
A Foundational Delineation of
Computational Feasibility

Daniel Leivant*

Abstract

A function over {0,1}* is in P-Time Zfl it is com-
puted b y a program which can be proved correct in
second-order logic with set-existence (comprehension)
restricted to positive quantifier-free formulas. This
set-existence principle captures formally the view of
infinite totalities as evolving, not completed, entities.

1 Introduct ion

1.1 Feasibility and P-Time

Feasible computing has been identified for long with
computability within deterministic polynomial time,
primarily on practical and circumstantial grounds: P-
Time functions are easily defined and computed, and
are closed under many natural operations; and most
known worst-case lower-bounds are either bounded by
polynomials of small degrees, which are clearly fea-
sible, or are at least exponential, and clearly non-
feasible. The central importance of P-Time has been
contested as of late, notably because feasible proba-
bilistic classes might subsume P-Time in their practi-
cal significance, and because bounds such as nloglogn
are more feasible in practice than say n1Oo0. At the
same time, the fundamental nature of P-Time has
been reaffirmed repeatedly by various characteriza-
tions and stability results. For example, relations
computable in P-Time over enumerated finite struc-
tures are the same as the ones computable by re-
cursion equations [Saz8O1Gur83] or by pure uninter-
preted logic programs [Pap851 , or by alternating multi-
head automata [CKS81,Gur87]; they are also the same
as the relations defined by positive first-order fix-
points [Var82,Imm86], or by first-order inflationary
fixpoints [GS86,Lei90a] , or by alternating transitive-
closure [Imm87]. The P-Time functions over N have,
among others, characterizations in terms of a subre-
cursive schema [CobG5], provability in a weak system

*Author’s current address: SCS, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213. Address effective Fall 1991: Com-
puter Science Department, Indiana University, Bloomington, IN
47405.

for arithmetic [Bus86], and typability in a bounded
version of linear logic [GSS89].
These characterizations testify to the significance of
P-Time, but they all seem to lack a principle directly
pertinent to feasibility, one that would justify the iden-
tification of P-Time with feasible computing. Our aim
here is to propose such a principle.

1.2 The ontology of numeric terms

Computational feasibility is closely related to the on-
tology of numeric terms. As soon as non-feasible func-
tions are named, they take a life of their own, and on-
tologically problematic natural numbers become eas-

ily nameable, such as 3 n 5 =df 33 . In particu-
lar, once exponentiation is admitted, then very short
terms exist whose numeric values exceeds not only hu-
man imagination, but also possible realization in the
physical world: 3 n 5 could not be spelled out as a
decimal numeral even by quark-size computers filling
up the observable universe and working concurrently
since the big bang at a speed that exceeds the liniita-
tions of quantum mechanics.
The abyss between the value and the notation-size
of such terms has been addressed by a number of
mathematicians and philosophers, including Bernays
[Ber35], van Danzig [Dan5G] , Yessenin-Volpin [yes701 ,
Isles [Is191], and Nelson [Ne186]. Gandy [Gan89] con-
cludes that “very large numbers are abstract not con-
crete (not potentially concrete) objects: they are more
akin to infinite sets than to concretely presented num-
bers.”

3J3

1.3 Predicativity and potential infinities

Basic infinite sets, such as the set N of the natural
numbers or the first inaccessible cardinal, are concep-
tualized as being generated by a process. To be ad-
mitted as legitimate, we must assume that some “uni-
verse” exists within which that process can be applied
“indefinitely”. Similarly, our belief that 3 5 denotes
a natural numbers is based on the conviction that the
calculation of that term will be completed eventually.
Of course, we can support that conviction with a proof

CH3025-4/91/0000/0002$01 .OO 0 1991 IEEE

by induction, but, as we shall see, for that proof to
make sense we must admit that infinite sets exist as
complete totalities.

Less than a century ago, the legitimacy of infinite sets
as completed totalities was not as universally taken for
granted as it is today, under the influence of Cantorian
set theory. Hilbert had hoped to shelter Mathemat-
ics from the potential dangers of actual infinities by
reducing it to its finitistic fragment. An important
aspect of Brouwer’s intuitionistic foundations is the
insistence that infinite totalities are only unbounded
constructions: “The natural numbers, though treated,
constitute only a potential totality in constructive
mathematics” [KreGl] .
Recall that a definition of a set X is impredicative
if it refers to a collection of which X is an element.
Uncontrolled impredicativity leads to contradictions,
as in Russell’s Paradox. However, impredicative defi-
nitions abound in Mathematical Analysis, where real
numbers (i.e. subsets of N or functions over N, de-
pending on the representation) are defined in terms of
quantification over all reals. We normally expect no
contradiction to arise, because we implicitly assume
that the power set of N, PN, is given as a completed
totality prior to the definition of any particular mem-
bers there0f.l In predicative systems of analysis2 one
refrains from assuming the power set of N as given,
albeit N is assumed as a completed totality. This im-
plies that a subset of N cannot be defined in terms
of quantification over P N , and circular definitions are
thereby excluded.

