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Abstract

‘Comparison’ and ‘Analogy’ are fundamental aspects of knowledge ac-

quisition. We argue that one of the reasons for the usefulness and impor-

tance of Category Theory is that it gives an abstract mathematical setting

for analogy and comparison, allowing an analysis of the process of abstract-

ing and relating new concepts. This setting is one of the most important

routes for the application of Mathematics to scientific problems. We explore

the consequences of this through some examples and thought experiments.

Let us start with a quote from Shakespeare’s ‘A Midsummer Night’s Dream’.

The Poet’s eye in a fine frenzy rolling

Doth glance from heaven to earth and from earth to heaven

And as imagination bodies forth the form of things unknown

The Poet’s pen turns them to shapes and gives to airy nothing

A local habitation and a name.

We feel many mathematicians would liken this description of the role of the Poet
to their own attitudes to Mathematics. Undoubtedly, mathematics has coined
many names for the forms of things previously unknown. The notion of ‘name’,
and its role in thought, is very subtle.

In trying to address the question ‘What is Category Theory?’, we felt it
necessary to reflect on ‘What is Mathematics?’ and ‘How does Category Theory
fit into its overall structure?’ In fact, as Category Theory is being seen as having
potential uses in other parts of Science, perhaps its position within Science as a
whole might also be useful to consider.

Our initial view of Category Theory, both within Mathematics and more
widely, suggested various ‘themes’, in no particular order:

• mixed algebraic and geometric/combinatorial structures,

• enables comparison between objects,

• a formalisation and abstraction of ‘analogy, and from ‘analogy’ to ‘abstrac-
tion’ itself,
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• a structural context for structural mathematics,

• combines local structure with locational information,

• gives meaning to the idea of structure,

• comparisons between concepts,

and the list goes on. In our discussion here, we will try to address the meaning
of some of these themes and the reasons they seem to us to give insights into the
question of what Category Theory is.

Comparison and Analogy in Mathematics and Science.
Central classical themes in Science include the classification of objects within

a particular context. As an example, take the classification of minerals. Various
elementary attributes can be noted: this one is green, that one is reddish brown.
The crystals of the first have this shape, which is not the same as that of the
second, and so on. We then classify the two minerals into different classes with
different names, initially just as a useful verbal label, later as our knowledge
evolves to include some of the key attributes for the context, either in quite ordi-
nary language (green, hexagonal, ...) or encoded, for instance, by letters, numbers
and symbols as with a chemical formula. Of course, the question of why they look
different is then central to the next depth of the study, but first the possible hier-
archical class structure has to be determined by comparison. We note, as another
example, that the Linnean hierarchical classification of plants, and their naming,
was a great scientific advance.

Comparison allows us to build a specification of a concept or class. It is an
essential feature of developing an ontology1, within a subject area or amongst a
group of interacting individuals or agents.

Mathematics has been defined as ‘the science of pattern’ or (on one website)
as ‘the science (or group of sciences) dealing with the logic of quantity and shape
and arrangement’. ‘Pattern’ can mean a lot of different things - but it is clear that
determining pattern involves comparison once again. It may be that a pattern
is repeated, a fact observed by identifying that the given object is ‘the same
as’ a transformed version of it. ‘The same as’ may be ‘partial’ in as much as
not all the observable properties are the same, some attributes being themselves
transformed. The observation, attributable to Klein, that it was the allowable

transformations for a geometric context that determined the type of pattern
being studied is just one example of this. If you are comparing triangles in the
plane, you may be interested in the lengths of corresponding sides or merely
the angles between the sides. Of course, the use of ‘corresponding’ again implies
comparison. The beauty of geometry is partially finding that attributes are linked:
if the angles of two triangles are the same, then the corresponding sides are linked

1We are using ‘ontology’ here in the sense often used in Artificial Intelligence, as precisely a
‘specification of a conceptualisation’, [8, 9]. In [5], ‘Ontology is the theory of objects and their
ties’.
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by a more subtle relationship than ‘equality’, namely ‘common ratio’. (‘Equality’
itself implies a use of comparison, as does ‘ratio’ and most other simple binary
relations2.) In the first of the two cases the transformations must preserve the
attribute of distance between points, in the second they do not, so we get more
‘allowable transformations’ and a different geometry.

The second ‘definition’ we gave of Mathematics talks of quantity, shape and
arrangement. ‘Quantity’ clearly involves comparison; ‘shape’ is closely related to
‘pattern’, whilst ‘arrangement’ again involves comparison in various ways as a
glance at any book on the theory of graphs and its application to combinatorial
problems will show. We thus are left to conclude that ‘comparison’ is an important
aspect of Mathematics, of Science, and, in fact, of general knowledge acquisition.

What about analogy? This is the ‘flip side’ of comparison and is essential
in the ‘inductive’ side of knowledge acquisition. Suppose we are looking at two
objects, or concepts, A and B, say, and have some partial specifications of them.
(By a specification in this sense we will mean a list of attributes with, perhaps,
some known linkages between the attributes as in the geometric case (angles and
lengths) mentioned earlier.) Suppose further that some of the specified attributes
of A are the same as those of B. To understand the logical relationships between
(sets of) attributes, it is natural to test if others of A’s attributes are also valid
for B. (We may not yet have knowledge as to whether B satisfies some particular
attribute or not.) This is nearly a ‘that reminds me of’ situation. The partial
matching, via a comparison, of the properties of A and B leads to an analogy,
a test, experiment or an attempt at a proof and perhaps an extension of the
comparison, or perhaps the beginning of an abstraction process.

