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Abstract  

A function over {0,1}* is in P-Time Zfl it is com- 
puted b y  a program which can be proved correct in 
second-order logic with set-existence (comprehension) 
restricted to positive quantifier-free formulas. This 
set-existence principle captures formally the view of 
infinite totalities as evolving, not completed, entities. 

1 Introduct ion 

1.1 Feasibility and P-Time 

Feasible computing has been identified for long with 
computability within deterministic polynomial time, 
primarily on practical and circumstantial grounds: P- 
Time functions are easily defined and computed, and 
are closed under many natural operations; and most 
known worst-case lower-bounds are either bounded by 
polynomials of small degrees, which are clearly fea- 
sible, or are at least exponential, and clearly non- 
feasible. The central importance of P-Time has been 
contested as of late, notably because feasible proba- 
bilistic classes might subsume P-Time in their practi- 
cal significance, and because bounds such as nloglogn 
are more feasible in practice than say n1Oo0. At the 
same time, the fundamental nature of P-Time has 
been reaffirmed repeatedly by various characteriza- 
tions and stability results. For example, relations 
computable in P-Time over enumerated finite struc- 
tures are the same as the ones computable by re- 
cursion equations [Saz8O1Gur83] or by pure uninter- 
preted logic programs [Pap851 , or by alternating multi- 
head automata [CKS81,Gur87]; they are also the same 
as the relations defined by positive first-order fix- 
points [Var82,Imm86], or by first-order inflationary 
fixpoints [GS86,Lei90a] , or by alternating transitive- 
closure [Imm87]. The P-Time functions over N have, 
among others, characterizations in terms of a subre- 
cursive schema [CobG5], provability in a weak system 
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for arithmetic [Bus86], and typability in a bounded 
version of linear logic [GSS89]. 
These characterizations testify to the significance of 
P-Time, but they all seem to lack a principle directly 
pertinent to feasibility, one that would justify the iden- 
tification of P-Time with feasible computing. Our aim 
here is to propose such a principle. 

1.2 The ontology of numeric terms 

Computational feasibility is closely related to the on- 
tology of numeric terms. As soon as non-feasible func- 
tions are named, they take a life of their own, and on- 
tologically problematic natural numbers become eas- 

ily nameable, such as 3 n 5 =df 33 . In particu- 
lar, once exponentiation is admitted, then very short 
terms exist whose numeric values exceeds not only hu- 
man imagination, but also possible realization in the 
physical world: 3 n 5 could not be spelled out as a 
decimal numeral even by quark-size computers filling 
up the observable universe and working concurrently 
since the big bang at a speed that exceeds the liniita- 
tions of quantum mechanics. 
The abyss between the value and the notation-size 
of such terms has been addressed by a number of 
mathematicians and philosophers, including Bernays 
[Ber35], van Danzig [Dan5G] , Yessenin-Volpin [yes701 , 
Isles [Is191], and Nelson [Ne186]. Gandy [Gan89] con- 
cludes that “very large numbers are abstract not con- 
crete (not potentially concrete) objects: they are more 
akin to infinite sets than to concretely presented num- 
bers.” 

3J3 

1.3 Predicativity and potential infinities 

Basic infinite sets, such as the set N of the natural 
numbers or the first inaccessible cardinal, are concep- 
tualized as being generated by a process. To be ad- 
mitted as legitimate, we must assume that some “uni- 
verse” exists within which that process can be applied 
“indefinitely”. Similarly, our belief that 3 5 denotes 
a natural numbers is based on the conviction that the 
calculation of that term will be completed eventually. 
Of course, we can support that conviction with a proof 
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by induction, but, as we shall see, for that proof to 
make sense we must admit that infinite sets exist as 
complete totalities. 