An argument raised by Nelson [1986] is that the defini-
tions of N are also circular: the generative (inductive)
definition, as a set constructed by repeated application
of the successor function, presupposes an understand-
ing of N itself (specifically when Induction is proposed
as the formal justification of the process). The defi-
nition of N as the intersection of all sets containing
0 and closed under successor presupposes that such a
set exists, and moreover uses a blatantly impredicative
quantification over sets.3

Impredicative definitions of this form are captured by the
Subset (Separation) axiom schema of Zermelo’s Set Theory.

2Predicative Analysis goes back to Bore1 and the semi-
intuitionists of the turn of the century, and has been revived
by Kreisel, Fefennan, Wang, Schiittee, and many others.

3Shoenfield and Wang (in conversation with Kreisel, re-
ported in [KreGl, fn. 11) have made the interesting dud ob-
servation that if the generative justification of N were to be
taken as “predicative”, then one should also accept as predica-
tive the set w of all well-founded countably-branching trees,
which is complete-ll: and not “predicative” in the sense of be-
ing hyperarithmetical.

Nelson point is, then, that the culprit in generating
ontologically dubious terms is the impredicative justi-
fication of the set N, and therefore the impredicativity
of proof by Induction. Nelson observes that induction
presupposes that N is given as a completed totality,
and so using induction to justify that the values of
certain terms are in N is an impredicative argument.
He goes on to develop a system of Predicative Arith-
metic, in which exponentiation is not provably correct.
A problem with Nelson’s development is that no clear
cut rationale is given for admitting addition and multi-
plication, but not exponentiation, as primitives. Isles
[1991] brings out the impredicative nature of the proof
that the exponentiation function is well defined, but
he too does not provide a foundational delination of
feasibility.

1.4 Strictly Predicative Comprehension
Levels of impredicativity can be precisely calibrated by
comprehension (set existence) principles, i.e. the ad-
mittance as legitimate of sets {z E N I ’p} for certain
formulas p. Much progress has been made in the last
decade in calibrating the strength of formalisms for
second-order arithmetic with weak forms of compre-
hension (notably by H. Friedman, Mints, Sieg, Simp-
son, and Smith). However, all formalisms considered
are built on top of Primitive Recursive Arithmetic,
so these studies are of no help in delineating the im-
predicativity involved in the primitive recursive (PR)
functions, let alone in smaller classes.
A framework for calibrating the impredicativity of
sub-PR functions was proposed in [Lei83, LeiSO], with
second-order logic used in place of second-order arith-
metic. Contrary to weak systems for second-order
arithmetic, the set of natural numbers is here not as-
sumed as a completed totality. The method does not
depend on any choice of basic numeric functions (such
as addition and multiplication) or of axioms for them,
and is therefore suitable for calibrating the logical na-
ture of “small” functions. Moreover, it applies as eas-
ily to any term algebra as to N.
Consider now the question of what instances of com-
prehension can be justified on strictly predicative
grounds. Since the existence of infinite sets as com-
pleted totality cannot be so justified, we must stip-
ulate that relational variables range over finite or
potentially-infinite sets, i.e. sets that are “coming into
being”. Over a given structure we use comprehen-
sion to delineate new sets that are finite or potentially
infinite, from the structure functions and relations,
and from relational variables which denote already-
defined finite or potentially infinite sets. Specifically,

3

if R is_a relational variable, and t‘ areJerms (where
a r i t y (t) = ari ty(R)) , we admit {x I R(t)}. We must
also admit finite unions and intersections of admitted
sets. However, we can not admit the complement of an
admitted set S , since this is tantamount to accepting
S as an actual infinity, for which non-members can be
identified. Also, the use of quantifiers is suspect, be-
cause they refer to exhaustive inspection of the struc-
ture universe. We are thus led to accept, on strictly
predicative grounds, comprehension over exactly the
positive quantifier-free formulas (Le. without negation
or implication).

The main result of this paper states that the com-
putable functions justified on the basis of positive
quantifier-free comprehension are precisely the func-
tions computable in deterministic polynomial time.
This shows that the class P-Time arises naturally from
a foundational analysis of feasibility, and that terms
using exponentiation can be justified as meaningful
only under the admission of infinite sets as completed
totalities. Specific terms, such as 3 .tr 5, have their
own complete computation as direct justification, but
since no such computation can ever be exhibited, such
terms can be feasibly justified only via the general jus-
tification of exponentiation, i.e. via implicit reference
to completed infinite sets.