To illustrate this, we refer to a well known mathematical analogy between
ways of combining knots and ways of combining numbers. Given a knot K tied in
a piece of rope, we can tie another one, L, say, to the right of it, to get a new knot
K +L, (note the notation suggesting an analogy to addition). If the second knot
was the unknot, (so could be manipulated back to being completely unknotted),
then K + L could be reduced by similar manipulations back to K itself (without
letting go of the ends)! The unknot is behaving rather like the number 0 in
addition of numbers. This sum operation on knots is behaving like addition of
numbers. It has some of the same attributes: it is a binary operation (it takes
two ‘things’ and produces a new ‘thing’). There is a zero ‘thing’ in both contexts,
(the unknot and zero respectively). There seems some analogy between the two
situations. This analogy suggests further comparisons of the two situations. For
instance with numbers m + n = n + m always; is it always true that for knots
K +L = L+K? Yes, but you have to take care what = means! (As we mentioned
earlier, this is a common occurrence and we will return to it later.) What about
another property: the existence of negatives or additive cancellation: if n is a
number, there is another number m such that n + m = m + n = 0. Here the

2The role of ‘equality’, which is fundamental to ‘comparison’ will be looked at later on when
higher dimensional category theory is examined. It is often the case that ‘equality’ is not quite
what it seems to be naively.
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corresponding attribute fails for knots. The basis for the analogy was a partial
matching between the attributes of the two objects or concepts. The analogy
failed to extend, revealing a new observation on ways of combining knots.

We can attempt to adjust the analogy. Whole numbers under multiplication
do not allow division. You cannot solve the equation 2x = 1 with positive whole
numbers. This might give a better analogy, so now we think of K + L as being
analogous to m.n rather than to m + n. Now 1 corresponds to the unknot and
our comparison looks better. In fact we have that if K +L = 0, the unknot, then
K = L = 0, which is analogous to: if m.n = 1 for positive whole numbers then
m = n = 1. Better still we might try some more complicated property of numbers
such as ‘every whole number other than 1 can be written as a product of prime
numbers’. The analogy works. There are knots that are ‘prime’ or ‘irreducible’:
K is prime if given any equation L + M = K then either L or M must be the
unknot. Every knot has a decomposition as a sum of prime knots3. Moreover,
the proof can be written in an abstract form that works for both numbers and
knots and much more generally. Stripping away the context specific details gives
a proof that shows what is ‘really’ happening. This example is not particularly
categorical, but it is typical of the type of insight into structure that often occurs
with a category theoretic approach based on comparison and analogy.

The important point is that we are not saying that knots and numbers
are somehow comparable, but that what is comparable are the relations between
knots and the relations between numbers. This situation arises widely in category
theory, in comparing categories of particular structures.

This hurried and superficial look at the place of comparison and analogy
within Science and Mathematics thus suggests that comparison, in many differ-
ent guises, is essential for determining the basic classifications of objects, whilst
analogy allows the exploitation of partial matching of patterns, obtained by com-
parisons, to suggest new questions and possible logical linkages between ‘contexts’
or between objects. In fact, so essential is it, that the previous sentence is a bit
strange since it is difficult to imagine any classification without comparison! Anal-
ogy and comparison also play key roles in the formation of new concepts and in
the process of abstraction and unification, as we will see later.

And what about categories?
For the convenience of the reader, and to set up our notational conventions,

we will recall the definition of a category.
A category, C, consists of a family of objects Ob(C) and for each pair of

objects, A,B in C, a set C(A,B) of ‘arrows’ from A to B, together with a way of
‘composing’ arrows that match

◦ : C(A,B) × C(B,C) → C(A,C).

3For a gentle introduction to the arithmetic of knots, see [3], either in its form as a brochure
or in the web-based / CDRom version. A more detailed treatment can be found in several books
on Knot Theory including [7]
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(If f ∈ C(A,B) and g ∈ C(B,C), we write g ◦ f or simply gf for the ‘composite’
arrow which is in C(A,C).)

This data is to satisfy:
(i) composition is associative, so if h ◦ (g ◦ f) is defined, (h ◦ g) ◦ f is as well (and
conversely) and they are equal;
(ii) there are identities for each object, so there are ‘identity’ arrows IA in C(A,A)
for A in Ob(C), such that if f ∈ C(A,B).

IB ◦ f = f = f ◦ IA.

(We will sometimes write f : A → B if f ∈ C(A,B).)
We can view a category as giving a fairly general abstract context for com-

parison. The objects of study are the objects of the category. Two objects, A

and B, can be compared if the set C(A,B) is non-empty and the various arrows
A → B are ‘ways of comparing them’. The composition corresponds to: if we can

compare A with B and B with C, we should be able to compare A with C. Com-
parison is also seen as being directional. We may be able to compare A with B,
but there need not be a way of comparing B with A. The composition constrains
our use of ‘compares’, but it is still remarkably useful.

