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INTRODUCTION

The content of the present thesis is roughly this: The category.of
camplete categories is monadic over the category CAT of categories,

This means that there is a monad on CAT so that the "Universal re-
soluti?n“ category for the monad, as constructed by Eilenberg and Moore
("the category of algebras over the monad") is the category of complete
categories ana limit preserving functors, In fact, there will be a whole
family of monads, one for each suitable category of indexcategories, "Com-
plete" is then understood relative to this family, For instance, the family
of finite discrete indexcategories gives rise to the monad for finite pro-
ducts, |

To state the main result in a more precise way, we must define what we
mean by "the" category of complete categories, 02. We are:only dealing with
one sided completeness, and for convenience, it is right completeness, First,
it is clear from the set up that we do not want 0{ to be a subcategory
of CAT, but that we will consider the objects of R ag_categories equipped

with some further étrugture, namely a choice of colimits, Consequently, the

morphisms of R will be functors which preserve the chosen colimits on

the nose, From this again follows that we must distinguish carefully between
the notions of isomorphiec and equal objects in a category, and between the
notions of equivalent and isemorphic categories,

Actually, we have not been able to prove the result with such a [liber-
4;ﬂ.definition'af OZ. We have rather éonsidered a subcategory'qonsisﬁing‘
‘of categories, where the chosen f@@lmmgtisfyvmmeﬁeqngtimm Eha. obe’ |
o i 1 R o |
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jects in this subcategory are called regular colimit algebras. The equa-:

tions imposed are roughly speaking associativity equations; they hold true
up to isomorphism in any category with some choice of colimits, One such
equation is

(A+B)4C = A+(B+C),

'+' denoting binary sum, i,e, colimit over the discrete category with two
objects,

A great deal of the work consists in defining the notion of associ-
ative and regular associative colimits on a category. We feel that this
notion is a very natural one, and that one should try to make colimits
associative whenever possible; We have done that for some important cate-
gories; in fact, the crucial point of the whole work is the comstruction
of associative (infinitary) sums on a suitable category 8 of sets, since
these sums are used in defining the notion of associativity of colimits in
general, Here it clearly shows up that equivalent categories are not equally
good: the skeletal category of sets cannot be equipped with associative
sums, But & can,

In the concluding Chapter III, we exhibit some further examples of
categories with associative colimits. -For an arbitrary ring, a certain
category equivalent to tthe category of all modules over it has a natural
regular colimit structure, The dua:!. qf 8 has a regular colimit struc-
ture for finite indexcategories, i,e. % itself has associative finite
inverse limits, Also we show that & has the property that the tensor-
product of modules in 8 is strictly associative, |

The content of Chapter I is the construction of & and its colimits s

and the definition of some suxiliary monads, called prelimit monads, on
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CAT, These in turn are used to define the notion of associative colimits.
Chapter II contains the main construction: the colimit monads, and an ana-
lysis of their algebras, It is also shown that a colimit monad to a cate-
gory assigns "the' free right complete category on it, in a certain wéak

sense,

Notation and conventions,

The main notational obstacle is that we have to deal partly with com-
position of'morphisms in a category, partly with evaluation of a function
on an element in its domain, As a principle, we use 'f.g' for the first
(in diagrammatic order), and '(x)f' for the second, In practice, we have
used concatenation for both if it causes not too much confusior,

The hom sets of a category A are denoted d¢(A,A') or hom(A,A'),

When colimit formation appears as a functor, we have often written
it on the left of its argument,

\ %gg;(R).

This holds in particular for the sign | for sums:
meEM Xm )
The morphisms constituting a colimit diagram are denoted ineclpy, D an
object in the indexcategory, In particular, we have
incl '
X ___l._,> Il X .
o meM n

If this is in a category of sets, and x € Xm’ then ('x)inclm is denoted x.