2 Functional programs

2.1 Herbrand-Godel programs

Our canonical computation model is functional pro-
grams, in the Herbrand-Godel style (See [Ne521
or [Lei901 App. 1 for expositions). The original
Herbrand-Godel definition is for RI, the free term alge-
bra generated from a constant 0 and a unary function
s. We use such programs over arbitrary free algebras,
in particular the term algebra generated from a con-
stant E and unary functions 0 and 1, i.e. simply the
set W = {0,1}* (e.g. the word 011 is identified with
the term 0116 = O (l (l (~)))) . We can assume, without
loss of generality, that functional programs are coher-
ent, i.e. that they define a partial function, and not a
multiple-valued f ~ n c t i o n . ~

For example, the following program (over W) com-
putes the function a, which on input v,w returns

We comment on this in the list of research directions below.
5Kleene [1952] showed this for numeric functions. A proof for

the general case can be obtained either by generalizing Kleene’s
proof for a computation model with fixpoint, or by generalizing
the simulation used in Lemma 3.2 below for Turing machine
computbility. Details will be given elsewhere.

wn = w..- w (n factors in concatenation)
n = length(v). We use c to range over {O,1}.

where

E@w=w (CTJ) @ w = c(v @ w)
w a (cv) = w @ (w a v) W O E = €

2.2 Convergence

To formally state the convergence of a functional pro-
gram for some or for all input one needs to refer to
potentially non-terminating computations. An ap-
proach common in Proof Theory, and due to Kleene
[Kle52, Kle691, is to explicitly describe operational
convergence, in a formalism sufficiently rich to code
(Godelize) the operational machinery. In logics of pro-
grams one expresses convergence using modal opera-
tors (as in Dynamic Logic, see e.g. [PraSO]) or using
potentially non-denoting terms (see e.g. [Go182]).

We continue here the alternative approach of [Lei83,
LeiSO], where programs are considered not as defini-
tions of partial functions over the term-algebra A in
hand, but as definitions of total functions over any
structure whose vocabulary contains the generators
of A . The key connection between such structures
and convergence of programs over the intended term-
algebra is given by the following observation ELei83,
Leigo]. Fix a term algebra A. For a functional pro-
gram P (over A) let [PI be the conjunction of the
universal closures of the equations in P.

Theorem 2.1 Let P be a functional program with
principal function identifier f . The following condis-
tions are equivalent: (1) P converges (over A) for in-
p u t t‘ E A; (2) for every-model S of [PI, there is some
r E A such that S f(t) = r; (3) there is some r E A
such that for every model S of [PI S f(q = r.

The entailment relation
of the appropriate vocabulary.

refers here to all structures

2.3 Second-order statement of conver-
gence

We consider a second-order extension of first-order
logic with new variables ranging over relations, and
quantification over such variables. Let A be a free
term algebra. Writing A also for the predicate “is
E A” , we have

4

where CIA[&] is a formula stating that Q is closed
under the generators of A. For instance,

C1w[Q1 E d f Q(E) A VU (Q(u)*(Q(OU) A Q(lu)>>

From Theorem 2.1 we then conclude:

Theorem 2.2 Let P be a functional program with
principal function identifier f . P converges (over A)
for all input iff

[PI I= 4 5) + A(f(2c'))

Here arity(5) = arity(f), A(z1 . . . ~ k) abbreviates
A(z1)A. .AA(xk), and the relational quantifiers have
their standard interpretation.

2.4 Provable convergence

By Theorem 2.2 there is a natural, axiom-
independent, way of formulating in formalisms for
second-order logic the provable convergence of func-
tions.
Let L be a formalism for second (or higher) order logic.
We say that a function f over A is provable in L iff
it is computed by some functional program P (with
principal function identifier f) such that

[PI F L A(5) + A(f(5))

Given a collection C of formulas, let L2(C) be a
formalism for second-order logic with comprehen-
sion for formulas in C (for example, the natu-
ral deduction formalism of [Pra65]). The inter-
pretation in [Pra65] of second-order arithmetic in
second-order logic implies that the provable func-
tions (over N) of Lz(al1 second-order formulas) are
precisely the provably-recursive functions of second-
order arithmetic.6 In particular, from N (x) one gets
induction with respect to c for all formulas.
To obtain from N (z) induction for a first-order arith-
metic formula 'p we need comprehension for the inter-
pretation pl of p, which in general is not first-order,
because quantifiers in 'p are interpreted in p' as quan-
tifiers relativized to N . In [Leigob, Lei911 it is shown
that the provably recursive functions of first-order
arithmetic are precisely the provably recursive func-
tions of L2(strict-IIi), and that the primitive-recursive
functions are precisely the provably recursive functions
of L2(strict-II: without relational parameters).

simple method for dealing with Peano's third and fourth
axioms is given in [Leigo].