Various comments need to be made here. We first note that we have used
‘arrow’ rather than ‘morphism’ which is often used in this context. The reason
is that ‘arrow’ has, intuitively, attributes such as ‘direction’, ‘start’ (or ‘source’)
and ‘finish’ (or target’), but ‘morphism’, as it includes ‘morph’ has suggestions
of ‘shape’, or ‘structure’ being preserved as in the more classical algebraic forms
‘homomorphism’, ‘isomorphism’, etc. It is usual, when discussing elementary cat-
egory theory, to start by giving examples of categories that consist of ‘structured
sets’ and ‘structure preserving’ functions between them. Such categories form an
important source of examples on which to test and illustrate notions of category
theory, and in such examples ‘morphism’ seems a highly appropriate term. But in
introducing category theory to graduate students, these ‘sets with structure’ cat-
egories can raise a problem if over used as examples. There sometimes grows up in
the user the false idea that objects in categories are always sets with structure, so
they try to force all categories to be of that form. Here we adopt a viewpoint that
is nearer to our ‘comparison-analogy’ themes and which is distantly linked to the
Klein Erlangen Programme view of geometry. From this viewpoint, in a category
C, the ‘structure’ of an object A in the category only has meaning in relationship
to the other objects and hence by reason of the various sets, C(A,B) and C(B,A),
and their interrelationships via composition4. Because of this, ‘arrow’ is better
for us here than ‘morphism’.

As a slightly silly example, we take a category C consisting of, as objects,
(mathematical) groups and, as arrows, functions between the corresponding un-
derlying sets. These arrows do not preserve any of the ordinarily defined algebraic

4The famous Yoneda lemma and the theory of functor categories allows one to formalise
this very neatly and also show more exactly the extent to which the ‘sets with structure’ view
is a valid one.
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structure of the objects. The result is that, loosely speaking, using the category
C, no one can distinguish two groups if they have the same cardinality. Thus the
‘structure’ of an object of C is really just that of a set. This raises the philosophi-
cal issue of whether two copies of the same object ‘are the same’. For instance, is
a group G, considered as an object of this C, ‘the same as’ G considered as an ob-
ject of the category, Grps, of groups and homomorphisms? Although the example
is a contrived one and is consequently slightly silly, this is not just an ‘academic’
question as it relates to questions of inheritance of attributes among data types in
Symbolic Computation. Mathematicians often abuse notation as a useful tool to
link related contexts. As an example, the infinite cyclic group, C∞, consists of all
(formal) powers an, both positive and negative, of some single generator a, say.
Here C∞ is a group under multiplication. The ring of positive integers, denoted
Z (for zahlen) consists of integers considered with addition and multiplication. If
we forget the multiplication on Z, we get the integers under addition (as the only
binary operation specified) and they form a group isomorphic to C∞, essentially
by pairing each integer n with the corresponding power, an of a. Is Z ‘the same
as’ C∞? Probably not: it has different attributes; but confusing the two is inno-
cent of dire consequences most of the time and is a useful recognition that (Z,+)
and (C∞, ·) are isomorphic. Of course, it is sometimes important to make the
distinction between Z considered as a ring and considered as an additive group.
From a category theoretic view there are two categories: that, Rngs, of rings and
homomorphisms (preserving both addition and multiplication); and that, Grps,
of groups and their homomorphisms (which preserve the composition). There is
a functor, that is a way of comparing categories, from Rngs to Grps obtained by
forgetting the multiplicative structure and considering the operation of addition
as being the composition in a group. This comparison and its properties tells one
a lot about the relationships between these algebraic structures. Each category
serves as a structural context and gives meaning to a specific idea of structure
relative to that context.

Another less contrived example comes from observing that any partially
ordered set (P,6) gives us a category, P, with Ob(P) = P , the set of elements of
P , and for x, y ∈ P , P(x, y) is empty unless x 6 y, in which case it is a singleton
set. To take a specific example, let (P,6) be the partially ordered set, which we
will call Div36, of divisors of 36, with m 6 n if and only if m divides n. Then
P has objects 1, 2, 3, 4, 6, 9, 12, 18, and 36, and, for instance, P(2, 12) is a
singleton, whilst P(12, 2) is empty. The composition is the only one possible and
the identity, Im, is the single element of P(m,m). Note that the objects do not
look like sets with structure nor do the arrows look like functions, however they
do provide a relevant means of comparison between the objects of P.

In this example what is the structure of, for instance, the object 12. Clearly
P(m, 12) is non-empty for m = 1, 2, 3, 4, 6, and 12 only, and P(12,m) is non-
empty for m =12 and 36 only, so P does allow one to identify the divisor structure
of 12 and the multiples of it as well. Category theory looks at this in various ways
depending on the aim of the investigation. With the small amount of theory we
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have introduced, the obvious point to make is that the information in the different
sets P(m,n) is interrelated via the compositions. The various P(m, 12) with the
various links between them give the partially ordered set / category Div12 of
divisors of 12, whilst the P(12,m) give Div3 as 3 = 36/12. We actually have here
an example of a construction of a slice or comma category, and again we will
revisit it later.