Less than a century ago, the legitimacy of infinite sets 
as completed totalities was not as universally taken for 
granted as it is today, under the influence of Cantorian 
set theory. Hilbert had hoped to shelter Mathemat- 
ics from the potential dangers of actual infinities by 
reducing it to its finitistic fragment. An important 
aspect of Brouwer’s intuitionistic foundations is the 
insistence that infinite totalities are only unbounded 
constructions: “The natural numbers, though treated, 
constitute only a potential totality in constructive 
mathematics” [KreGl] . 
Recall that a definition of a set X is impredicative 
if it refers to a collection of which X is an element. 
Uncontrolled impredicativity leads to contradictions, 
as in Russell’s Paradox. However, impredicative defi- 
nitions abound in Mathematical Analysis, where real 
numbers (i.e. subsets of N or functions over N, de- 
pending on the representation) are defined in terms of 
quantification over all reals. We normally expect no 
contradiction to arise, because we implicitly assume 
that the power set of N, PN, is given as a completed 
totality prior to the definition of any particular mem- 
bers there0f.l In predicative systems of analysis2 one 
refrains from assuming the power set of N as given, 
albeit N is assumed as a completed totality. This im- 
plies that a subset of N cannot be defined in terms 
of quantification over P N ,  and circular definitions are 
thereby excluded. 

An argument raised by Nelson [1986] is that the defini- 
tions of N are also circular: the generative (inductive) 
definition, as a set constructed by repeated application 
of the successor function, presupposes an understand- 
ing of N itself (specifically when Induction is proposed 
as the formal justification of the process). The defi- 
nition of N as the intersection of all sets containing 
0 and closed under successor presupposes that such a 
set exists, and moreover uses a blatantly impredicative 
quantification over sets.3 

Impredicative definitions of this form are captured by the 
Subset (Separation) axiom schema of Zermelo’s Set Theory. 

2Predicative Analysis goes back to Bore1 and the semi- 
intuitionists of the turn of the century, and has been revived 
by Kreisel, Fefennan, Wang, Schiittee, and many others. 

3Shoenfield and Wang (in conversation with Kreisel, re- 
ported in [KreGl, fn. 11) have made the interesting dud ob- 
servation that if the generative justification of N were to be 
taken as “predicative”, then one should also accept as predica- 
tive the set w of all well-founded countably-branching trees, 
which is complete-ll: and not “predicative” in the sense of be- 
ing hyperarithmetical. 

Nelson point is, then, that the culprit in generating 
ontologically dubious terms is the impredicative justi- 
fication of the set N, and therefore the impredicativity 
of proof by Induction. Nelson observes that induction 
presupposes that N is given as a completed totality, 
and so using induction to  justify that the values of 
certain terms are in N is an impredicative argument. 
He goes on to develop a system of Predicative Arith- 
metic, in which exponentiation is not provably correct. 
A problem with Nelson’s development is that no clear 
cut rationale is given for admitting addition and multi- 
plication, but not exponentiation, as primitives. Isles 
[1991] brings out the impredicative nature of the proof 
that the exponentiation function is well defined, but 
he too does not provide a foundational delination of 
feasibility. 

1.4 Strictly Predicative Comprehension 
Levels of impredicativity can be precisely calibrated by 
comprehension (set existence) principles, i.e. the ad- 
mittance as legitimate of sets {z E N I ’p} for certain 
formulas p. Much progress has been made in the last 
decade in calibrating the strength of formalisms for 
second-order arithmetic with weak forms of compre- 
hension (notably by H. Friedman, Mints, Sieg, Simp- 
son, and Smith). However, all formalisms considered 
are built on top of Primitive Recursive Arithmetic, 
so these studies are of no help in delineating the im- 
predicativity involved in the primitive recursive (PR) 
functions, let alone in smaller classes. 
A framework for calibrating the impredicativity of 
sub-PR functions was proposed in [Lei83, LeiSO], with 
second-order logic used in place of second-order arith- 
metic. Contrary to weak systems for second-order 
arithmetic, the set of natural numbers is here not as- 
sumed as a completed totality. The method does not 
depend on any choice of basic numeric functions (such 
as addition and multiplication) or of axioms for them, 
and is therefore suitable for calibrating the logical na- 
ture of “small” functions. Moreover, it  applies as eas- 
ily to any term algebra as to N. 
Consider now the question of what instances of com- 
prehension can be justified on strictly predicative 
grounds. Since the existence of infinite sets as com- 
pleted totality cannot be so justified, we must stip- 
ulate that relational variables range over finite or 
potentially-infinite sets, i.e. sets that are “coming into 
being”. Over a given structure we use comprehen- 
sion to delineate new sets that are finite or potentially 
infinite, from the structure functions and relations, 
and from relational variables which denote already- 
defined finite or potentially infinite sets. Specifically, 
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if R is_a relational variable, and t‘ areJerms (where 
a r i t y ( t )  = ari ty(R)) ,  we admit {x I R(t)}. We must 
also admit finite unions and intersections of admitted 
sets. However, we can not admit the complement of an 
admitted set S ,  since this is tantamount to accepting 
S as an actual infinity, for which non-members can be 
identified. Also, the use of quantifiers is suspect, be- 
cause they refer to exhaustive inspection of the struc- 
ture universe. We are thus led to accept, on strictly 
predicative grounds, comprehension over exactly the 
positive quantifier-free formulas (Le. without negation 
or implication). 

