Second, if ⌘ and " witness L a R, then for each r 2 R there exists l 2 L such that (•, (r, l)) 2 ⌘ by one snake

equation. But there can be at most one such l because of the other snake equation. Thus f(r) = l defines
an isomorphism R

f
L that makes ⌘ of the standard form. By ??, also " must be of the standard form.

Third, observe that if f 6= f 0
, then ⌘ 6= ⌘0. Hence di↵erent choices of isomorphism R ' L yield di↵erent

(co)unit maps.

Finally, notice that any isomorphism is a unitary.

Exercise 3.5. We will prove that L⌦0 is the initial object; that is: for every object X, there exists a unique

morphism L ⌦ 0 ! Z. The isomorphism L ⌦ 0 ⇠= 0 follows the from uniqueness of the initial object. The

isomorphism 0 a 0⌦R is done analogously.

Exercise 3.6. Let X R X. Compute:

Tr(R) = " � (R⌦ idX) � �X,X � ⌘
= {((x, x), •) | x 2 X} � (R⌦ idX) � {((x, y), (y, x)) | x, y 2 X} � {(•, (x, x)) | x 2 X}
= {((x, x), •) | x 2 X} � (R⌦ idX) � {(•, (x, x)) | x 2 X}
= {((x, x), •) | x 2 X} � {(•, (y, x)) | (x, y) 2 R}
= {(•, •) | 9x 2 X : xRx}.
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So Tr(R) = 1 when R has a fixed point, and Tr(R) = 0 otherwise.

Exercise 3.7. (a) Say f = g† � g for A
g
B. Now use dagger duality:

TrA(f) = "A � (g† ⌦ idA⇤) � (g ⌦ idA⇤) � �A⇤,A � ⌘A
= "A � (g† ⌦ idA⇤) � �A⇤,B � (idA⇤ ⌦ g) � ⌘A
= ⌘†A � �A,A⇤ � (g† ⌦ idA⇤) � �A⇤,B � (idA⇤ ⌦ g) � ⌘A
= ⌘†A � (idA⇤ ⌦ g†) � (idA⇤ ⌦ g) � ⌘A.

(b) If f = g† � g, then f⇤
= g⇤ � (g†)⇤ = (g⇤) � (g⇤)†.

(c)

TrA⇤(f⇤
) = "A⇤ � (f⇤ ⌦ idA) � �A,A⇤ � ⌘A⇤

= "A⇤ � (idA⇤ ⌦ f) � �A,A⇤ � ⌘A⇤

= "A � �A,A⇤ � (idA⇤ ⌦ f)⌦ �A,A⇤ � �A⇤,A � ⌘A
= TrA(f).

(d) This is graphically immediately clear.

(e) Suppose f = a† � a and g = b† � b; use the cyclic property to see Tr(g � f) = Tr((b† � a)† � (b† � a)), and
then use part (a) to see that this scalar is positive.

Exercise 3.8. Graphically:

dim(L)† =

0

BBBBBB@

RL

1

CCCCCCA

†

=

RL

=

LR

= dim(R).
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Categories and Quantum Informatics exercise sheet 5:
Monoids and comonoids

Exercise 4.1. Let (A, d, e) be a comonoid in a monoidal category. Show that a comonoid homomorphism
I a A is a copyable state. Conversely, show that if a state I a A is copyable and satisfies e � a = idI , then
it is a comonoid homomorphism.

Exercise 4.2. This exercise is about property versus structure; the latter is something you have to choose,
the former is something that exists uniquely (if at all).

(a) Show that if a monoid (A,m, u) in a monoidal category has a map I u0
A satisfying m�(idA⌦u0) = ⇢A

and �A = m � (u0 ⌦ idA), then u0 = u. Conclude that unitality is a property.

(b) Show that in categories with binary products and a terminal object, every object has a unique comonoid
structure under the monoidal structure induced by the categorical product.

(c) If (C,⌦, I) is a symmetric monoidal category, denote by cMon(C) the category of commutative
monoids in C with monoid homomorphisms as morphisms. Show that the forgetful functor
cMon(C) C is an isomorphism of categories if and only if ⌦ is a coproduct and I is an initial
object.