Although the objects of P were just numbers, we might ask if we could
still defend a ‘objects are sets with structure’ viewpoint in this situation? For
instance, we might find some weird way of looking at P so that each object gave
us a structured set and each arrow a ‘morphism’ and the result would faithfully
reflect the structure of each object. To examine this point, look at the top element
of the partially ordered set P = Div36, i.e., 36. This is the terminal object in the
category P. In general, an object T in a category C is terminal if each C(A, T ) has
exactly one object. (Be warned: many categories will not have terminal objects.)
In the category, Sets, of sets and functions between them, any singleton set T is
terminal and then for a set X, Sets(T,X) is essentially the same as X itself: so
one possible way to attempt to extract some ‘underlying’ set of an object X in
an arbitrary category C (if it happens to have a terminal object T ) is to look at
C(T,X). (Analogy at work!) Trying to apply this in our category P, we would get
for an object m, the set P(36,m), but unless m is 36, this is empty, so has not
much structure! (We are not trying here to be conclusive, just to make the point
that the obvious approach does not give one a set with structure.) The point is
that we need all the P(n,m), and thus a family of sets to make things work.

This example shows other features that sometimes come as a surprise to
the debutant. It gives a category P for which P(m,n) may be empty even when
P(n,m) is not. Clearly these arrows can not be ‘invertible’. (The order relation
is not symmetric!) The idea of invertibility can be used to illustrate the extent
that observations about mathematical objects can often be ‘internalised’ within
category theory. A group homomorphism θ : G → H is an isomorphism if it has
an ‘inverse’. This means, more explicitly, that there is a homomorphism φ : H →
G, so that the two composite morphisms φθ and θφ are the respective identity
homomorphisms. A group homomorphism is an arrow in the category of groups
and homomorphisms, so why not abstract this to get versions of ‘isomorphism’
in other categories? An arrow x ∈ C(A,B) is invertible (or is an isomorphism) if
there is a y ∈ C(B,A) such that x ◦ y = IB and y ◦ x = IA. Note we do not know
anything about the category concerned, just its name! Yet the notion makes sense
abstractly given such a ‘context’.

In some categories, all the arrows are invertible. Such categories are called
groupoids. In any category C and for any object A in it, the self isomorphisms of
A form a group in the usual sense of algebra. Of course, group theory grew out
of the work of Galois, Lie, Klein and many others. A group of transformations of
an object was a natural way of examining that object’s structure, of comparing
it with itself. Thus in a category each object has a group of transformations, a
local algebraic measure of its symmetry structure. ‘Local’ because it relates only
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to that one object. Can all groups be realised in this way? Yes, and the reason
is really sneaky! (Here again, the debutant finds the construction hard to digest,
yet it is fundamental to how parts of category theory is evolving, see John Baez’s
numerous writings on ‘categorification’, for instance, [1].) Here is how it goes.

You have a group G and form up a category, G. This category has exactly
one object, which will be denoted ∗. We next need to specify G(∗, ∗) as this will be
the only set of arrows around. We set this equal to the set of elements of G. Finally
we take composition ◦ to be multiplication within G and I∗ to be the identity
element of G. The single object ∗ is just an object. It is not some element of the
group and is there solely as a means of having the elements of G as arrows from
it to itself. Of course, within the category G, the group of transformations of ∗ is,
guess what, G! This leads one to say that a group is a one object groupoid and a
groupoid is a many object group. Group theory is by no way diminished by this,
in fact several classical proofs on group theory benefit from combining certain
aspects of a groupoid approach, which spreads things out combinatorially making
for a neater, shorter proof. What, then, is a one object category? It corresponds
to a monoid, that is a set with a single associative binary operation which has an
identity, but no inverse is demanded within the structure. Both categories and
groupoids combine geometry and algebra, the locational and the local! They have
a graph theoretic aspect but also a monoid or group theoretic one.

Examples of groupoids include the fundamental groupoid, ΠX, of a topo-
logical space, X. In this the objects are the points of X and if x, y are two
such points, ΠX(x, y) is the set of homotopy5 classes of paths starting at x and
ending at y. The detailed construction can be found, for instance, in Brown, [2].
Exploring that example would give meaning to the ‘local structure and locational
information’ theme, but in fact there is another example that can be used and
which is more immediately central to Category Theory as such, namely the free
category on a graph and the related free groupoid.

By a graph, Γ, (or more strictly speaking directed graph) we mean what is
sometimes called a network: it has vertices and (directed) edges between some
of them. (We will label the edges with lower case letters such as a, b, . . . , with
suffices if needed.) Now we form a category FreeCat(Γ) having the vertices of
Γ as its objects and between two such, v and w, FreeCat(Γ)(v, w) is the set of
paths in Γ starting at v and ending at w. A path from v to w in this context
can be represented by a sequence of edge labels, (a1, a2, . . . , an) such that a1

starts at v, an ends at w and each ai−1 ends at the start of the next edge, ai.
At a vertex v, there is also the trivial empty path that starts and ends at v.
Composition in FreeCat(Γ) is by concatenation of paths, so the trivial paths act
as the identities. A similar construction can be made to obtain the free groupoid

5Two paths are homotopic if one can be continuously deformed into the other without moving
the endpoints. This construction originally due to Poincaré, related, historically, to an analysis
of a space for the purposes of integration along paths. This has lead very recently to attempts
to extend the construction to handle situations relating to multiple integrals and integrals over
higher dimensional spaces, and thus to ‘multiple groupoids’ and a higher dimensional algebra.

8



on Γ; we just add in, for each edge a from v to w, a reverse edge labelled a−1

from w to v and when forming path sequences we ‘reduce’ them by removing any
adjacent pairs of the form a, a−1 or a−1, a from the sequence. The result will be
a groupoid, FreeGpd(Γ). Both the free category and the free groupoid contain
local information at each vertex/object and the locational information as to how
to get between the various objects. They combine an algebraic compositional
structure with a geometric or combinatorial one, the best of both worlds!