The main result of this paper states that the com- 
putable functions justified on the basis of positive 
quantifier-free comprehension are precisely the func- 
tions computable in deterministic polynomial time. 
This shows that the class P-Time arises naturally from 
a foundational analysis of feasibility, and that terms 
using exponentiation can be justified as meaningful 
only under the admission of infinite sets as completed 
totalities. Specific terms, such as 3 .tr 5, have their 
own complete computation as direct justification, but 
since no such computation can ever be exhibited, such 
terms can be feasibly justified only via the general jus- 
tification of exponentiation, i.e. via implicit reference 
to completed infinite sets. 

2 Functional programs 

2.1 Herbrand-Godel programs 

Our canonical computation model is functional pro- 
grams, in the Herbrand-Godel style (See [Ne521 
or [Lei901 App. 1 for expositions). The original 
Herbrand-Godel definition is for RI, the free term alge- 
bra generated from a constant 0 and a unary function 
s. We use such programs over arbitrary free algebras, 
in particular the term algebra generated from a con- 
stant E and unary functions 0 and 1, i.e. simply the 
set W = {0,1}* (e.g. the word 011 is identified with 
the term 0116 = O ( l ( l ( ~ ) ) ) ) .  We can assume, without 
loss of generality, that functional programs are coher- 
ent, i.e. that they define a partial function, and not a 
multiple-valued f ~ n c t i o n . ~  

For example, the following program (over W )  com- 
putes the function a, which on input v,w returns 

We comment on this in the list of research directions below. 
5Kleene [1952] showed this for numeric functions. A proof for 

the general case can be obtained either by generalizing Kleene’s 
proof for a computation model with fixpoint, or by generalizing 
the simulation used in Lemma 3.2 below for Turing machine 
computbility. Details will be given elsewhere. 

wn = w..- w ( n  factors in concatenation) 
n = length(v). We use c to range over {O,1}. 

where 

E@w=w (CTJ) @ w = c(v @ w) 
w a (cv) = w @ (w a v) W O E = €  

2.2 Convergence 

To formally state the convergence of a functional pro- 
gram for some or for all input one needs to refer to 
potentially non-terminating computations. An ap- 
proach common in Proof Theory, and due to Kleene 
[Kle52, Kle691, is to explicitly describe operational 
convergence, in a formalism sufficiently rich to code 
(Godelize) the operational machinery. In logics of pro- 
grams one expresses convergence using modal opera- 
tors (as in Dynamic Logic, see e.g. [PraSO]) or using 
potentially non-denoting terms (see e.g. [Go182]). 

We continue here the alternative approach of [Lei83, 
LeiSO], where programs are considered not as defini- 
tions of partial functions over the term-algebra A in 
hand, but as definitions of total functions over any 
structure whose vocabulary contains the generators 
of A .  The key connection between such structures 
and convergence of programs over the intended term- 
algebra is given by the following observation ELei83, 
Leigo]. Fix a term algebra A.  For a functional pro- 
gram P (over A )  let [PI be the conjunction of the 
universal closures of the equations in P. 

Theorem 2.1 Let P be a functional program with 
principal function identifier f .  The following condis- 
tions are equivalent: (1) P converges (over A )  for in- 
p u t  t‘ E A; (2) for every-model S of [PI, there is some 
r E A such that S f(t) = r; (3) there is some r E A 
such that for every model S of [PI S f(q = r. 