Exercise 4.3. This exercise is about the Eckmann–Hilton argument, concerning interacting monoid
structures on a single object in a braided monoidal category. Suppose you have morphisms A⌦A

m1,m2 A
and I

u1,u2 A, such that (A,m1, u1) and (A,m2, u2) are both monoids, and the following diagram commutes:

m1

m2m2

=

m2

m1m1

(a) Show that u1 = u2.

(b) Show that m1 = m2.

(c) Show that m1 is commutative.

1



Categories and Quantum Informatics exercise sheet 5:
Monoids and comonoids

Exercise 4.1. The comonoid structure on I is given by (I,��1
I , idI). The definition of copyability and the

first part of the definition of comonoid homomorphism are both described by the same equation in this case,
namely:

d � a = (a⌦ a) � ��1
I

This means that a state a is copyable i↵ a satisfies the first equation in the definition of comonoid
homomorphism. Note that in general, a copyable state a does not satisfy the other condition, namely
deletion. A counter example is taking a zero state.

Exercise 4.2. (a) The graphical proof for this part is very simple (simply plug in both u and u0 into m),
but we present a symbolic one for comparisson.
Observe that the following equation holds because of naturality of ⇢:

⇢A � (u⌦ idI) = u � ⇢I

Since �I = ⇢I , we have:
⇢A � (u⌦ idI) = u � ⇢I = u � �I

Using the same argument, but for � and u0 we get:

�A � (idI ⌦ u0) = u0 � �I = u0 � ⇢I

We have:

m � (idA ⌦ u0) = ⇢A

=) m � (idA ⌦ u0) � (u⌦ idI) = ⇢A � (u⌦ idI) (compose on right)

=) m � (idA ⌦ u0) � (u⌦ idI) = u � �I (above equation)

=) m � (u⌦ u0) = u � �I (interchange law)

=) m � (u⌦ idA) � (idI ⌦ u0) = u � �I (interchange law)

=) �A � (idI ⌦ u0) = u � �I (monoid axiom)

=) u0 � �I = u � �I (above equation)

=) u0 = u (�I is invertible)

Note, that we have used only one of the equations for u0.

(b) We will write the product of f : X A and g : X B as hf, gi : X A ⇥ B and the associated
projections will be written as ⇡A⇥B

1 and ⇡A⇥B
2 .

Recall, that
⇡A⇥B
1 � hf, gi = f

⇡A⇥B
2 � hf, gi = g

1



hf, gi � h = hf � h, g � hi

First, we need to express the monoidal structure induced by the product. It is given in the following
way:
For objects, A and B

A⌦B := A⇥B

For morphisms f : A B and g : C D

f ⌦ g := hf � ⇡A⇥C
1 , g � ⇡A⇥C

2 i

The monoidal unit I is the terminal object 1 of the category. Then,

�A := ⇡1⇥A
2

⇢A := ⇡A⇥1
1

↵A,B,C := h⇡A⇥B
1 � ⇡(A⇥B)⇥C

1 , h⇡A⇥B
2 � ⇡(A⇥B)⇥C

1 ,⇡(A⇥B)⇥C
2 ii

Next, we need to show that every object in the category has a comonoid structure. Let A be an
arbitrary object. We can assign it a comonoid structure (A, d, e) by defining:

d := hidA, idAi : A A⇥A

e := 1A : A 1

where 1A is the unique morphism going from A to the terminal object 1. We have to verify that the
axioms for a comonoid are satisfied.

⇢A � (idA ⌦ e) � d = ⇡A⇥1
1 � hidA � ⇡A⇥A

1 , 1A � ⇡A⇥A
2 i � hidA, idAi

= idA � ⇡A⇥A
1 � hidA, idAi

= idA

as required. Next,

�A � (e⌦ idA) � d = ⇡1⇥A
2 � h1A � ⇡A⇥A

1 , idA � ⇡A⇥A
2 i � hidA, idAi

= idA � ⇡A⇥A
2 � hidA, idAi

= idA

as required. Next, we show coassociativity:

↵A,A,A � (d⌦ idA) � d = ↵A,A,A � hd � ⇡A⇥A
1 , idA � ⇡A⇥A

2 i � d
= ↵A,A,A � hd � ⇡A⇥A

1 � d,⇡A⇥A
2 � di

= ↵A,A,A � hd � idA, idAi

= h⇡A⇥A
1 � ⇡(A⇥A)⇥A

1 , h⇡A⇥A
2 � ⇡(A⇥A)⇥A

1 ,⇡(A⇥A)⇥A
2 ii � hd, idAi

= h⇡A⇥A
1 � ⇡(A⇥A)⇥A

1 � hd, idAi, h⇡A⇥A
2 � ⇡(A⇥A)⇥A

1 ,⇡(A⇥A)⇥A
2 i � hd, idAii

= h⇡A⇥A
1 � d, h⇡A⇥A

2 � ⇡(A⇥A)⇥A
1 � hd, idAi,⇡(A⇥A)⇥A

2 � hd, idAiii
= hidA, h⇡A⇥A

2 � d, idAii
= hidA, hidA, idAii

2



Also,

(idA ⌦ d) � d = hidA � ⇡A⇥A
1 , d � ⇡A⇥A

2 i � d
= h⇡A⇥A

1 � d, d � ⇡A⇥A
2 � di

= hidA, d � idAi
= hidA, di
= hidA, hidA, idAii

Therefore, coassociativity holds and (A, d, e) is indeed a comonoid.
Next, we have to show that the construction is unique. That is, for any other comonoid (A, d0, e0) that
d = d0 and e = e0.
Since 1 is a terminal object, then it must be the case that e = e0 : A 1. From counitlaity of
(A, d0, e0 = e) we have:

idA = ⇢A � (idA ⌦ e) � d0

= ⇡A⇥1
1 � hidA � ⇡A⇥A

1 , 1A � ⇡A⇥A
2 i � d0

= idA � ⇡A⇥A
1 � d0

= ⇡A⇥A
1 � d0

and also,

idA = �A � (e⌦ idA) � d0

= ⇡1⇥A
2 � h1A � ⇡A⇥A

1 , idA � ⇡A⇥A
2 i � d0

= idA � ⇡A⇥A
2 � d0

= ⇡A⇥A
2 � d0

Because of these two equalities and from the universal property of categorical products, it then follows
that d0 must be the unique morphism

d0 = hidA, idAi = d

which completes the proof.

(c) RHS ) LHS: Since ⌦ is a coproduct, we can simply use the dualized statement of (b) to conclude
that every object A has a unique monoid structure (A,mA, uA).
First, note that the tensor product on two morphisms f : A B and g : C D is given by:

f ⌦ g :=
⇥
iB�D
1 � f, iB�D

2 � g
⇤
: A� C B �D

and braiding is given by:

�A,B := [iB�A
2 , iB�A

1 ] : A�B B �A

The monoidal structure on A is defined by:

mA := [idA, idA] : A�A A

3



uA := 1A : I A

where 1A is unique morphism from the initial object to A. Also, recall that:

[f, g] � iB�D
1 = f

[f, g] � iB�D
2 = g

h � [f, g] = [h � f, h � g]

We show that every monoid (A,mA, uA) is commutative:

mA � �A,A = [idA, idA] � [iB�A
2 , iB�A

1 ] (definition)

= [[idA, idA] � iB�A
2 , [idA, idA] � iB�A

1 ] (coproduct)

= [idA, idA] (coproduct)

= mA (definition)

We can definie an isomorphism F : C cMon(C) in the following way:

F (A) := (A,mA, uA)

F (f) := f

It’s clear that this functor is an isomorphism, if it is well-defined. We have already shown it is
well-defined on objects. We just have to show that every morphism in C is a monoid homomorphism.
Let f : A B be an arbitrary morphism. Now, consider the monoidal structures of the two objects
(A,mA, uA), (B,mB , uB). We have:

uB = f � uA

()
1B = f � 1A

which is clearly true, since I = 1 is an initial object.

f �mA = mB � (f ⌦ f)

() f � [idA, idA] = [idB , idB ] � [iB�B
1 � f, iB�D

2 � f ]
() [f, f ] = [[idB , idB ] � iB�B

1 � f, [idB , idB ] � iB�D
2 � f ]

() [f, f ] = [idB � f, idB � f ]
() [f, f ] = [f, f ]