In passing we will mention that any equivalence relation gives a groupoid,
so groupoids generalise both groups and equivalence relations.

Comparing categories
Yes, it had to come! Categories are mathematical structured objects, so we

can strive to compare different categories.
The notion of ‘morphism’ between categories is ‘the functor’ as was already

mentioned above. It assigns objects to objects and arrows to arrows, respecting
composition and identities. We have already seen an example of a functor. In our
partially ordered set, P, we had P(m, 12) for varying m. Now given any category
we can form another with the same objects but with the opposite direction on all
arrows. This is called the opposite or dual category. For our partially ordered set
example, Pop is the category corresponding to the partially ordered set with the
reverse order so, in this, m 6 n means n divides m, not the other way around.
The various P(m, 12) define a functor

P(−, 12) : Pop → Sets.

The notation is designed to be self explanatory: the functor P(−, 12) assigns
P(m, 12) to m. We leave the reader to work out why if m 6 n, the natural
corresponding function is in the other direction from P(n, 12) to P(m, 12), and
not the other way around.

This is a general construction; if C is a category and A any object, C(−, A) :
Cop → Sets is defined in the same sort of way. By this means we can embed
any (small) category into a functor category (modulo a bit of difficulty with set
theory and the size of the collections of objects, see the footnote below). In fact
this suggests that any category can be realised as a category of families of sets
with structure and structure preserving families of functions between (Yoneda’s
lemma), so although we warned against the simplistic view of categories as always
consisting of ‘sets with structure’ and the corresponding structure preserving
‘morphisms’, it was not that far from the truth. It is just not a useful view of
categories to have to the exclusion of others!

Another functor can be constructed from the free path examples. This goes
from a category of graphs to the category of small6 categories or small groupoids.
Functors often have a lot of structural properties, for instance, these free category

6Small categories are ones in which the collection of objects is a set in the sense of set
theory. This smallness condition is often avoided by using various tricks. It is not that annoying
in practice, but at the same time is occasionally vital!
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and free groupoid functors have a freeness property, that we will not explore here.
One of the points of category theory is to seek common attributes for various
classes of functor. That again suggests comparison, this time of functors. This is
done by natural transformations, which we will not discuss further but will refer
to standard texts on category theory.

Comparison and Analogy lead to abstraction and thus to fresh concepts,
but also to unified treatments of existing concepts. For instance, in geometric
contexts, the notion of a group action is often important. To specify an action
of a group, G on a set X, we give for each g ∈ G, a permutation σg of X, so
that for g, h ∈ G, σgσh = σgh. We say that X together with the action of G is a
G-set. Of course there is a notion of morphism of G-sets and the G-sets and the
corresponding morphisms together form a category, G–Sets.

If X has more structure than a mere set, for instance if it is a topological
space or a vector space, then in the above definition we would replace ‘permuta-
tion’ by the appropriate notion of isomorphism in the category, Spaces or Vect,
in which X is being considered. There will then be a corresponding category
of G–Spaces or G–Vect. If we had any category C, we could define a notion of
G-action on an object of C and would get a corresponding category G–C. (Again
here we have abstraction of concepts ‘by analogy’, and the categorical language
helps us in this process.)

The first unification is to note that a G-set corresponds to a functor

X : G → Sets.

Such a functor will be specified by assigning a set to each object of G, the asso-
ciated category of the group, G, and so, as there is only one object, ∗, in G, it
picks out a single set X = X(∗), that is the set on which G will act, but where
are the permutations? For each g ∈ G, there is an arrow g : ∗ → ∗ in G. Applying
X gives a function X(g) : X(∗) → X(∗). Relabelling, that is a permutation of
X, i.e., the σg is this X(g). The details are easy to check. We could, if we had
given the details, have checked that a G-morphism of G-sets corresponds exactly
to a natural transformation of the corresponding functors. This category G–Sets

is thus a functor category in which guise it would be denoted SetsG or similar.
We could equally well define a G-object in a category C as being a functor from
G to C.

This does not stop there. General categorical constructions (products, co-
products, limits and colimits) can be defined in a category C and then a single
unified proof can be given to say when they exist in the corresponding category
G–C of G-objects in C using this unification of treatment of the concepts. Category
theory gives good abstractions, often ‘the right’ abstractions7. The advantage of

7Some mathematicians object quite rightly to saying ‘the right’ abstraction, however the
most natural constructions within a subject area are often of a categorical nature. The problem
then is not with the category theorists being prescriptive as to what is ‘right’, rather in the
success rate of categorically based concepts.
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unified treatments is that they show why things are happening. Subject specific
proofs do not always show this and so may not be so widely applicable.

The above discussion was in part based on an observation about categories of
the form CG or similar. Structure from C in some way extends or lifts to structure
on CG . Another example of a very similar nature is that of commutative squares
in a category C. A square X, being a diagram

A
a

c

B

b

C
d

D

of objects and arrows in a category C, is commutative if b ◦ a = d ◦ c. This is,
of course, just one shape of commutative diagram, but will illustrate our point.
We can form a category, ¤, having four objects, labelled, 1, 2, 3, and 4, say, and
arrows a12 : 1 → 2, a13 : 1 → 3, a24 : 2 → 4, a34 : 3 → 4, and a14 : 1 → 4 plus
identities on each object. Composition is given by a24a12 = a14 = a34a13. Then a
commutative square in C is just a functor from ¤ to C. We get, for free, a notion
of morphism between commutative squares, and a category C¤ of commutative
squares in C. Again properties of C give properties of C¤ . The category ¤ acts
as a ‘template’ for all structures of a particular form.