We sometimes use Kronecker d 3 ~5(isY) is 0 if x 4 y, else it

is the ordinal number 1,

SAARIE. T
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If A is an element of a set /A, a unique mapping 1—3A s
defined having A as image, That mapping is denoted € K This will apply
also if A is an object of a category /A . We use the numeral 1 to de-

note the ordinal number One, i.e. O , where 0 is the empty set, Simi-

larly for all other numerals,




CHAPTER I

THE CATEGORY & AND THE PRELIMIT MONADS

1, Categories and @7-categpries,

We shall work in a set theory with universes, To be specific, let
us agree that we have a model of Zermelo - Fraenkel set theory with axiom
of choice, in which there are two sets U, V, satisfying U € V and being
standard transitive models for ZF+AC (see e.g, Cohen [l]); The two sets/
are fixed throughout; one further assumption about them will be made below,
Let us recall brisfly the set theoretical notions of well ordered

set and ordinal number, They will play a fundamental role in what follows,

A totally ordered set is well ordered if every nonempty subset has a first

element with respect to the ordering, An order type is an order isomorphism

class of well ordered sets, "order isomorphism" having the obvious meaning,
A set X € U which is well ordered by € (interpreted as <), and

which satisfies Y€ X =» Y&X is by the classical definition of von

Neumann called an ordinal number in U, There is precisely one ordinal

number of U in each order type represented in U ((1], p.61), A cardi-
nal number is an ordinal number which, as a set, is isomorphic to no small-
er ordinal number.

We have to agree on a meaning for the word "category," Not all defi-
nitions suit our'purposes. We use a definition where the hom sets are not
disjoint, but form a family of sets bi-indexed by the set of objects, This

means that the composition is a tri-indexed family of functions

COmP (4 B,G)

hom(A,B) x hom(B,C) hom(A,C) .

5



UThett composition will be denoted by juxtaposition or by a dot; it only
makes sense if it cannot be miéﬁhderstood which composition mapping is ap-
plied.

The concept "functor" is defined accordingly; a function Al =@l
called the object mapping and a bi-indexed set of functions called the |
hom set mappings,

The category U-Ens of U -sets is defined in the usual way, having
as object set U, and hom(X,Y) the set of functions from X to Y (a
fonction being a subset of X xY), We shall assume that ouch a function
is also a member of U, A similar assumption is made for V, These assump-

tions are special cases of the general

ASSUMPTION; If X ¢ U, 'l-;hen“the a.bSolﬁte power set of X is also

a member of U, Similarly for V.,

__ DEFINITION 1,1, Let 8 denote the full subcategory of the category
of U -sets determined by the ordinal numbers in U,

_DEFINITION 1,2, Call a category A an @ ~category if |Al is an

ordinal number in U, and each AA(4,A') is an ordinal number in U,

Note that we do not require the composition functions to preserve

any ordering

DEFINITION 1.5, Let CATWi denote the category of categories .5
with oAl € Wy and each oH(A,A!) € Wy, and all functors in between,

The definition will apply to the cases where Wy = U or V., It
will also apply to the case Wy = (@], i.e, the set of ordinal numbers

P S . B .
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in U, Let us agree not to write the W; in this case,aand also in this

case replace the letters CAT by the letters Cat, So Catw consists of

categories o] with |JHl € W and each hom set an ordinal number in U
' W
( A is then called a local 0 - ategory). Similarly, Cat  consists of

categories Jb with |V an ordinal mumber in U and with hom sets in W,
Finally, Cat is the category of 0 ~categories (Definition 1,2).

It is obvious that 8 is equivalent to the category of U -sets;

U
U.

ive subcategories, A reflection functor c is gotien by putting a well

and that Cat 1is equivalent to CAT.. In both cases, they sit as reflex-
ordering on each set in U, and reflecting it to the ordinal of the same
order type. The reflection isomorphism is then take to be the unique order

preserving set isomorphism, Similarly, one gets a reflection
U C
CATU > Cat

by well ordering the object set and the hom sets of each category.

Definition 1,3 is not made entirely precise, A precise definition
0
1 1
the set of ordered triples (X,Y,Z), where X € W;, ¥ is a function from

W
in terms of set theory would require |CATy to be described as, say,

X xX to WO

defining the family of composition mappings, In particular, [Catl could

(the family of hom sets), Z is a function from X x X % X

be described precisely as a set in such a way, Similarly, each hom set
Cat (A , B )} could be described as a single set, Using some such precise

description will give

U
Cat € CATV .



2, Sums and Grothendieck constructions,

By the well known completeness of U-Ens, for any I ~indexed family

(I € U) of objects Ni in U-Ens, one may choose a sum diagram in U-Ens

incl;
L
N. > || V. viel.
. 1
1 €1

Even in the skeletal category of sets, the sum diagram can be chosen in
many ways (even though the sum object itself cannot), The same is true
of Eg. If we, however, restrict ourselves to index sets I which are them-
selves objects in 55, there is a canonical choice of sum diagrams, It
is the well known ordinal sum fcrmation of ordinal numbers.