'A formula is strict-n: if it is of the form V&Z+, with 111
quantifier-free. In [Lei911 we gave an overview of the concept's
significance.

2.5 S-provable convergence

We shall refer here to a notion of provable convergence
formally weaker than the one defined above. Let S be
a structure in the vocabulary VA = {fo . . . f k } of A,
where arity(fi) = ri 2 0. We say that S is surjective if
its universe IS1 is covered by the range of the structure
functions and constants, i.e. if

s I= Suri.4

where

SurjA E d f V U v 3 W l ...vu,, U=fi(Vl ... Vu,i).

i = O ... k

For example

surjw = v u (u = € v 3v(u=Ow) v 3 v (u = l v))

The surjective structures include not only the free al-
gebra A itself, but also most natural examples of non-
standard models for the theory of A. For example,
the flat A domain is surjective because I = f (l , . . .)
for any non 0-ary f E VA (we assume that A is non-
trivial).
Since every term algebra A is surjective, Theorem 2.2
holds trivially when validity is restricted to validity in
surjective structures; i.e. P converges over A for all
input iff

[PI, SurjA + A(Z) --* A(f(2)).

Given a formalism L as above, we say that a function
f over A is s-provable in L iff it is computed by
some functional program P (with principal function
identifier f) such that

[PI, S~lrjA l - ~ A(2) * A(f(2)).

Every function provable in L is trivially s-provable in
L. The next theorem states that the converse holds
when L has enough comprehension. Let Q G 4.1 be
a formula with some single free variable E. If cp is a
second-order formula, its relativization to a, 'pQ, is ob-
tained by restricting first-order quantification to ele-
ments satisfying a, and restricting second-order quan-
tification to subsets of the the extension of a. I.e.,
pa is defined by recurrence on p as follows, where,
for k-ary Q, Q E Q abbreviates Vwl ... vkQ(i7) --t

Q [v ~] A . . . A IY[v~] .

'pa 3 d f (9 quantifier free)

(lp)" s d f l('p*)

('p * 4)" Gdf Vff * $* (* a binary connective)

5

Theorem 2.3 Suppose L has comprehension over a
class of formulas @ which contains the strict-ll; for-
mulas and is closed under relativization to strict-II;
formulas.8 Then every function s-provable in L is
provable in L.

Proof. By a straightforward induction on proofs one
proves that if L is a logic as above, and tL 'p, then tL
a[p] --+pa, where a[p] is the formula stating that every
free individual variable of 'p satisfies a , and every free
relational variable of 'p lies within CY (in the obvious
sense). Suppose

Then the previous observation implies

[PIA, VuA RA[U]~ k~ A[qA + A[f(i)lA.

Using strict-IIi comprehension it is fairly easy to prove
VuA R A [u] ~ and Vx A[z] H AA[x] . Since [PI --+ [PIA
trivially, we obtain

0

A formula is positive if it contains no negation or
implication. Let QF+ be the collection of positive
quantifier-free formulas. The main result of this work
is:

Theorem 2.4 A function over W is computable in
deterministic polynomial time iff it is s-provable in
Lz(QFt) .

3 Every P-Time function is s-provable

3.1 Provable correctness of the multi-
plicative string function

Lemma 3.1 The function 0 is provable in L2(QFt).

'For example, second-order logic with strict-II: comprehen-
sion (with relational parameters) is such a logic.

Proof. Let Po be the program above for 0. We
derive in Lz(QF+) the formula

[Po] A w(x, Y) + w(x 0 Y).

Assume [Po], W(z,y), and Clw[Q]. We need to de-
rive Q(z @ y). First, weshow

Q(z o z) -, Q(z @ (z 0 2)). (1)

Indeed, from the equations for 0, using Clw[Q], we
have Vu Q(u @ (z 0 z)) - Q(0u @ (x 0 2)) A Q(1. @
(z 0 z)) , and from Q(z 0 z) we get & (E @ (z 0 z)) .
By W(z), with comprehension for the atomic formula
Xu&(u@(z@z)) , the latter two formulas imply Q (t @

By the equations for 0, (1) implies
(x 0 2)) .