The entailment relation 
of the appropriate vocabulary. 

refers here to all structures 

2.3 Second-order statement of conver- 
gence 

We consider a second-order extension of first-order 
logic with new variables ranging over relations, and 
quantification over such variables. Let A be a free 
term algebra. Writing A also for the predicate “is 
E A” , we have 
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where CIA[&] is a formula stating that Q is closed 
under the generators of A. For instance, 

C1w[Q1 E d f  Q(E) A VU (Q(u)*(Q(OU) A Q(lu)>> 

From Theorem 2.1 we then conclude: 

Theorem 2.2 Let P be a functional program with 
principal function identifier f .  P converges (over A) 
for all input iff 

[PI I= 4 5 )  + A(f(2c')) 

Here arity(5) = arity(f), A(z1 . . . ~ k )  abbreviates 
A(z1)A. .AA(xk), and the relational quantifiers have 
their standard interpretation. 

2.4 Provable convergence 

By Theorem 2.2 there is a natural, axiom- 
independent, way of formulating in formalisms for 
second-order logic the provable convergence of func- 
tions. 
Let L be a formalism for second (or higher) order logic. 
We say that a function f over A is provable in L iff 
it is computed by some functional program P (with 
principal function identifier f )  such that 

[PI F L  A(5) + A(f(5)) 

Given a collection C of formulas, let L2(C) be a 
formalism for second-order logic with comprehen- 
sion for formulas in C (for example, the natu- 
ral deduction formalism of [Pra65]). The inter- 
pretation in [Pra65] of second-order arithmetic in 
second-order logic implies that the provable func- 
tions (over N) of Lz(al1 second-order formulas) are 
precisely the provably-recursive functions of second- 
order arithmetic.6 In particular, from N ( x )  one gets 
induction with respect to c for all formulas. 
To obtain from N ( z )  induction for a first-order arith- 
metic formula 'p we need comprehension for the inter- 
pretation pl of p, which in general is not first-order, 
because quantifiers in 'p are interpreted in p' as quan- 
tifiers relativized to N .  In [Leigob, Lei911 it is shown 
that the provably recursive functions of first-order 
arithmetic are precisely the provably recursive func- 
tions of L2(strict-IIi), and that the primitive-recursive 
functions are precisely the provably recursive functions 
of L2(strict-II: without relational parameters). 

simple method for dealing with Peano's third and fourth 
axioms is given in [Leigo]. 

'A formula is strict-n: if it is of the form V&Z+, with 111 
quantifier-free. In [Lei911 we gave an overview of the concept's 
significance. 

2.5 S-provable convergence 

We shall refer here to a notion of provable convergence 
formally weaker than the one defined above. Let S be 
a structure in the vocabulary VA = {fo . . . f k }  of A, 
where arity(fi) = ri 2 0. We say that S is surjective if 
its universe IS1 is covered by the range of the structure 
functions and constants, i.e. if 

s I= Suri.4 

where 

SurjA E d f  V U  v 3 W l  ...vu,, U=fi(Vl ... Vu,i). 

i = O  ... k 

For example 

surjw = v u ( u = €  v 3v(u=Ow) v 3 v ( u = l v ) )  

The surjective structures include not only the free al- 
gebra A itself, but also most natural examples of non- 
standard models for the theory of A. For example, 
the flat A domain is surjective because I = f ( l ,  . . .) 
for any non 0-ary f E VA (we assume that A is non- 
trivial). 
Since every term algebra A is surjective, Theorem 2.2 
holds trivially when validity is restricted to  validity in 
surjective structures; i.e. P converges over A for all 
input iff 

[PI, SurjA + A(Z) --* A(f(2)). 

Given a formalism L as above, we say that a function 
f over A is s-provable in L iff it  is computed by 
some functional program P (with principal function 
identifier f )  such that 

[PI, S~lrjA l - ~  A(2) * A(f(2)). 

Every function provable in L is trivially s-provable in 
L. The next theorem states that the converse holds 
when L has enough comprehension. Let Q G 4.1 be 
a formula with some single free variable E. If cp is a 
second-order formula, its relativization to a, 'pQ, is ob- 
tained by restricting first-order quantification to ele- 
ments satisfying a, and restricting second-order quan- 
tification to subsets of the the extension of a. I.e., 
pa is defined by recurrence on p as follows, where, 
for k-ary Q, Q E Q abbreviates Vwl ... vkQ(i7) --t 

Q [ v ~ ]  A .  . . A IY[v~] .  