Therefore, f is a monoid homomorphism and thus F is an isomorphism. Showing that the functor F
is a monoidal functor is straightforward with all of the definitions we have provided.
LHS ) RHS: cMon(C) is monoidally isomorphic to C therefore every object A has a unique monoid
structure which we will denote as (A,mA, uA). Consider objects A,B,C and A ⌦ B and morphisms
f1 : A C, f2 : B C. Since the categories are isomorphic, this implies that f1 and f2 are monoid
homomorphisms.
First, we define morphisms iA⌦B

1 : A A⌦B, iA⌦B
2 : B A⌦B given by:

i1 := (idA ⌦ uB) � ⇢�1
A
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i2 := (uA ⌦ idB) � ��1
B

Define,

[f1, f2] := mC � (f1 ⌦ f2)

We claim that ([f1, f2], i1, i2) is the coproduct of the morphisms f1 and f2. First, we verify:

[f1, f2] � i1 = mC � (f1 ⌦ f2) � (idA ⌦ uB) � ⇢�1
A (definition)

= mC � (f1 ⌦ (f2 � uB)) � ⇢�1
A (interchange)

= mC � (f1 ⌦ uC) � ⇢�1
A (monoid homomorphism)

= mC � (idC ⌦ uC) � (f1 ⌦ idI) � ⇢�1
A (interchange)

= ⇢C � (f1 ⌦ idI) � ⇢�1
A (monoid unitality for C)

= f1 � ⇢A � ⇢�1
A (naturality of ⇢)

= f1

In a similar way, we can show that

[f1, f2] � i2 = f2

Finally, we have to show that the construction is universal. That is, if there exists a morphism
h : A⌦B C with h � i1 = f1 and h � i2 = f2 then h = [f1, f2].
Consider:

[f1, f2] = mC � (f1 ⌦ f2) (definition)

= mC � ((h � i1)⌦ (h2 � i2)) (assumption)

= mC � (h⌦ h) � (i1 ⌦ i2) (interchange)

= h �mA⌦B � (i1 ⌦ i2) (h – homomorphism)

= h � (mA ⌦mB) � (idA � �B,A � idB)�
� (idA ⌦ uB ⌦ uA ⌦ idB) � (⇢�1

A ⌦ ��1
B ) (def+interchange)

= h � (mA ⌦mB) � (idA � uA � uB � idB) � (⇢�1
A ⌦ ��1

B ) (interchange)

= h � (⇢A ⌦ �B) � (⇢�1
A ⌦ ��1

B ) (unitality ⇥ 2)

= h (interchange)

We have shown that coproducts exist for any pair of objects A and B. However, we still need to show
that there is an initial object. The initial object is, of course, the tensor unit I. Consider an arbitrary
object A. Since A is a monoid, then there must be a map uA : I A. Moreover, if there is another
morphism x : I A, then it must be a monoid homomorphism. Therefore,

uA = x � uI = x � idI = x

since (I,�I , idI) is the unique monoid on I.
Therefore, I is an initial object, which completes the proof.

Exercise 4.3. For the whole exercise, the graphical proof is very simple and straightforward. However, for
comparisson, we show a symbolic solution instead.
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(a) The trick is to plug in the state (u2 ⌦ u1 ⌦ u1 ⌦ u2).

m1 � (m2 ⌦m2) � (u2 ⌦ u1 ⌦ u1 ⌦ u2) = m2 � (m1 ⌦m1) � (idA � � � idA) � (u2 ⌦ u1 ⌦ u1 ⌦ u2)

=)
m1 � (�A � (idI ⌦ u1))⌦ (⇢A � (u1 ⌦ idI)) = m2 � (m1 ⌦m1) � (u2 ⌦ u1 ⌦ u1 ⌦ u2)

=)
m1 � ((u1 � �I)⌦ (u1 � ⇢I)) = m2 � ((⇢A � (u2 ⌦ idI))⌦ (�A � (idI ⌦ u2)))

=)
m1 � (u1 ⌦ u1) � (�I ⌦ ⇢I)) = m2 � ((u2 � ⇢I)⌦ (u2 � �I))

=)
�A � (idI ⌦ u1) � (�I ⌦ ⇢I)) = m2 � (u2 ⌦ u2) � (⇢I ⌦ �I)

=)
�A � (idI ⌦ u1) = m2 � (u2 ⌦ u2)

=)
�A � (idI ⌦ u1) = �A � (idI ⌦ u2)