The construction of ordinal sum may be phrased in set theoretic terms
as follows, Let Nj (i € T€|8Il) be the I -indexed family of ordinals

in U, Let 2 be the set
a = (&l ieranen ).
Then the lexicographic ordering
i, L GE',n™) & (1<it) v (i = i' A n<n')

is a well ordering; therefore, there is a unique ordinal (which we shall

write _LIE N; ) with the property that it is order isomorphic to A.
ie

Let

A A— _LL Ny
ield

be the unique order isomorphism. It is clear that ,ll N; € 1,
i€ I
For each i € I, there is a function

t. ¢ N, —> 4,
1 1
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namely the one whi¢h sends n € Ni to (i,n)ézk. Obviously t; is one -
to - one, and A is the disjoint union of the images of the t;'s, Since
& is one - to - one, onto, the same is true of the ti.o('s. So the mor-

phisms in 8

b, .0
incl, : N,—— 1| w;
* iel

constitute -“'i ¢ I Ni as the categorical sum of the Nifs in 8 . Ob-
viously, _|_|_i ¢ 1 Ni is just the ordinal sum of the N,'s, One easily
sees that each '11'1c1:,L maps onto an interval {tl x,$t< xl} in
U o1 M.

The sums chosen in ®  will have nice properties; in fact, they will
endow ® with a certain algebraic structure, to be defined in Section 7,
For the moment, let us just notice that the sums have the following three

properties

(2.1) 1

N

(2.2) JJ_ N = W
1

; I L/ .
(2 5> Lm n N m Mn Lm)
U = |

m €

it
=

il

neN
(N, ¥ s and L. ordinals in U,) Henceforth, _.LI. denotes the chosen sums
in 3 only,

Having the sum structure _“_ in S at our disposal, we can also
get a canonical form for a well known construction, due to Grothendieck
[5], namely the construction which (speaking informally) to a functor from
a small category D into the category of small categories assigns a small

opp :
category fibered over D , and another one opfibered over D.



lo
Formally, let D be an @ -category (i.e. DD € Icat] ), and let

R
D —————> Cat

be a functor, Define an {/ ~category R'f: as follows:

set of objects : .l-L IDR| ;

D e IDI
hom(Xp,X'p,) = “_LL,_ (D'R)((X)(dR),X') ;
' d e D)(D D')

composition : let x ¢ ﬁp(XD,X‘D,), X' € EF(X‘D,,X”D”), where d:D--»D!

and d!:D!--3D'* are morphisms in B . Put

= (((x)(@R)).x") H

Xge*'gn d,d!

units : put Iy equal to (Iy) .
D 1

Also, define a functor Rt : ﬁri —>D by
(XD)ﬁ’t = D,
(xd)Rt = d,

It is well known ([5]) that (no matter how you chose sums in © ), ?tm/»
is indeed a category, and Rt is indeed a functor -~ even a split opfibra-
tion with the following opcleavage: to XD and d:D—>D' assign (Ixgp)g-

(We use the terminology of [L]).

Again, no matter how sums are ¢hosen, the construction is natural,

ise, can be extendedd to a functor

P

ECat,Q,G t] == Cat;

we define it on morphisms h ' in *19% €cat)




as follows, The functor hF is given .by

Iy ~» (Shp)py » X eloil,

%y ""“d”‘%‘X'Ds ~> @bp)pg 2 = @by g

where d: D -»D'; and x: X dR —»X', so that
(x)hy,, ¢ X d&hy, = (Ehy)dHP —>X'hy,

In the next section we shall, however, define a monad, depending on
the special way the Grothendieck construction was chosen here,

Note that if 1D is discrete (i.e., is an ordinal), and R has dis-
¢érete categories as values, we get the set - sum |

R’F = _U_Dﬁ'g

Delp

3, Subcategories of Cat stable under the Grothendieck comstruction.