'pa 3 d f  (9 quantifier free) 

(lp)" s d f  l('p*) 

('p * 4)" Gdf Vff * $* (* a binary connective) 
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Theorem 2.3 Suppose L has comprehension over a 
class of formulas @ which contains the strict-ll; for- 
mulas and is closed under relativization to strict-II; 
formulas.8 Then every function s-provable in L is 
provable in L.  

Proof. By a straightforward induction on proofs one 
proves that if L is a logic as above, and tL 'p, then tL 
a[p] --+pa, where a[p]  is the formula stating that every 
free individual variable of 'p satisfies a ,  and every free 
relational variable of 'p lies within CY (in the obvious 
sense). Suppose 

Then the previous observation implies 

[PIA, VuA RA[U]~  k~ A[qA + A[f(i)lA. 

Using strict-IIi comprehension it is fairly easy to prove 
VuA R A [ u ] ~  and Vx A[z] H AA[x] .  Since [PI --+ [PIA 
trivially, we obtain 

0 

A formula is positive if it contains no negation or 
implication. Let QF+ be the collection of positive 
quantifier-free formulas. The main result of this work 
is: 

Theorem 2.4 A function over W is computable in 
deterministic polynomial time iff it  is s-provable in 
Lz(QFt) .  

3 Every P-Time function is s-provable 

3.1 Provable correctness of the multi- 
plicative string function 

Lemma 3.1 The function 0 is provable in L2(QFt).  

'For example, second-order logic with strict-II: comprehen- 
sion (with relational parameters) is such a logic. 

Proof. Let Po be the program above for 0. We 
derive in Lz(QF+) the formula 

[Po] A w(x,  Y) + w(x  0 Y). 

Assume [Po], W(z,y), and Clw[Q]. We need to de- 
rive Q(z @ y). First, weshow 

Q(z o z )  -, Q(z @ (z 0 2)). (1) 

Indeed, from the equations for 0, using Clw[Q], we 
have Vu Q(u @ (z 0 z ) )  - Q(0u @ (x 0 2 ) )  A Q(1. @ 
(z 0 z ) ) ,  and from Q(z 0 z )  we get & ( E  @ (z 0 z ) ) .  
By W(z), with comprehension for the atomic formula 
Xu&(u@(z@z)) ,  the latter two formulas imply Q ( t @  

By the equations for 0, (1) implies 
(x 0 2 ) ) .  

Q(Z o Z )  + Q ( x  o 0%) A &(z @ 1%). (2) 

Since t 
assumed), we also have 

E = E ,  and Q ( E )  is given (since Clw[Q] is 

&(a: @ E ) .  (3) 

By W(y), with comprehension for the atomic formula 
X u  Q(z o U ) ,  (2) and (3) imply Q ( x  0 y), concluding 
the proof. 0 

3.2 Simulation of P-Time Turing ma- 
chines 

It is well-known that virtually all usual models of com- 
putation are polynomial-time reducible to each other. 
We exhibit a reduction from Turing machines to func- 
tional programs that yields provably converging pro- 
grams from deterministic TM's. 

We use a variant of TM's where transitions are repre- 
sented by strings of the following forms: 

SqoqlQB (in state s, if scanning 0, 1, or B,  then 
move to state q o ,  q1 ,  or Q B ,  respectively) 

0 scs' (in state s, replace the scanned character by 
c and move to state s') 

0 sRs' (in state s, step head to the right and move 
to state s') 

SLS' (in state s, step head to the left, if possible, 
and move to state s') 

We also assume, without loss of generality, that M has 
exactly one transition for every configuration (includ- 
ing accepting and abortive configuration, which can 
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be made to cycle), and that it never reaches a config- 
uration with B to the left of the scanning head. We 
let the states of M be represented by strings in W .  
Given a deterministic TM M ,  let T ( w , ~ )  

~ ~ ( w , t )  =df the string from the scanned character 
of M and on to the right, after It1 steps of M’s run 
on input w. We define a functional program P ( M )  
for r M ,  as follows. P ( M )  computes T simultaneously 
with functions e and h,  where l ( w , t )  is the string to 
the left of M’s head, and h ( w , t )  is the (binary-coded) 
state of M ,  both after It1 steps of M’s run on input w. 
The equations in P( M )  are: 