It is not that far away from this example to get to an abstract notion of
algebraic structure (of a given form) in a category C, as being a particular type of
functor from a ‘signature’ category to C. This notion of algebraic structure again
allows wide ranging and influential generalisations with applications in topology,
geometry and recently in computer science and logic.

Category Theory, by taking analogy seriously, has thus provided a ‘struc-
tural context for structural mathematics’ and a ‘meaning to the idea of structure’.

A case study: comma categories.
The way in which comparison leads to structural information can be ap-

proached in various ways. We have mentioned functor categories and the Yoneda
embedding above, and also comma categories. These latter constructions give a
clear illustration of how comparison with other objects does give useful informa-
tion. We will only give the details of one example.

We earlier met the construction of a free groupoid on a graph. A particular
case of that construction gives that of the free group, F (X), on a set, X. (We
leave the reader to make the connection exact by building a graph from the
set X in such a way that the free groupoid on that graph has a single object,
hence is a group. The change from a group to a groupoid is another aspect of
‘categorification’ à là Baez, [1].) The idea behind this ‘free’ construction is that
one builds a group from X by adding in new elements to represent the result
of ‘multiplying’ or inverting elements of X, doing this in such a way that no
equations are satisfied in the result except those given by the axioms for a group.
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Given a group G, the elements of G usually satisfy equations in addition to those
required by the fact that G is a group. For instance, it may be that for any
x, y ∈ G, xy = yx. This would not be true in an arbitrary group and so gives
important structural information about G. That was an example of an equation
assumed to hold for all elements of the group, but in, say, the symmetry group of
the triangle, the rotation through 120 degrees is such that its cube is the identity
element, again a piece of structural information but this time about a specific
element of the group.

Our aim is to see if we can find some of that structural information about
a group G by comparing free groups with it. By this we mean that we will look
at group homomorphisms F (X) → G, and by varying X get some information.
(This is a bit like studying 12 in Div36 by looking at all P(m, 12).) We first note
that this free group construction gives a functor F : Sets → Grps. We want to
look at ‘approximations’ to G by free groups. We could do this by examining the
composite functor Grps(F (−), G) : Setsop → Sets, but we will approach this from
a slightly different direction using a construction that owes some of its structure
to a geometric intuition about categories rather than an algebraic one. This
construction is a particular case of the general comma category8 construction.
We form a category, (F ↓ G), with the approximations f : F (X) → G as objects,
so the objects are arrows in another category, in this case that of groups and
homomorphisms. If f1 : F (X1) → G and f2 : F (X2) → G are two such objects,
then an arrow from f1 to f2 is an arrow a : X1 → X2 in Sets, such that f2F (a) =
f1. This seems a bit complicated the first time it is encountered, but makes a
lot of sense. The objects compare the free groups on various sets with G and a
comparison between such varies the sets being used by applying a function.

The beautiful thing about this situation is that there is a very special object
in (F ↓ G) as it has a terminal object. This means that there is a set X and a ho-
momorphism εG : F (X) → G such that given any set Y and any homomorphism
f : F (Y ) → G, there is a unique function a : Y → X such that εGF (a) = f .

There is no real mystery here. The set X is a copy of the set U(G) of elements
of G, so is obtained by ‘forgetting’ the multiplication structure of G, and εG is the
homomorphism that takes a string of elements of G, hence an element in FU(G),
and composes them to get a single element. It is thus clear that εG is really the
multiplication in disguise. With a bit of care this construction can be read off
just from the fact that there is a terminal object in (F ↓ G). Conversely, we can
obtain a from f explicitly: the free group F (Y ) contains the singleton strings
each consisting of a single element of Y . If {y} is such a string, then f({y}) is an
element of G. The function a : Y → U(G) sends y to f({y}).

This is a recurring type of situation in algebraic contexts (and wider). There
are ‘forgetful functors’ from some category to another, obtained by forgetting
some of the structure of the objects. In the above example U : Grps → Sets

8The terminology comes from the use of a comma in the notation used by Lawvere in early
applications of the idea.
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forgot the multiplicative structure. The above analysis set up a one-to-one corre-
spondence between the arrows F (Y ) → G in Grps and those Y → U(G). (In fact
there is a second comma category (Y ↓ U) and this has an initial object, i.e., the
dual situation!) The key concept here is that of adjoint functors: F is left adjoint

to U . This in turn gives rise to an abstract approach to algebraic structure which
has proved very important in analysing structure in Computer Science as well as
in Algebra itself.

To return to our question of the structure of individual elements of a group,
the special arrow εG : FU(G) → G compares G and the free group on G. If, for
instance, a particular element, g, of G satisfies g59 = 1, then the string consisting
of the element g repeated 59 times gives an element in FU(G) that is sent to 1G

by εG, hence is in ker εG. Thus the internal structure of G can be investigated
by examining the terminal object. That investigation would take us away from
category theory as such, as it usually will involve context specific methods. An
analogous situation does, however, keep us in context of category theory and will
provide a bridge to our next discussion.