A subcategory Cat, ¢ Cat (full or not) may happen to be stable un-
der the Grothendieck construction F, t in the sense that if D¢ ICatO\ 5
and R : D —Cat factors through Cat_, then ﬁ‘tr and Et 213:[‘7 ey 1)
are themselves in Cat,. For reasons that will become clear, we state the

following

DEFINITION 5.1, A subcategory Cat, < Gat which is stable under the

b

[
RSN
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Grothendieck construction F, t in the sense éxplained above will be said

to admit a prelimit calculus,

One might also call such a subcategory regular, since it is defined
by a closedness property analogous to (and generalizing) that of regular
cardinals, as is seen in Proposition 3,2 below,

The following are useful examples:

(1) 8 ¢ cat (the category of (J-sets, Definition 1.1);

(i1) (& ¢ Cat, the category of preordered O-sets, i.e, the full subcate-
gory of Cat determined by those /A where A(K,AY) equals O Cor) 1
for all A, A' ¢ |Al; |

(iii) Cat

pip © Cat, the category of 0 -categories A with Al and A(a,AY)

finite for all A, A' ¢ |A) |
(iv) the category of () -monoids, i.e, () -categories /A with Al = 1,
The listed subcategories of Cat are ali of the type,descr-i‘bed in

the following obvious

PROPOSITION 3.2, Let € and '.x/ be regular cardinals'.' Then the full

subcategory of Cat determined by those ZA with
lAl< €,
NAAY) < B for all A "# A' ¢[A),
ALAAY) < max('A,Z) for all A e |Al
admits a calculus of prelimits,

If Y denotes the cardinality of U, the four examples listed corre —

-




13 ’
spond to (E’,rk) = (V,1), (V,2), (f{b,}Qd), (2,1)), respectively.
A subcategory of Cat admitting a calculus of prelimits is not nec-
essarily of this form; let us.exhibip two examples: '
(v) the category of 67 -grupoids, i,.e, 67 -categories with all morphisms
invertible,
(vi) the category of well ordered 67 -sets; the well ordering of such a

set A is not assumed to be related to the well ordering A has qua

W -set,

i, Commacategories and categories of diagrams,

Here we recall Lawvere's definition of commacategories and fix our
conventions for them, We also define certain extended commacategories,
related to Bénabou's cylindercategories,

Recall {8] that if F, G are functors with common codomain

' P G
(k1) A s®<— 6

then the commacategory (F,G) has as set of objects the set of triples

(8,5,0) with A€ M, c€ 6], and b :aF—3ce in (3. The hom set

(F,G)((A,b,C),(A',b',C')) is the set of such pairs (a,c) so that
a G (ﬂ(A’A'), ¢ e {(09C')3

and so that the diagram
v (a)F
AFP ———2 A'F

fl ]

commutes,

i
f‘ 5
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Composition in (F,G) is obvious,

The only commacategories we shall use are _those where ﬂ or g is
the category 1, If J is 1, F in (4,1) is determined by an object
BelBl, so F = €5, and the commacategory consequently denoted (€ ,6).
The objects of this category we give a special notation; we write

b .
B—>C¢ for (0,b,C).
If ¢ is a full inclusion, we leave out the underbar of C, If 161 is
well ordered and each hom set of B is well orderéd, we can well order

'( € 7 G )‘ by the obviocus isomorphism
(gl = AL diee ;
Celo|

we also use (GB ,G) | to denote the éategory obtainéd by replacing I( EB,G) ‘
by the correspondiﬁg ordinal number, | -

Turning back to the general case, zwe shall write (e£,0) inétead of
(F,a), provided F is a full inclusion of categories (in particular, if
F is an identity functor).

In the case where B is "the category of categories, or any ot.hér
category with a  2-dimensional structure, one can throw in mére morphisms
by letting morphisms be non - commutative -diagrams (L,2) but with a speci-
fied f!'2£»«§éi1“ (in the category case: functortransformation) from ’ohqa -count~
erclockwise composite to the other, (Or one could do the duai thlngo j

Doing this in the special case where & is GA‘-I‘Z , ¢t a subcategory

e ¥ .
Cat_ of MTV, and 6 is 1 leads to the following definition,

r
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v ..
DEFINITIQN b1, Iet Me chTv| . Then the category of Cat, -diagrams

over M, denoted (Catg, G,m] , is the category having objéct set
lcaty, €4, )] = |(Catg, €m)| .

A morphism

R 2 - P
(D—>m) 2(E M)

v
is a diagram in CA.TV

S
g Ry,
52l

2
=>
R _ P

m

i.e, & functor A : D-E and ‘a transformation of functors . R—A—-) AP .

It is obvious how to compose morphisms:

This definition is well known, In the next section we show that if

Cat, admits a calculus of prelimits
WM ~>  [Cat €]

is an endofunctor on CATg that carries the structure of a monad,

'+ monads.