Q(Z o Z) + Q (x o 0%) A &(z @ 1%). (2)

Since t
assumed), we also have

E = E , and Q (E) is given (since Clw[Q] is

&(a: @ E) . (3)

By W(y), with comprehension for the atomic formula
X u Q(z o U) , (2) and (3) imply Q (x 0 y), concluding
the proof. 0

3.2 Simulation of P-Time Turing ma-
chines

It is well-known that virtually all usual models of com-
putation are polynomial-time reducible to each other.
We exhibit a reduction from Turing machines to func-
tional programs that yields provably converging pro-
grams from deterministic TM's.

We use a variant of TM's where transitions are repre-
sented by strings of the following forms:

SqoqlQB (in state s, if scanning 0, 1, or B, then
move to state q o , q1 , or Q B , respectively)

0 scs' (in state s, replace the scanned character by
c and move to state s')

0 sRs' (in state s, step head to the right and move
to state s')

SLS' (in state s, step head to the left, if possible,
and move to state s')

We also assume, without loss of generality, that M has
exactly one transition for every configuration (includ-
ing accepting and abortive configuration, which can

6

be made to cycle), and that it never reaches a config-
uration with B to the left of the scanning head. We
let the states of M be represented by strings in W .
Given a deterministic TM M , let T (w , ~)

~ ~ (w , t) =df the string from the scanned character
of M and on to the right, after It1 steps of M’s run
on input w. We define a functional program P (M)
for r M , as follows. P (M) computes T simultaneously
with functions e and h, where l (w , t) is the string to
the left of M’s head, and h (w , t) is the (binary-coded)
state of M , both after It1 steps of M’s run on input w.
The equations in P(M) are:

0 r(w,O) = w , t(w,O) = E , h(w,O) = the initial

0 T(w,Ot) = T (W , It) = r’(h(w,t),e(w,t),r(w,t)),

state of M ;

l(w,Ot) = l (w , It) = e’(h(w,t),e(w,t),T(W,t)),
h(w,Ot) = h(w, It) = h’(h(w,t),e(w,t),T(w,t));

0 for each transition q o q 1 q B of M the equations
T ‘ (S , U , v) = v ,

h’(s, U , O V) = q o ,

P(s, U , v) = U ,

h’(s, U , l v) = q1,

h’(s, U , €) = Q B ;

for each transition scs’ the equations
~ ’ (s , U , Ow) = r’(s, U , l v) = cv, ~ ‘ (s , U , E) = C E ,

P(s, U , v) = U , h’(s, U , v) = s’;

0 for each transition sRs’ the equations
r’(s, u,cv) = v , P(s , U , cv) = C U ,

r’(s, U , €) = E , P (s , U , E) = €;

h’(s, U , v) = s’,

0 for each transition SLS’ the equations
P ’ (S , C U , v) = cv,

r’(s, E , v) = ?I,

P(s, C U , v) = U ,

t ’ (S , E , v) = E .

h’(s, U , v) = s’,

Lemma 3.2 For every deterministic T M M as above,
P (M) is a coherent program, and M has a com-
putation of length n with input w and output w’
iff P (M) has a computation whose last equation is
r (w , O [”] E) = w’.

3.3 Provability of P-Time functions
Lemma 3.3 Let M and P (M) be as above. Then

[P(M)I , sur% F L a (Q F +)

Vt W(t) A Clw [Q] A Q(w)
.--) Q (w (w , t)) A Q(e(w,t>) A v h(w, t) = s

s a state of M

Proof sketch. The assumption W(t) permits to de-
duce the conclusion of the implication above by induc-
tion (with respect to U) for the positive quantifier-free
formula

Q (T M (~ , U)) A Q(e(w, U)) A v h(w, U) = S.

The basis and induction steps are straightforward, us-
0

a a state of M

ing [P (M)] , Q(w) and Sur&.

Theorem 3.4 Every function over W computable
in deterministic polynomial time is s-provable in
Lz(QF+).

Proof. Let M be a deterministic TM computing a
function f in time bounded by the k’th power of the
input’s size. Let PM be defined as above. From Lemma
3.3 it follows that r M is s-provable in Lz(QF+). By
Lemma 3.1 the function expk(w) =df w 0 0 w
(k factors) is provable in &(OF+). Since f(w) =
rM(w,expk(w)) is a composition of a provable func-
tion and a s-provable function, it is s-provable. 0

4 S-provable functions are P-Time

4.1 The structure of normal convergence
proofs

We use an analysis of normal derivations in the natural
deduction formalism for L2, as defined e.g. in [Pra65].
Most methods of extracting an algorithm from normal
proofs follow the following pattern: suppose II is a nor-
mal proof of a formula ‘p that states the convergence
of a function f for all input. Given a closed canonical
term t (i.e. a numeral for the case o f f over N), II can
be easily specialized to a proof IIt that f converges
on input t. By normalizing IIt one obtains a proof
from which the value of f(t) can be easily found. Thus
the function f is reducible, by an easy computation,
to the normalization procedure for the formalism in
hand. lo

This method cannot be used here, because the normal-
ization is not in P-Time, though each branch of the
normal proof can be computed independently in P-
Time. The procedure described below uses subderiv%
tions of the derivation II above directly, to obtain a
value for f (t). The method is equivalent to comput-
ing the branch of the normal form of IIt from which
that value would be extracted.