=)
u1 � �I = u2 � �I

=)
u1 = u2

(b) From now on we will write u := u1 = u2.
Plugging in the map (idA ⌦ u⌦ u⌦ idA) to both sides of the equation yields the desired result.

m1 � (m2 ⌦m2) � (idA ⌦ u⌦ u⌦ idA) = m2 � (m1 ⌦m1) � (idA � � � idA) � (idA ⌦ u⌦ u⌦ idA)

=)
m1 � (m2 ⌦m2) � (idA ⌦ u⌦ u⌦ idA) = m2 � (m1 ⌦m1) � (idA ⌦ u⌦ u⌦ idA)

=)
m1 � (⇢A ⌦ �A) = m2 � (⇢A ⌦ �A)

=)
m1 = m2

(c) We will write m := m1 = m2.
This time, the trick is to plug in the map (u⌦ idA ⌦ idA ⌦ u) to both sides of the equation. We get:

m � (m⌦m) � (u⌦ idA ⌦ idA ⌦ u) = m � (m⌦m) � (idA � � � idA) � (u⌦ idA ⌦ idA ⌦ u)

=)
m � (�A ⌦ ⇢A) = m � (m⌦m) � (u⌦ idA ⌦ idA ⌦ u) � (idI � � � idI)

=)
m � (�A ⌦ ⇢A) = m � (�A ⌦ ⇢A) � (idI � � � idI)

=)
m � (�A ⌦ ⇢A) = m � � � (�A ⌦ ⇢A)

=)
m = m � �
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Categories and Quantum Informatics exercise sheet 6:
Frobenius structures

Exercise 5.1. Recall that in a braided monoidal category, the tensor product of monoids is again a monoid.

(a) Show that, in a braided monoidal category, the tensor product of Frobenius structures is again a

Frobenius structure.

(b) Show that, in a symmetric monoidal category, the tensor product of symmetric Frobenius structures

is again a symmetric Frobenius structure.

(c) Show that, in a symmetric monoidal dagger category, the tensor product of classical structures is again

a classical structure.

Exercise 5.2. This exercise is about the interdependencies of the defining properties of Frobenius structures

in a braided monoidal dagger categories. Recall the Frobenius law (5.1).

(a) Show that for any maps A d A⌦A and A⌦A m A, speciality (m�d = id) and equation (5.4) together

imply associativity for m.

(b) Suppose A d A⌦A and A⌦A m A satisfy equation (5.4), speciality, and commutativity (4.7). Given

a dual object A a A⇤
, construct a map I u A such that unitality (4.6) holds.

Exercise 5.3. Recall that a set {x0, . . . , xn} of vectors in a vector space is linearly independent whenPn
i=0

zixi = 0 for zi 2 C implies z0 = . . . = zn = 0. Show that the nonzero copyable states of a comonoid in

FHilb are linearly independent. (Hint: consider a minimal linearly dependent set.)

Exercise 5.4. This exercise is about the phase group of a Frobenius structure in Rel induced by a groupoid.

(a) Show that a phase of G corresponds to a subset of the arrows of G that contains exactly one arrow

out of each object and exactly one arrow into each object.

(b) A cycle in a category is a series of morphisms A1

f1 A2

f2 A3 · · ·An
fn A1. For finite G, show that

a phase corresponds to a union of cycles that cover all objects of G. Find a phase on the indiscrete

category on Z that is not a union of cycles.

(c) A groupoid is totally disconnected when all morphisms are endomorphisms. Show that for such

groupoids G, the phase group is G itself, regarded as a group:
Q

x2Ob(G)
G(x, x). Conclude that this

holds in particular for classical structures.
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Categories and Quantum Informatics exercise sheet 6:
Frobenius structures

Exercise 5.1. (a) We have seen before that the tensor product of a monoid is again a monoid. The same
holds for comonoids. It is left to verify the Frobenius law:

=
Frobenius law

= =

(1)

(b) We will use the fact that the tensor product A⌦B of two spaces A,B that have duals A⇤, B⇤, is dual
to the tensor product A⇤ ⌦B⇤. We use the alternative definition of symmetric Frobenius algebras in
symmetric monoidal categories; however, it can also be shown directly.