Instead of looking at the categories of groups and sets and the free-forget
pair between them, we could have substituted small categories and directed
graphs. There is a forgetful functor from the category of (small) categories to
that of directed graphs, which forgets the composition. (Categories are directed
graphs, a combinatorial or geometric concept, which in addition have a compo-
sition, an algebraic notion.) The free category construction we looked at earlier
gives a left adjoint to that forgetful functor. In the free category on a graph, there
are no non-trivial commutative diagrams, not unsurprisingly as the commutativ-
ity of a diagram corresponds to an ‘equation’ in the arrows. We could apply the
ideas we developed for groups to this context. If we do have, say, a commutative
square, in a (small) category C, then we can find two elements in FU(C), which
are representing the two paths around the square, so will be sent by εC to the
same arrow in C. We can think of these two paths as being ‘equivalent’.

A question of identities.
Earlier we asked about the meaning of ‘the same as’. This was initially in

the context of the Knots example. If a knot L ‘was the unknot’, then we could
manipulate it to unknot it! In other words we had to produce some set of moves
that would result in it becoming clearly unknotted. This sort of situation has
also occurred, without comment, in other situations we have looked at. When
forming the composition within the free groupoid on a graph we had to reduce
the result of concatenation by cancelling cancellable pairs.

Such changes to a formula or expression are a standard technique, yet the
language for this is not always clear. Thus we say 2+3 = 5, but this can and even
does confuse. The left hand side and the right hand sides of the ‘equals’ sign are
not the same! The left hand side can be considered as an instruction, ‘add 2 to
3’, and the right hand side as giving the answer. Thus for this rewriting we could
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better say ‘2 + 3 → 5 ’9 and think of it as an operation or process. There is a
reverse process 5 → 2+3, but it is of a different character. (It is cutting up rather
than putting together; it goes from one thing to two; it is a co-operation, which
can be made precise within a categorical setting.) This analysis of a statement
usually considered very simple is not a case of simple mathematics made difficult.
It is essential for computer implementation, since the computer cannot guess and
has to be told precisely what type of thing each symbol stands for.

Another example of an ‘identity crisis’ comes with the Z and C∞ example.
There is a temptation to say that these are ‘the same’, but does that mean
they are ‘equal’? We might identify them via the obvious isomorphism, but why
choose that isomorphism and not, for instance, the one pairing n with bn, where
we have written b for a−1, which just picks a different generating element for
C∞. Unless we pay attention to such queries, we are in danger of killing the
very structures that we set out to study, in particular the internal symmetry
structure of objects. The point is: isomorphism is not identity. In fact it is often
useful to replace ‘equal’ by ‘equivalent’ and, of course, this is really what we
have done on several occasions above. To prove two things are ‘equal’ is often
impossible, partially because ‘equality’ is such a difficult concept. To prove that
two things are ‘equivalent’ requires one to analyse the situation and to find the
suitable notion of ‘equivalence’ and then to provide a proof that the two things
are equivalent, which is much more ‘healthy’.

A good example of this is equality of functions f, g : X → Y . It is very
easy to say that f = g if and only if f(x) = g(x) for all x ∈ X. This can be
verified, perhaps on a computer, if X is finite and not too large. However, if X

is the set of natural numbers, it is not possible to program a computer to decide
this equality problem, even if f and g are always to be given by elementary
formulae in arithmetic. This is the famous undecidability result. What we can
ask is how f and g are specified as functions, and what are the ways of moving
from one specification to another. This movement, hopefully reversible, is a kind
of equivalence.

When, as increasingly is seen to happen, equivalences do need to be acc-
ounted for in detail, then category theory per se is not really adequate and higher
dimensional categories are needed. In these, in addition to objects with (1-)arrows
between them, there are 2-arrows between the 1-arrows (so C(A,B) is no longer
just a set, but is a category). The picture

A

f1

f2

a B

suggests two arrows from A to B with a : f1 =⇒ f2 being a 2-arrow, that is, a
way of comparing the two comparisons! Even that does not seem to be adequate

9The use of the arrow notation in category theory has often proved very suggestive for
applications. Here we used it to indicate a ‘process’ with a definite direction.

14



for some situations and it has proved necessary to investigate 3-arrows between
2-arrows, etc. This theory is still in full development and new ideas are coming
to the surface from various other areas of mathematics, computer science and
physics. It is motivated and strongly influenced by difficult problems in algebraic
topology, algebraic geometry and, as mentioned above, mathematical physics,
so is not ‘abstract nonsense’ in any way. The sense of unification of large parts
of modern mathematics comes from comparison and analogy as well as from
abstraction. It is because of this that category theory has come to play such a
fundamental role in much of this development.

Categories as mixed algebraic / geometric structures for local-to-
global problems.

We have not said that much about the theme ‘local structure with locational
information’. Its importance is best exemplified by work in geometric contexts
and we will briefly look at two geometers and how they interpreted this. They
both have had a lasting influence on the development of category theory, whilst
not being themselves category theorists.