We use the Grothendieck construction (in the specific form given in
Section 2) to produce a monad T ,17,}x on GATYT . We produce not just one
monad, but rather one monad for each subcategory Cat, € Cat admitting
a calculus of prelimits, Throughout this section, Gato is a fixed such

subcategory, . o
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DEFINITION 5.1, Let of € ICATyL Define ()T to be the category

' ) Vv
If F: A4—>®B is a functor between categories in CAT , define (F)T

to be the functor "composing with F",

v
Clearly, T thus defined is an endofunctor on CA‘I‘V° There is an obvi-
ous transformation do from the functor T to the functor with constant

value Cato, given by
2
(d )y : [Cat , €g] —2—scCat, ,

where 'ao is the usual "taking domain" functor, It will be convenient

to use the following convention: If F:ﬂ\—~)[0ato,§ﬂ]A is a functor,

denote the composite functor

Alnz—-;[cu €q] L
o “Yos T4

> Caty
by Fo

i
DEFINITION 5.2, Let o € ICAT |, Define a functor

Yt _cﬂ —> AT
by i}
(1—€-L>J})
(), =
and
(A @ > Al) = 1 Il 1
5&:1-‘?%/6}3
oA

'e£a]‘ being the obvious transformstion, .

h e
4 .
&
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Recall the Grothendieck construction F\ of Section 2.
v
DEFINITION 5.3, Let A ¢ ICAT, |, Define a functor

By : AT — > AT

R 2
as follows, ILet [D——> AT be an object in AT . Put Rpy equal to

(ﬁ)‘u, and put R P equal to the functor

e = @F —1>d

given on objects by
(Fp) (R pg) = (RNR,
where '

X, € (ﬁ)p = . ZLlil]“)..].IDFEI«,

and on morphisms by sending x4 3 XD—-:)X'D, (where d : D—>»D' and
x ¢ (X)(dE)~—>X1) to |

@), (x)(D1R)
(X)(DR) ————=-> (X)(&R) (D'R) > (X*)(DR) ,

On morphisms, ]u(ﬂ is given as follows, A morphism A : R—>R!, i;e;

a triangle

' [Caty, €4l

goes by P to the triangle




where b‘;hﬂ- and (P\)r)w_ are given by (i) and (ii), respectively:

i) ) Pa = Ar"i is the functor given on objects by

Xy ~ (X)), » X R

and on morphisms by

~» (X 2p)py, > (X' Apr)pry »
where d s D—3D', x 3 X dR—>X' in D'R , and therefore
e - (x)Ap1
(X) Ap(dIE7) = (X)(dR) Ay, —>X'"Apr ;
(i1) (9\)!*(/;‘ is the transformation given by
(Aplx —
((2)}1(/1))(]) = (X)DR e3> (X) Ap (DIR')

It is st,raighti‘oi'ward to check that # A and M, are functors, like-

wise that they are natural in HAe ICATgI , S0 that
2
/IZ : IGATgf:}T and P T =T
are transformations between the indicated functors,

THEOREM 5.4, The T,#, u from Definitions 5,1, 5,2, and 5,3, respec~
.94'] » 9 9

tively, form a monad on GATV.

'FROOF, We are required to prove that for Jg e ICAT&I .arbitrary, we
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have the following equalities of functors:

(5.1) Tgr g = M7 o py = Iy

(5.2) Par  Pa = (fdT - Pa o

For each of the three equations, it suffices to prove that the two functors
involved agree on objects, and then to produce a natural transformation
¢ between the functors with each ch the appropriate identity morphism,

The fact that
(5’.5) l/‘?(ﬂT -I“Jt,‘ = IIJ-T'

follows immediately from the definition and from the particuia‘;r choice

of suns in & making (2,2) hold, Also, the obvious transformation

4
M ar « P > Ty s
(which can of course be constructed for any choice of sums) has here
% = 1 e lul).
Next

(S;'h) [y )z opyl = T 4ol

For, given an object R : ID—3dl in AT, we have
(R)(AMT) : D—> [Caty,€,] = AT

given by

D M(l—e-]—)—-éfﬁ); (d : D—D') ~ €y .

Now it follows easily from the definition of B and from (2.1) that (5,4)

holds, And again, there is no trouble in constructing a natural ¢ with L

T ,‘ . - .‘ ! . » ¢
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P, = I toral Reldhl.