=
symmetry

= = (2)

(c) The tensor product of commutative frobenius structures is again a commutative frobenius structure
by (a) and an argument similar to (b). It is left to show that the tensor product of special dagger
Frobenius algebras is special.

= = = (3)

1



Exercise 5.2. (a)

=
= = =

= = =

2



(b)

Define Then::=

= = =

= =

(Frob.) (comm.)

(Frob.) (naturality)

=

(swap invert.)

(snake)

= =

(comm)

=

(speciality)

3



Exercise 5.3. Suppose {x0, . . . , xn} is a minimal nonempty linearly dependent set of nonzero copyable states.
Then x0 =

Pn
i=1 zixi for suitable coe�cients zi 2 C. So

nX

i=1

zi(xi ⌦ xi) =
nX

i=1

zid(xi)

= d(x0)

= (
nX

i=1

zixi)⌦ (
nX

j=1

zjxj)

=
nX

i,j=1

zizj(xi ⌦ xj).

By minimality, {x1, . . . , xn} is linearly independent. Hence z2i = zi for all i, and zizj = 0 for i 6= j. So
zi = 0 or zi = 1 for all i. If zj = 1, then zi = 0 for all i 6= j, so x0 = xj . By minimality, then j = 1 and
{x0, xj} = {x0}, which is impossible. So we must have zi = 0 for all i. But then x0 = 0, which is likewise a
contradiction.

Exercise 5.4. (a) The defining equation for phases gives

{g�1 � h | g, h 2 a} = {idx | x 2 Ob(G)}{g � h�1 | g, h 2 a}.

The inclusion L ✓ M means: 8g, h 2 a : cod(g) = cod(h) =) g = h. The inclusion M ◆ R means:
8g, h 2 a : dom(g) = dom(h) =) g = h. In other words: there can be at most one arrow in a out
of each object of G, and at most one arrow of a into each object of G. Given this, the remaining
inclusions L ◆ M ✓ R mean: 8x 2 Ob(G)9g, h 2 a : dom(g) = x = cod(h). That is: a contains
arrows into and out of each object.

(b) Pick an object x; the phase a contains exactly one arrow x y. If y = x, we have a 1-cycle. Otherwise,
a contains exactly one arrow y z, etc. This process has to end, because the groupoid is finite. Delete
all the objects involved in the cycle, and repeat.
For the indiscrete groupoid on Z, there is a phase {n ! n+ 1 | n 2 Z}
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Categories and Quantum Informatics exercise sheet 7:
Complementarity

Exercise 5.1. Let (G, �) and (G, •) be two complementary groupoids (see Proposition 6.9).

(a) Assume that (G, �) is a group. Show that:

✓

(b) Assume that (G, �) is a group. Show that:

◆

(c) Assume that (G, �) is a group and that the corresponding Frobenius structures inRel form a bialgebra.
Show that:

✓

Exercise 5.2. Let A be a set with a prime number of elements. Show that pairs of complementary Frobenius
structures on A in Rel correspond to groups whose underlying set is A.

Exercise 5.3. Consider a special dagger Frobenius structure in Rel corresponding to a groupoid G.

(a) Show that nonzero copyable states correspond to endohomsets G(A,A) of G that are isolated in the
sense that G(A,B) = ; for each object B in G di↵erent from A.

(b) Show that unbiased states of G correspond to sets containing exactly one morphism into each object
of G and exactly one morphism out of each object of G.

(c) Consider the following two groupoids on the morphism set {a, b, c, d}.

• •
c

d

a b

• •
a

b

c d

Show that copyable states for one are unbiased for the other, but that they are not complementary.
Conclude that the converse of Proposition 6.11 is false.
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Exercise 5.4. A Latin square is an n-by-n matrix L with entries from {1, . . . , n}, with each i = 1, . . . , n
appearing exactly once in each row and each column. Choose an orthonormal basis {e1, . . . , en} for Cn.
Define : Cn Cn⌦Cn by ei 7! ei⌦ei, and : Cn⌦Cn Cn by ei⌦ej 7! eLij . Show that the composite

is unitary. Note that need not be associative or unital.