0 r(w,O) = w ,  t(w,O) = E ,  h(w,O) = the initial 

0 T(w,Ot) = T ( W ,  It) = r’(h(w,t),e(w,t),r(w,t)), 

state of M ;  

l(w,Ot) = l ( w ,  It) = e’(h(w,t),e(w,t),T(W,t)), 
h(w,Ot) = h(w,  It) = h’(h(w,t),e(w,t),T(w,t)); 

0 for each transition q o q 1 q B  of M the equations 
T ‘ ( S ,  U ,  v) = v ,  

h’(s, U , O V )  = q o ,  

P(s, U ,  v)  = U ,  

h’(s, U ,  l v )  = q1, 

h’(s, U , € )  = Q B ;  

for each transition scs’ the equations 
~ ’ ( s ,  U ,  Ow) = r’(s, U ,  l v )  = cv,  ~ ‘ ( s ,  U ,  E )  = C E ,  

P(s, U ,  v)  = U ,  h’(s, U ,  v)  = s’; 

0 for each transition sRs’ the equations 
r’(s, u,cv)  = v ,  P(s ,  U ,  cv )  = C U ,  

r’(s, U , € )  = E ,  P (s ,  U ,  E )  = €; 

h’(s, U ,  v) = s’, 

0 for each transition SLS’ the equations 
P ’ ( S ,  C U ,  v)  = cv,  

r’(s, E ,  v) = ?I, 

P(s, C U ,  v) = U ,  

t ’ ( S ,  E ,  v) = E .  

h’(s, U ,  v) = s’, 

Lemma 3.2 For every deterministic T M  M as above, 
P ( M )  is a coherent program, and M has a com- 
putation of length n with input w and output w’ 
iff P ( M )  has  a computation whose last equation is 
r (w ,  O [ ” ] E )  = w’. 

3.3 Provability of P-Time functions 
Lemma 3.3 Let M and P ( M )  be as above. Then 

[P(M)I ,  sur% F L a ( Q F + )  

Vt W(t )  A Clw [Q] A Q(w)  
.--) Q ( w ( w , t ) )  A Q(e(w,t>) A v h(w,  t )  = s 

s a state of M 

Proof sketch. The assumption W(t )  permits to de- 
duce the conclusion of the implication above by induc- 
tion (with respect to U )  for the positive quantifier-free 
formula 

Q ( T M ( ~ ,  U ) )  A Q(e(w, U ) )  A v h(w, U) = S. 

The basis and induction steps are straightforward, us- 
0 

a a state of M 

ing [ P ( M ) ] ,  Q(w)  and Sur&. 

Theorem 3.4 Every function over W computable 
in deterministic polynomial time is s-provable in 
Lz(QF+). 

Proof. Let M be a deterministic TM computing a 
function f in time bounded by the k’th power of the 
input’s size. Let PM be defined as above. From Lemma 
3.3 it follows that r M  is s-provable in Lz(QF+). By 
Lemma 3.1 the function expk(w) =df w 0 0 w 
(k factors) is provable in &(OF+). Since f(w) = 
rM(w,expk(w)) is a composition of a provable func- 
tion and a s-provable function, it is s-provable. 0 

4 S-provable functions are P-Time 

4.1 The structure of normal convergence 
proofs 

We use an analysis of normal derivations in the natural 
deduction formalism for L2, as defined e.g. in [Pra65]. 
Most methods of extracting an algorithm from normal 
proofs follow the following pattern: suppose II is a nor- 
mal proof of a formula ‘p that  states the convergence 
of a function f for all input. Given a closed canonical 
term t (i.e. a numeral for the case o f f  over N), II can 
be easily specialized to a proof IIt that f converges 
on input t. By normalizing IIt one obtains a proof 
from which the value of f(t) can be easily found. Thus 
the function f is reducible, by an easy computation, 
to the normalization procedure for the formalism in 
hand. lo 

This method cannot be used here, because the normal- 
ization is not in P-Time, though each branch of the 
normal proof can be computed independently in P- 
Time. The procedure described below uses subderiv% 
tions of the derivation II above directly, to obtain a 
value for f (t). The method is equivalent to comput- 
ing the branch of the normal form of IIt from which 
that value would be extracted. 