One might briefly recapitulate the arguments so far by saying: The
unit laws for the monad T,/", ,» come from the unit laws (2,1) and (2,2)
of the sum formation in S . As one would expect then, the associativity
law of the monad (5,2) is derived from associativity of sums in 8 , 1.8,
equation (2,3). - The proof of (5,2) is just as complicated as straight-
forward, We commence by giving a list of where the different elements oc-
curring in the proof belong. (Strictly speaking, since we do not work with
disjoint sets, elements do not belong in unique places, One should rather
say, then, that the list tells us which composition mapping we apply to

an element and its neighbor on the paper,

Address list,

R
D —> [Cat,€ ooy, ed,]] €l |

d
D ——> D' , a morphism in D

X € |DR|

X' € ID'RI

x : (X) (d)F —>X' , a morphism in D'R
Y ¢ IXIR |

Y € IX'D'RI

v ¢ (1) (F)g(x)D'R —>Y' , a morphism in (X')D'R,

(R)Mr
With this (R)F AT > [Cat, € dl] is by definition descri-

bed as follows: (R) P Jr -
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object set = _LL IDR
(5.5) D ¢ |l

hom(Xp), X'D') = i c ﬁ_llj,_l_n') (D'R)(X &R, X') ,

with Rr AT given by

Xy ~ (X)IR
(5.6)

(dR)y _ (x)(D'R)
Xq A (X)DR = (X)dR D'R » (X*)D'R .

Thus Rf‘dﬂ‘ : RF&T —> cat, 1is given by

Xp ™ (X)DR
(5.7)
TaR)x (x)D'R

x, ~ (X)IR ———-} (X) df D'R ——> (X")D'R.

d
Applying M, to (R)‘A AT (given in (5,6)) gives by definition of o

functor (R)NT Pa:
WP = Gt Pa —

Applying the definition of F to (5,7) describes then R r AT /; n as the

following () -cate gory:

( object set = _|_.|_ \(x )R‘u(/,T I

bty Yo,

| [ (Gt T (Xxg Bpgg)s 1)
%q & R gp(&p,X'p1)




22

Using (5.5) and (5,7), this may be written as

-
object set = l | [(x)DR |

X, € _LL IDR |

D € IDI

x, € _.LL_ (D'R) (XdR, X')

d € O(b,D')

(5.8) < hom(YXD, Y'X'D') -

((x")DR)(Y &y (x)(D'R), T') .

\\
It is equipped with a functor erlT Ma to J;, which (using (5.,6)) is

L~ (D) Epyg)) = (D)
Yey A

((xg) R gy

(Y)((XD)(RFJ&T)) > (Y)((xd)(Rf“nT))((XD)RW!T)——)

() Rpge)
DU P (xo)((xrp,) (Bpagy))

(5.9)

((R)y)y _ _
= (1)((X)R) 5 (Y@ ) (X dF)DR) —>

((x)(D'R)) jo\ (52
* (D)(dRyg) 4 ((v) @) ((x)DR((X1)D'R) —»

(y)((X*)(D'R))

Y )((X')D'R)

On the other hand (R)( r J‘_)T is the composite functor

R Fu
(5,10) D — [Cato, €_[Ca~to, ed),]] —_— [Cat "dl]

Taking the value of Ndl on this gives a functor to JIF from the catego-

ry (R, F (0) fl . According to the definitions}, this category has
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object set = _.LL I(DR) F‘”I
(5.11) D ¢ DI

hom(z,, 2'y,) = ; e'lf(lﬁlﬁ") ((D'R)F(‘)(ZD dR iy Z'h) s

and again using the definition of F ) in terms of F , and taking Zp,

Z'D' to be (YX)D, (Y'X‘)D' , respectively, (5.,11) becomes equal to the

category
robject set = _LL H JXDR |
D ¢ipl X € DR
(502)  {mem((xpp, pdp) = L GRRNE Fy)pggs 1y0)

d ¢ O(D,D')

- Al (e & @O, .
d e ﬂ)(D,D') x € (D'R)(X dr, X)

.
Also, My applied to (5,10) gives by definition the following functor
from (5,11) to (ﬂ

Zy A (2)((R) B

((aR) py); _
zg ~a (2)((TR) py) >(2) (@R ) (DR ) —>

(2)((D'R) pp)

> (2)((D'R) g
If 2 = YX, z = 7, this is easily seen to be

(L), ~Ax (D(X)DR)