Exercise 5.5. This exercise is about property versus structure. Suppose that a category C has products.
Show that any monoid in C has a unique bialgebra structure.
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Categories and Quantum Informatics exercise sheet 8:
Complementarity

Exercise 5.1. (a) We have to show L ✓ R. First, note that:

L = {((f, g), (f, g)) | f, g 2 Arr(G1)}

Since G1 is a group, this means there is only one object in G1. Therefore, all morphisms in G1 are
composable (as they are self-loops). Then, computing the relation R, we see that ((f, g), (f, g)) 2 R
for any two morphisms f, g 2 G. Thus, L ✓ R.

(b) We have to show R ✓ L. Obviously, L is the same as in (a). Because the two groupoids G1 and G2

are complementary (and share the same morphisms), then there is a bijection:

Arr(G1) Ob(G1)⇥Ob(G2)

a 7! (dom1(a), dom2(a))

However, the groupoid G1 has only one object and thus, this extends immidiately to a bijection
between Arr(G1) = Arr(G2) and Ob(G2). Therefore, there is a 1-1 correspondance between the
arrows and objects of G2 which means that G2 is discrete. Thus, all arrows in G2 are identities. Then:

R = {((idx, idx), (idx, idx)) | x 2 Ob(G2)}

so clearly R ✓ L.

(c)

✓
(a)

=
(bialgebra)

=
(speciality)

Note, that the last equation makes use of speciality, which is satisfied by groupoids in Rel.

Exercise 5.2. Let G and H be complementary groupoids. From Proposition 6.8, we have

|A| = |Ob(G)| · |Ob(H)|

Because |A| is prime, one of the groupoids has one object and the other has |A| objects. Without loss of
generality, let’s assume G has one object. But then, H has as many objects as it has arrows (|A|) and H
is therefore discrete and therefore its structure is trivial. G has one object and it is therefore a group with
morphisms those of A (and G carries all of the non-trivial structure/information). Thus, the complementary
pair is entirely determined by the group G.
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Exercise 5.3. (a) Note, that zero states are copyable, but not of the required form.
Let X := Arr(G).
An arbitrary state u : I X is given by:

u = {(·, f) | f 2 U ✓ X}

where U is the subset of X which determines u.
Let’s assume u : I X is copyable and non-zero. Thus, U 6= ;. The definition of copyable state in
Rel, then translates as:

{(·, (f, g)) | f 2 U, g 2 U} = {(·, (f, g)) | cod(g) = dom(f) =) f � g 2 U}

From basic set theory, we get that this means:

f 2 U, g 2 U i↵ (cod(g) = dom(f) =) f � g 2 U)

for every f, g 2 X.
By making use of this equivalence several times, we can finish the proof.
U is not empty, thus there exists some morphism f 2 U .
f 2 U =) f � f 2 U =) dom(f) = cod(f) = A, for some object A 2 Ob(G). In other words, f must
be a self-loop (or endomorphism).
If g 2 U =) f � g 2 U and g � f 2 U =) dom(g) = cod(g) = A. In other words, all morphisms in U
are endomorphisms on the object A. Therefore, U ✓ G(A,A).
f � idA = f 2 U =) idA 2 U. So, the identity on A must be in U .
8h : A A we have h�h�1 = idA 2 U =) h 2 U . Thus, all endomorphisms on A are in U . Therefore,
G(A,A) ✓ U . Combining this with the above result, we get G(A,A) = U .
Finally, we have to show A is disconnected. Consider an arbitrary morphism h : A B. We have
h � h�1 = idA 2 U =) h 2 U =) A = B, which completes the proof.

(b) The right phase shift of a state u : I X (defined as in (a)) is given by:

P := {(f, f � g) | f 2 X, g 2 U, dom(f) = cod(g)}

A state is unbiased if its right phase shift is unitary. In Rel this means that the right phase shift is a
bijection.
The fact that P is a function (not merely a relation), means that, for a given object, there can be at
most one morphism in U with codomain this object.
The fact that P is defined everywhere, means that, for every object, there exists at least one morphism
in U with codomain that object.
Combining these two facts, we get for every object in G, there exists exactly one morphism with
codomain that object.
The fact that P is a surjection, means that, for every object, there exists at least one morphism in U
with domain that object.
The fact that P is a injection, means that, for every object, there can be at most one morphism in U
with domain that object (to see that, assuming two morphisms in U have the same domain, compose
each of them with its inverse and then use injectivity).
Combining these two facts, we get for every object in G, there exists exactly one morphism with
domain that object. This completes the proof.