“Easy” means, in all such applications, “on line”. 
“This method, for our formalisms Lz(C), is used in 

[LeigO,Leigl]. 
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Let P be a functional program, with principal function 
letter f ,  which we assume unary (without loss of gen- 
erality). Suppose 11 is a normal LZ(QF+)-derivation 
of W(f(z)) from W(x), Sur& and [PI. We assume, 
w.l.o.g., that II is without redundant parameters (see 
[Pra65]). By normality, II has a subderivation 11’, de- 
riving Q(f (.)) from [PI, Surjw, Cl w [QJ, and formulas 
c l w  [xi] ---$xi [x] for some x1 . . . X k  E &F+ . The nor- 
mality of II’ implies that each assumption Clw[xi]+ 
xi[c] is the premise of an elimination, and so II’ factors 
into a normal derivation no, deriving Q(f(x)) from 
[PI, Surjw, Clw[Q], and XI[$]. . . x k [ x ] ,  and normal 
derivations C1. . . Ct, where Ci derives Cl[xj] from 
[PI, S U ~ ~ W ,  Clw [Ql, and Some ~ j , , ~  . . . xj,, ,,, , ji,r # i. 

4.2 Linear-time algorithm for a simple 

To fix ideas, let us consider the simplest non-trivial 
example, i.e. with k = 1. Then C1 has the following 
normal subderivations: 

case 

We now sketch a linear-time algorithm for the function 
f computed by program P. Given input w E W, say 
w = 0016, we consider the root Q( f (w)) of IIo[w/z], 
and decree f(w) as the first “labeled term.” We go 
up in the derivation IIo[w/z], branching from a for- 
mula p with labeled term t to a premise ~ that is not 
an equation, and that contains a term s whose value 
would determine the value o f t ,  with the term s then 
becoming our new labeled term. It is not difficult to 
see that this is always possible, and that the values of 
successive labeled terms have lengths that differ by at 
most 1. (The complete argument uses a tedious enu- 
meration of cases.) This search either terminates with 
the subformula Q(E) of Clw[Q], or with xl[w/z]. In 
the first case we have obtained a value for f (w)  (by 
reconstructing the values of successive labeled terms). 
In the second case, given that w = 0016, we repeat 
the search process for the derivation C~[Olc/u, w/x], 
starting with the derived formula x1 [0016/y]. Again, 
we may either terminate with & ( E ) ,  or with xl[Olr/y]. 
Repeating again a search through C;[16/2:] we either 
terminate or hit xl[le]. Next we perform a search 
through ,’Z;[E/U], and finally a search through E:. In 

all, we have performed 1 + IwI + 1 searches, each of a 
fixed length independent of w. 

4.3 Polynomial-time algorithms for s- 

For a slightly more general example, consider the 
case with k = 3, where C1 has xz and x 3  

as assumptions, and Cz, CS have XI  as assump- 
tion. The process above can then be amended 
to yield a quadratic-time algorithm for f ,  as fol- 
lows. A search through C:[Ole/u, OOlc/z] might ter- 
minate with xz[OOlc/v, Ole/u]. After three successive 
passes through Ci[Olc/v, Ol~/u] ,  Ci[lc/v, 016/u], and 
C5[016/u] we might reach the assumption xl[Olc/u] 
(i.e. considering x1 again!). We then have to restart a 
search through Cy[l6/u]. 

In general, if we have nesting up to depth p of the 
k derivations C1 . . .En: (so p 4 k), the procedure de- 
scribed above will terminate within time 

provable functions 

(IwI + 2)p x 
x 

( maximal height of I I o ,  E1 . . . Ck)  
( the constant time needed 

for search-steps ) 

(Details in the full paper.) We conclude: 

Theorem 4.1 Every s-provable function (over W )  of 
L2(QF+) is computable in deterministic polynomial 
time. 

Hence, by Theorem 3.4, a function over W is in P- 
Time iff it is s-provable in Lz(QF+). 

This concludes the proof outline for our main Theorem 
2.4. 