“Easy” means, in all such applications, “on line”.
“This method, for our formalisms Lz(C), is used in

[LeigO,Leigl].

7

Let P be a functional program, with principal function
letter f , which we assume unary (without loss of gen-
erality). Suppose 11 is a normal LZ(QF+)-derivation
of W(f(z)) from W(x), Sur& and [PI. We assume,
w.l.o.g., that II is without redundant parameters (see
[Pra65]). By normality, II has a subderivation 11’, de-
riving Q(f (.)) from [PI, Surjw, Cl w [QJ, and formulas
c l w [xi] ---$xi [x] for some x1 . . . X k E &F+ . The nor-
mality of II’ implies that each assumption Clw[xi]+
xi[c] is the premise of an elimination, and so II’ factors
into a normal derivation no, deriving Q(f(x)) from
[PI, Surjw, Clw[Q], and XI[$]. . . x k [x] , and normal
derivations C1. . . Ct, where Ci derives Cl[xj] from
[PI, S U ~ ~ W , Clw [Ql, and Some ~ j , , ~ . . . xj,, ,,, , ji,r # i.

4.2 Linear-time algorithm for a simple

To fix ideas, let us consider the simplest non-trivial
example, i.e. with k = 1. Then C1 has the following
normal subderivations:

case

We now sketch a linear-time algorithm for the function
f computed by program P. Given input w E W, say
w = 0016, we consider the root Q(f (w)) of IIo[w/z],
and decree f(w) as the first “labeled term.” We go
up in the derivation IIo[w/z], branching from a for-
mula p with labeled term t to a premise ~ that is not
an equation, and that contains a term s whose value
would determine the value o f t , with the term s then
becoming our new labeled term. It is not difficult to
see that this is always possible, and that the values of
successive labeled terms have lengths that differ by at
most 1. (The complete argument uses a tedious enu-
meration of cases.) This search either terminates with
the subformula Q(E) of Clw[Q], or with xl[w/z]. In
the first case we have obtained a value for f (w) (by
reconstructing the values of successive labeled terms).
In the second case, given that w = 0016, we repeat
the search process for the derivation C~[Olc/u, w/x],
starting with the derived formula x1 [0016/y]. Again,
we may either terminate with & (E) , or with xl[Olr/y].
Repeating again a search through C;[16/2:] we either
terminate or hit xl[le]. Next we perform a search
through ,’Z;[E/U], and finally a search through E:. In

all, we have performed 1 + IwI + 1 searches, each of a
fixed length independent of w.

4.3 Polynomial-time algorithms for s-

For a slightly more general example, consider the
case with k = 3, where C1 has xz and x 3

as assumptions, and Cz, CS have XI as assump-
tion. The process above can then be amended
to yield a quadratic-time algorithm for f , as fol-
lows. A search through C:[Ole/u, OOlc/z] might ter-
minate with xz[OOlc/v, Ole/u]. After three successive
passes through Ci[Olc/v, Ol~/u] , Ci[lc/v, 016/u], and
C5[016/u] we might reach the assumption xl[Olc/u]
(i.e. considering x1 again!). We then have to restart a
search through Cy[l6/u].

In general, if we have nesting up to depth p of the
k derivations C1 . . .En: (so p 4 k), the procedure de-
scribed above will terminate within time

provable functions

(IwI + 2)p x
x

(maximal height of I I o , E1 . . . Ck)
(the constant time needed

for search-steps)

(Details in the full paper.) We conclude:

Theorem 4.1 Every s-provable function (over W) of
L2(QF+) is computable in deterministic polynomial
time.

Hence, by Theorem 3.4, a function over W is in P-
Time iff it is s-provable in Lz(QF+).

This concludes the proof outline for our main Theorem
2.4.

5 Directions for future research

5.1 Refinements and delineations of the

1. The exclusion of quantifiers from strictly-
predicative comprehension is not quite convinc-
ing, since in the abstract setting considered here
nothing is assumed about the universe of dis-
course, so that the meaning of (non-relativized)
quantifiers may be viewed as being in fact in-
dependent of the scope of the universe. l1

This dilemma, of whether or not to accept as

main result

“The formula-as-type homomorphism of [Lei83,Lei90] also
shows that non-relativized quantifiers have no computational
content.