(c) Proposition 6.8 shows that these two groupoids are not complementary. According to (a), non-zero
copyable states do not exist in either of the groupoids and therefore the implication is trivially satisfied.

Exercise 5.4. An n⇥ n Latin square corresponds to an n by n table with entries ranging from 1 to n, in a
way that each row and each column contains each number exactly once.
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We can consider this as a multiplication table on the set {1, ..., n} in the following sense: the product i ⇤ j
is given by the entry indexed by (i, j) in the table (so in the ith row and the jth column). We can extend
this linearly to the map : Cn ⌦Cn ! Cn, taking |ii for i = 1, .., n as a basis of Cn. This is a well-defined
function that maps basis elements to basis elements.
For the classical structure, we take the standard classical structure that copies the basis elements.
We show that the first bialgebra law holds by showing that the equality holds for any choice of basis states
i, j:

( (i⌦ j)) = ( (i, j)⌦ (i, j)), (1)

as (i, j) defines a basis element,so a copyable states of .
On the other hand,

) � ( ⌦ )(i⌦ j) = ( )(i⌦ j ⌦ i⌦ j) = ( (i, j)⌦ (i, j)). (2)

Now we will prove the second bialgebra law. Let a, b be arbitrary basis elements and let c be a ⇤ b. The
right-hand-side gives us:

� (a⌦ b) = c

= 1
(3)

The left-hand-side give us:
(a⌦ b) = 1 · 1 = 1 (4)

Consider an equivalence relation on Latin squares that allows changing the order of the rows and the columns
of the latin square, and renaming the symbols. Every latin square is equivalent to one that has 1, 2, ..., n as
its first row and as its first column. It follows that we can define a map : I ! Cn as (1) = |1i. Using this
map as the unit for , the last two bialgebra equations hold as well.
Now we will show that (id ⌦ ) � (( ⌦ id) is unitary.
Note that the multiplication map is injective: if i⇤ j = i⇤ j0 then j must equal j0, as every row contains every
element exactly once. Similarly, if i ⇤ j = i0 ⇤ j, then i must equal i0. Its dagger maps each basis element a
to the sum of n tuples

P
(i,j)2Ia)

i ⌦ j of basis elements, where Ia is the set of all indices of the entry a in
the Latin square. In other words, these tuples correspond to the row and column of each entry a. Note that
i and j range over 1, .., n and all tuples are disjoint.
Now it follows that for every two basis states |ii, |ji, where i ⇤ j = a for some a.

( ⌦ id) � (id ⌦ ) � (id ⌦ ) � (( ⌦ id)(i⌦ j) =
X

i=1,..,n

( ⌦ id) � (id ⌦ ) � (id ⌦ )(i⌦ i⌦ j)

=
X

a=1,..,n

( ⌦ id) � (id ⌦ )(i⌦ a)

=
X

(b,c)2Ia

( ⌦ id)(i⌦ b⌦ c)

= i⌦ j

(5)

The last equality holds, because (i ⌦ b) = �b,ii, and furthermore, the only tuple of the form (i, c) 2 Ia is
(i, j).
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Simultaneously we have

(id ⌦ ) � ( ⌦ id) � ( ⌦ id) � (id ⌦ )(i⌦ j) =
X

(a,b)2Ij

(id ⌦ ) � ( ⌦ id) � ( ⌦ id)(i⌦ a⌦ b)

=
X

b|i⇤b=j

(id ⌦ ) � ( ⌦ id)(i⌦ b)

=
X

b|i⇤b=j

(id ⌦ )(i⌦ i⌦ b)

= i⌦ j

(6)

Exercise 5.5. Assume that the monoidal structure in C is given by the categorical product. Let (A,m, u)
be a monoid. From an earlier exercise, we already know that A has a unique comonoid structure (A, d, e)
given by:

d = hidA, idAi
e = 1A : A 1

where 1 is the terminal object of C.
To complete the proof, we simply have to show that the bialgebra equations are satisfied. This is lengthy,
but straightforward and can be done simply by expanding the definitions and using the basic algebraic
properties of the categorical product. However, we have to be careful when doing this symbolically (as
opposed to diagrammatically) because we also have to explicitly take into account the associator and unitors
(↵A,B,C ,�A, ⇢A).
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