What category theory first did in Eilenberg and Mac Lane’s seminal 1945
paper was to give a simple algebraic definition for a general notion in mathemat-
ics, and to show how it applied in a number of situations, in particular, allowing a
formal expression for the term ‘natural transformation’. In fact similar algebraic
axioms had appeared earlier in Brandt’s 1926 paper giving the notion of groupoid.
This notion was quite familiar to the algebraists at Chicago in the 1940s, since
it is used in Albert’s book on the structure of algebras. When one of us asked
Eilenberg about this in 1985, he insisted that the notion of groupoid did not
influence them, since had they had been aware of it they would have included it
as an example! The Eilenberg-Mac Lane approach centred on categories as ways
of managing large collections of mathematical objects, but the Brandt tradition
considered it more as an algebraic object encoding some sort of symmetry.

Another early example of this can be seen in the work of Charles Ehres-
mann, [6], and in particular with his notion of structured category, so that he
used topological and differentiable categories (and groupoids), and also intro-
duced double and higher categories10. In Differential Geometry, a natural object
to study is the tangent bundle of a smooth space, that is, the set of all tangent
vectors at all points of the space. One of Ehresmann’s ideas was that compari-
son of the points of the space could be done by looking at local transformations
between the corresponding tangent spaces. The resulting groupoid would have
extra structure coming from the differential structure on the space and the linear
structure on each tangent space. The local behaviour of a geometric structure
at a point or between two points in a geometric space, clearly is reminiscent of
the structure of a groupoid in which at each object (point) one has a group of
local symmetries. In the case mentioned above, the groupoid itself was ‘smooth’.

10Without being too specific, we refer the reader to his Collected Works, [6], particularly
Volume III-2.
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The overall structure gave one interpretation of the global structure of the geom-
etry. Investigating this led him to think about categories with various types of
extra structure. His work was found to be difficult to follow, mostly because his
viewpoint was that of a geometer not of the algebraist as at that time, algebra
was the main user of categorical language, yet many of his constructions have
profound implications in Algebra.

One of the reasons for the difference in style between Ehresmann’s work
and that of other early writers on category theory is that he was a student of
Elie Cartan, in analysis and geometry. A great theme in his work is the relations
between local and global properties, and the use of notions of categories and
groupoids to express this theme. We have stressed earlier that the objects in a
category have structure due to the morphisms between them and this connects
that view into the much earlier ideas of Klein. Ehresmann tried to emphasis
this view by naming his categories after the morphisms in them rather than the
objects. The usual category of sets would thus be called the category of functions,
and this allowed the category of sets with relations as morphisms to be called the
category of relations. It was thus the allowable transformations in many object
contexts that Ehresmann stressed.

The other major geometric contributor to categorical ideas has been Alexan-
der Grothendieck. It is notable that his striking initial work was in functional
analysis, and he could be said to have carried over the local-to-global themes
there into the arena of number theory, where ‘local’ meant ‘at a given prime’.
He also developed vast tools of category theory to express these local-to-global
problems. Grothendieck realised the power of categorical methods to express ge-
ometric analogies. He was able to adapt results and ideas from other areas and
for instance, made clear the links between the categories of G-sets and various
very geometrically defined categories. In fact, he saw this unification as being a
generalisation of the Galois theory of fields in algebraic number theory. These
links were most clearly described by a categorical equivalence. The question of
generalisations of this viewpoint to higher ‘dimensions’ is still a very active area
of research. He also developed a categorical notion of space11 that has provided
one of the ingredients in the recent development of non-commutative geometry.

In all this, categorical notions, developed to describe the way mathemati-
cal structures behave and interact, have led to new mathematical structures of
interest in their own right. A final but striking example of this is the idea of a
monoidal categories. This again is part of the internalisation, and categorification

tendency we have mentioned several times. They are like monoids, but are defined
on a category with the multiplication being given by a functor not a function,
the equations such as that for associativity, which in a monoid involve equality
are here replaced by expressions involving an equivalence, and so on. The amaz-
ing thing is that this wonderfully abstract idea gives amazing analogies between

11A beautiful description of Grothendieck’s contribution to categorical ideas of space can be
found in Cartier’s article, [4].
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the behaviour of rings and of knots, and can also be analysed algebraically in
interesting finite or countable cases. It has revolutionised parts of physics and
geometry, as well as revealing new structures and analogues in the theory of
group representations.

It has earlier been said that monoids are categories with one object, and
conversely categories are monoids with many objects. Similarly, groupoids are
‘groups with many objects’. This extra ‘spatial component’ given by the objects
has been found to have profound implications, and to give valuable tools for
modelling and expressing intuitions, and even for more effective calculation. We
can impose numerous different structures on ‘space’, and likewise with this next
level of categories. This again leads to structured categories and groupoids, à
la Ehresmann. If these objects have to be structured as a category or groupoid,
then we are led to higher categories and also to Grothendieck’s higher dimensional
analogues of Galois theory. There is currently a burgeoning interest in this field,
which, it is suggested by some, may be a major theme of mathematics in the 21st
century.

Conclusion
We do not claim to have answered the question, but via our themes of com-

parison and analogy, and their relation to abstraction and unification, perhaps we
have shed some light on ‘What is Category Theory?’ We have not really touched
on the aspects of Category Theory as a language, or on the very strong links
between category theory and certain parts of logic, but have wanted, to some
small extent, to point out the links between the algebraic and combinatorial or
geometric aspects of the subject. Perhaps the beauty of Category Theory is the
way in which it has enriched its constructions and theories with intuitions from
a very wide family of subject areas and, by comparison and analogy, has ab-
stracted some of the essence from each. This aids the unification of large parts
of mathematics and related subjects12.
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