((aR)y)y — _
(5.13) (7,04 ~ (DX)DR) ———=-=—> (T diy) ((XdR)D'R) —>

((=)D'R) (v (5 (¥)((X!)DR)
(DR oy &, ((x)DE)X'DIR) 5 (1) (X'D'R)
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Now no matter how sums were chosen, one would get a functor CPR from
(R) (given by (5.8)) to (R)( 4 ,)Th, by sending to (Yl
borr fa A f’T Py %, %)

y_ . to (3,)4 5 and using (5.9) and (5,12) one immediately gets
d

Pp o @I pT fg = (R)}/«(ﬂT ot -

Clearly, @R is an isomorphism in [Cato, 602] . But using the associativi-
ty of sums in & (equation (2.3)), one immediately gets that (pR is

the identity of (R) F a1 Pg T ®)( m)T ("“ in [Cat , ed’]. But thg exxist—-
ence of a natural transformation P whose instances are equalities implies

that the Qomatn and Godomakn of § are equal functors,

The following proposition is easily seen to hold; it just says some-

thing about the size of hom sets in [Cat.o,é(ﬁ] .

PROPOSITION 5.5. The momad T on CAT.

v defines by restriction a

‘ U
monad (also called T) on CATV.

Recall [3] that a monad T, m on a category g defines a catego-
e 2z |

Ty 6T with objects pairs (C,§) (Ce |6], E: CT—>C) such that
ET ;3 = Mg ;3 and 4, ,g = I, end with
(D, E)s (6, ) € €6, 8)

namely those g : C-—>C' which satisfy gT ,5’ = E . £ » Beck and

Lawvere used the term algebras over T for the objects of éT 3 E they

called the structure of the algebra; the g's are called homomorphisms,

-Using this terminology, we state

DEFINITION 5,6, An algebra for the monad T, 75 4 is called & ore~ -

. 4
ot
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limit algebra (with respect to Cato). A homomorphism for the monad is

called a prelimit homomorphism,

6, The 7T§‘ ~-functor,

Recall that a quotient object q of an object B in a category

is an equivalence class of epimorphisms with domain B, the equivalence
relation being
e el
B————>X ~ B —> X!
iff there exists an isomorphism j : X—>X' with e , J = e',
We shall say that a family E of epimorphisms in (B form a (full)

choice of quotient objects if

¢ E for all B¢ |R],

(1) I,
(ii) E is stable under composition
(iii) in each quotient object, there is at most (precisely) one ele-

ment from E,
(If the hom sets of (B are not disjoint, the definition must be modified
in an obvious way).

In the category & there is a canonical full choice 0e of quo=-

.

tient objects:

o p | ‘
DEFINITION 6,1, If A——>B is an epimorphism in &, i,e, an

onto map between ordinal numbers, we take f ¢ @e iff the féllowing
‘holds:

b < bt in B & min(f"l(b)) < min(f"l(b')) in A,

If this holds, we shall élso says £ gives B the quotient well ordering.
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Defining  (full) choice of subobjects in a category as the notion

dual to (full) choice of quotient objects, we also have a canonical choice

(@), of subobjects in &,

DEFINITION 6,2, If
f.
A——>B

is a monomorphism in € , i.e, a 1-1 map of ordinal numbers, we take

fe Om iff f is orderpreserving.

The chaices (J . and Qn’ together with all identity maps of U-Ens,
form a (non-full) choice of quotient- and subobjects in U-Ens,

It is well known that the category of sets is a reflective subcatego~
ry of the category of categories (as well as a coreflective one), We‘axl'e.
going to construct a specific reflection functor I, : Cad;‘J -8 for'u
the specific categories CatU and 8 |

Recall that a connected component of a category c# is a subclass

¢ ¢ |J¥] such that any two objects A, A' in the subclass can be commect-

ed by a finite string of morphisms in J4 with alternating direction
A ~—3B) ¢ Bp -—3Bz & - - - B =it

and so that C is maximal with respect to this property, Then |/ is

the disjoint union of its comnnected components,

U
Now let /A € |cat |. The set of connected components of ZA deter-
mines a quotient object of |/Al, and since |ple S|, there is a unique

@ , -chosen quotient, denoted

Al =2 (PO,
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The map p ™ can uniquely be extended to a Afunc‘bor [A——&f‘——-) (A)jro i
(i : the inclusion functor of discrete 0 -categories into GatU),, Fi-
nadlly there is a unique way of extending JT, : lcatl| —> I€| to a func~
tor