5 Directions for future research 

5.1 Refinements and delineations of the 

1. The exclusion of quantifiers from strictly- 
predicative comprehension is not quite convinc- 
ing, since in the abstract setting considered here 
nothing is assumed about the universe of dis- 
course, so that the meaning of (non-relativized) 
quantifiers may be viewed as being in fact in- 
dependent of the scope of the universe. l1 

This dilemma, of whether or not to accept as 

main result 

“The formula-as-type homomorphism of [Lei83,Lei90] also 
shows that non-relativized quantifiers have no computational 
content. 
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strictly predicative comprehension over positive 
first-order comprehension, would have a most sat- 
isfactory resolution if we could show that it does 
not matter, i.e. that the s-provable functions of 
the resulting formalism are all in P. In fact, it 
seems that a refinement of the search algorithm 
above would yield this result. 

2. Are there P-Time functions that are not provable 
(as opposed to s-provable) in L2(QF+)? We con- 
jecture a positive answer. The numeric functions 
provable in L(atomic) are exactly the extended 
polynomials12: under the Curry-Howard isomor- 
phism, amended as in [Lei83,Lei90], a natual de- 
duction proof of L(atomic) of a function's totality 
is mapped to a representation of that function in 
the simply typed A-calculus, with input and out- 
put of type 0. These functions are the extended 
polynomials [Schw76,Sta79]. Conversely, the ex- 
tended polynomials are all provable in L(atomic) 
[Lei83]. We in fact conjecture that the numeric 
functions provable in L(atomic) are again just the 
extended polynomials. 

3. Provable convergence can be conveyed in L2 in 
other forms, and referring to other models of com- 
putation (e.g. PROLOG programs). We conjecture 

comprehension? We conjecture that both are ex- 
actly the PR functions (using a detailed inspec- 
tion of the proof in [Leigl]). 

3. What are the provable functions of stratified 
second-order logic with positive comprehension? 

4. What are the (s-) provable functions of full type 
theory with positive comprehension? 

5.3 Feasible mat hematics 
1. The main result here suggests that L(QF+) is a 

natural formalism in which to develope Feasible 
Mathematics. 

2. The methods of this paper can be lifted to 
higher types, with potential applications to fea- 
sibility of functionals of higher type (compare 
[CK90,TowSO]). In particular, what is the class of 
type-2 functionals over W, computed by a systen 
P of recurrence equations (with principal identi- 
fier F), for which 

[PI, SurjW t -L(QF+)  

Vf ( V Z ( W ( Z )  + W ( f ( 4 )  ) + WF(f)),  

and how does this class compare with other defi- 
nitions of feasibility for type-2 functionals? 

that the result of this paper is robust with respect 
to most such variations. 

4. Establish direct connections between the ap- 
proach presented here and proof theoretic char- 
acterizations of complexity classes that are based 
on weak forms of induction, initiated by Sam Buss References 
[Bus86]. Ber35 s u r  le Platonisme dans les Mathdmataques, 

L'Enseignement Mathematique 34 (1935). 
English translation: On platonism in Mathe- 
matics, in P. Benacerraf and H. Putnam (eds.), 
Philosophy of Mathematics (second edition), 

5.2 Characterizations of other complexity 
classes by set-existence 

1. The methods of this paper seem to establish that 
the s-provable functions of L(first-order) are pre- 
cisely the Kalmar-elementary ones. We conjuec- 
ture, however, that the subtraction function is not 

Cambridge -University Press, 1983, 258-271. 

Bus86 Samuel BUSS, Bounded Arithmetic, Bib- 

' 

liopolis, Naples, 1986. 
provable in L(first-order), and that consequently 

first-order c~mprehension. '~ 
provablity is still weaker than s-provability for CK90 and Bruce KaPron, Character- 

izations of the basic feasible functionals of finite 
t w e ,  in Samuel Buss & Philip Scott (eds.), Fea- . ,. 

2. What aye the (s-) provable functions of with pos- 
itive strict-II; comprehension? with positive II; 

12These are the functions defined by composition from addi- 

sible Mathematics, Perspectives in Computer 
Science, Birkhauser-Boston, New York (1990) 71- 
95. 

CKS81 Asliok Chandra, Dexter Kozen and Larry 
Stockmeyer, Alternation, Journal of the ACM 

tion, multiplication, and defined by cases 

ence between provability and s-provability disappears for finitely 
I3In addition to Theorem 2.3, we also know that the differ- 

stratified second-order logic, by the methods of [LeiSla]. 28 (1981), 114-133. 
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