8

strictly predicative comprehension over positive
first-order comprehension, would have a most sat-
isfactory resolution if we could show that it does
not matter, i.e. that the s-provable functions of
the resulting formalism are all in P. In fact, it
seems that a refinement of the search algorithm
above would yield this result.

2. Are there P-Time functions that are not provable
(as opposed to s-provable) in L2(QF+)? We con-
jecture a positive answer. The numeric functions
provable in L(atomic) are exactly the extended
polynomials12: under the Curry-Howard isomor-
phism, amended as in [Lei83,Lei90], a natual de-
duction proof of L(atomic) of a function's totality
is mapped to a representation of that function in
the simply typed A-calculus, with input and out-
put of type 0. These functions are the extended
polynomials [Schw76,Sta79]. Conversely, the ex-
tended polynomials are all provable in L(atomic)
[Lei83]. We in fact conjecture that the numeric
functions provable in L(atomic) are again just the
extended polynomials.

3. Provable convergence can be conveyed in L2 in
other forms, and referring to other models of com-
putation (e.g. PROLOG programs). We conjecture

comprehension? We conjecture that both are ex-
actly the PR functions (using a detailed inspec-
tion of the proof in [Leigl]).

3. What are the provable functions of stratified
second-order logic with positive comprehension?

4. What are the (s-) provable functions of full type
theory with positive comprehension?

5.3 Feasible mat hematics
1. The main result here suggests that L(QF+) is a

natural formalism in which to develope Feasible
Mathematics.

2. The methods of this paper can be lifted to
higher types, with potential applications to fea-
sibility of functionals of higher type (compare
[CK90,TowSO]). In particular, what is the class of
type-2 functionals over W, computed by a systen
P of recurrence equations (with principal identi-
fier F), for which

[PI, SurjW t -L(QF+)

Vf (V Z (W (Z) + W (f (4)) + WF(f)),

and how does this class compare with other defi-
nitions of feasibility for type-2 functionals?

that the result of this paper is robust with respect
to most such variations.

4. Establish direct connections between the ap-
proach presented here and proof theoretic char-
acterizations of complexity classes that are based
on weak forms of induction, initiated by Sam Buss References
[Bus86]. Ber35 s u r le Platonisme dans les Mathdmataques,

L'Enseignement Mathematique 34 (1935).
English translation: On platonism in Mathe-
matics, in P. Benacerraf and H. Putnam (eds.),
Philosophy of Mathematics (second edition),

5.2 Characterizations of other complexity
classes by set-existence

1. The methods of this paper seem to establish that
the s-provable functions of L(first-order) are pre-
cisely the Kalmar-elementary ones. We conjuec-
ture, however, that the subtraction function is not

Cambridge -University Press, 1983, 258-271.

Bus86 Samuel BUSS, Bounded Arithmetic, Bib-

'

liopolis, Naples, 1986.
provable in L(first-order), and that consequently

first-order c~mprehension. '~
provablity is still weaker than s-provability for CK90 and Bruce KaPron, Character-

izations of the basic feasible functionals of finite
t w e , in Samuel Buss & Philip Scott (eds.), Fea- . ,.

2. What aye the (s-) provable functions of with pos-
itive strict-II; comprehension? with positive II;

12These are the functions defined by composition from addi-

sible Mathematics, Perspectives in Computer
Science, Birkhauser-Boston, New York (1990) 71-
95.

CKS81 Asliok Chandra, Dexter Kozen and Larry
Stockmeyer, Alternation, Journal of the ACM

tion, multiplication, and defined by cases

ence between provability and s-provability disappears for finitely
I3In addition to Theorem 2.3, we also know that the differ-

stratified second-order logic, by the methods of [LeiSla]. 28 (1981), 114-133.

9

Cob65 A. Cobham, The intrinsic computational dif-
ficulty of functions, in Y. Bar-Hillel (ed.), Pro-
ceedings of the International Conference on
Logic, Methodology, and Philosophy of Sci-
ence, North-Holland, Amsterdam (1962) 24-30.

Dan56 D. van Danzig, Is lO'(10'10) a finite num-
ber?, Dialectica 19 (1956) 273-277.

Gan89 Robin Gandy, Totally finite interpretations of
first-order arithmetic (second draft), Manuscript,
June 1989.

Go182 Robert Goldblatt, Axiomatising the Logic
of Computer Programming, Springer-Verlag
(LNCS # 130), Berlin (1982).

GS86 Yuri Gurevich and Saharon Shelah, Fixed-
point extensions of first-order logic, Annals of
Pure and Applied Logic 32 (1986) 265-280.

GSS89 Jean-Yves Girard, Andre Scedrov and Philip
Scott, Bounded Linear Logic: A modular ap-
proach to polynomial time computability (Ex-
tended Abstract), in Samuel Buss & Philip Scott
(eds.), Feasible Mathematics, Perspectives in
Computer Science, Birkhauser-Boston, New York
(1990) 195-207.

Gur83 Yuri Gurevich, Algebras of feasible functions,
Twenty Fourth Symposium on Foundations
of Computer Science, IEEE Computer Society
Press, 1983, 210-214.

Gur87 Yuri Gurevich, Logic and the challenge of
Computer Science, in Current Trends in The-
oretical Computer Science, (Egon Borger, ed-
itor), Computer Science Press, 1987.

Is191 David Isles, What evidence is there that
2-65596 is a natural number?, submitted for pub-
lication, January 1991.

Imm86 Neil Immerman, Relational queries com-
putable in polynomial time, Information and
Control 68 (1986) 86-104. Preliminary report
in Fourteenth ACM Symposium on Theory
of Computing (1982) 147-152.

I"87 Neil Immerman, Languages which capture
complexity classes, SIAM Journal of Comput-
ing 16 (1987) 760-778.

Kle52 S.C. Kleene, Introduction to Metamathe-
matics , Wolters-Noordhof, Groningen, 1952.

Kle69 S.C. Kleene, Formalized Recursive Functions
and Formulized Realizability, Memoirs of the
AMS 89, American Mathematical Society, Prov-
idence, 1969.

Kre61 Georg Kreisel, Set theoretic problems sug-
gested b y the notion of potential totality, in In-
finitistic Methods (Proceedings of the Sympe
sium on Foundations of Mathematics, Warsaw,
1959), Pergamon Press, New York, pp. 103-140.

KreG2 Georg Kreisel, Foundations of intuitionistic
logic, in Nagel, Suppes & Tarski (eds.), Logic,
Methodology, and the Philosophy of Sci-
ence, Stanford University Press, Stanford (1962)
198-2 10.

Lei83 Daniel Leivant, Reasoning about functional
programs and complexity classes associated with
type disciplines, Twenty-fourth Annual Sym-
posium on Foundations of Computer Sci-
ence (1983) 460-469.

Lei90 Daniel Leivant, Contracting proofs to pro-
grams, in P. Odifreddi (editor) Logic and Com-
puter Science, Academic Press, London, 1990,
279-327.

Lei9Oa Daniel Leivant, Inductive definitions over f i -
nite structures, Information and Computa-
tion 89 (1990) 95-108.

Lei9Ob Daniel Leivant, Computationally based set
existence principles, in W. Sieg (ed.), Logic
and Computation, Contemporary Mathemat-
ics, volume 106, American Mathematical Society,
Providence, R.I., 1990, pp. 197-211.

Lei91 Daniel Leivant, Semantic characterization of
number theories, in Yiannis Moschovakis (ed.),
Logic from Computer Science, Springer-
Verlag, Berlin, 1991 (expected).

LeiSla Daniel Leivant, Finitely Stratified polymor-
phism, to appear in Information and Compu-
tation, 1991.

Ne186 Edward Nelson, Predicative Arithmetic,
Princeton University Press, Princeton, 1986.

Pap85 Christos Papadimitriou, A note on the expres-
sive power of PROLOG, Bull. EATCS 26 (June
1985) 21-23.

PraG5 Dag Prawitz, Natural Deduction, Almqvist
and Wiskel, Uppsala, 1965.

10

Sa280 Vladimir Sazonov, Polynomial computability
and recursivity in finite domains, Electronische
Informationsverarbeitung und Kybernetik
7 (1980) 319-323.

Schw76 Helmut Schwichtenberg, Definierbare Funk-
tionen am Lambda-Kalkul mat %pen, Archiv
Logik Grundlagenforsch. 17 (1976) 113-114.

Sta79 Richard Statman, The typed A-calculus is not
elementary recursive, Theoretical Computer
Science 9 (1979) 73-81.

Tow90 Michael Towsend, Complexity of type 2 rela-
tions, Notre Dame Journal of Formal logic
31 (1990) 241-262.

Var82 Moshe Vardi, Complexity and relational query
languages, Fourteenth ACM Symposium on
Theory of Computing (1982) 137-146.

Yes70 A.S. Yessenin-Volpin, The ultra-intuitionistic
criticism and the anti-traditional program for
foundations of mathematics, in Kino, Myhill
&Vesley (eds.), Intuitionism and Proof The-
ory, North-Holland, Amsterdam (1970) 3-46.

11