T, ¢ cat) — &,

in such a way that the % 's form a natural transformation
o o2 e
We shall usuélly write {A} for ‘(A)plA , Ae¢ |A|, The restriction of
TCO to Cat will also be denoted 7T,. |
In the next section we shall as a main lemma need the following re-
sult establishing a connection between the monad T, ﬂ7, /UL of Section L

and the 7T just defined, By composing with the obvious isomorphism
[Cat,€49] = Cat

the functors Jl, : Cat —>& and i : &-—>Cat give functors

[Cat, e 1] «%w—m‘m S

IEVMMA 6,3, The following diagram of functors commutes

iy

[Cat, € gat, e 1)] > [Cat, €]

UL, 1)T l T,

[Cat, €[cat, ¢ 1] ->[Cat, €, ] —g> 8
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PROOF, We shall produce a natural transformation & from the clock=-
wise composite functor to the counterclockwise composite; $ will turn

out to be the identity, Let R be an object in the upper left category,
i.e.,

R : A—%[Cat,él] o

There is an obvious functor, natural in R,

given by

X, %, (Xp), » X € [AR],

where in the last relation a : A—>A' in A, x : (X)(aR)—>X' in

one Ll St am,{xh .

(ALY

A'R  and where

We then put

(6.1) Pp = (PRITT, : R} Tg—>R (I, DT 7T, .

We claim that @R is an isomorphism, To see this, it suffices to examine
[pgl « First, Wyl is onto, so $p is onto. Secondly, let (Xp) , Dbe connect-

ed to (x=p)A, in R T, 'i:{ul,be,g, by
0y 0, 0
2 a,
(XP)A v-'-—‘-‘al—-""}(xlp)Alé—" . m--—(sz)AQM o860 %—wrnu—m (X'p)A1 .;

this means by definition that (X) (alﬁ) can be connected to X; in AR

thus X, can be comnected to (Xl)Al in 'R{i].; and it means that (Xz)(azﬁ)

can be connected to ¥; in Alﬁ'; thus (XQ)A can be &onnected to
2

(X1), in R{i,; and so onm, | S SR
1A, M1 | e




29
This proves that @ R is 1-1 and onto, We note that. @R fits

into a commutative diagram
Ll nw y 1L umx
AclAl AeTAl
T ~adX,} \L {83, ~iim,}

o .

- o4 . - = -
(R )3T, gﬁ > @)t 1) Pa%o ;
where the two vertical maps are the (J o —chosen quotient maps, and where

the upper horizontal map is the sum over [/Al of the ﬂe -chosen quo-

tient maps

P _
AR |——2—> (AR) 7T_

Aeg |0\| But now it is easy to see that by the special choice COe of

quotients in 8, and the definition of sums in & , & sum of @e ~cho-
sen quotient maps will itself be an 09 -chosen quotient map, And since

: Oe is stable under composition of maps, @R fits in a diagram

where the arrows m——y ATE @e =chosen, Since there is only one 0 e
chosen map in a given quotient object, we conclude that @R  is the iden-

tity. Since it is also natural in R, the lemma follows,

Because of an application in Chapter II, we shall also define a 7[’0. -

functor for arbitrary small categories

(6.6) 7t CAT —> Uckns |
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Y . . .
Let ﬂ (3 CATU. Then connectedness defines an equivalence relation on IJH
Take c/)»yt to be the set of equivalence classes,
(o]
We shall not notationally distinguish between the two different JT, -

functors defined, In each case it will be clear which is meant.

7. & as a colimit algebra,

We shall endow & with the structure of a prelimit algebra with

respect to all of Cat (Definition 5.6).
: V
DEFINITION 7.1, Let B e ICATVI be arbitrary, We say that a functor ¢
(BT = [Cat,¢y] _..,_.Qm__;,@

is a colimit assigmnment on ®B if

(1) Ng- P = ICS’ andR | _

(i1) for arbitrary A —® (/A < icat]), Rp is a colimit of R

with ¢ of the arrows

(A-R):

being mappings in (B ' constituting R¢ as lim (R). We shall call 03, ¢

a colimit algebra or <P an dssociative colimit assignment if <f> at

the same time is a prelimit algebra structure and a colimit assignment,

Note that condition (i) in the definition is automatically satisfied
if ¢ 1is a prelimit structure. It should already now be clear that a co-

limit algebra hé® . colimits which fit together in a very simple way.
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Recall the functors JT o> I of the preceding section:

A .

e -

E ===lcat, ;] = 1r
i

With the terminology of Definition 7.1, we shall prove

THEOREM 7,2, Let & be the composite functor

B Tt
.. o
8T ~-——> 172 s > S,
Then &, F isa colimit al'gebfa, and X o 18 a homomorphism,

PROCF, We first prove that 5 is a prelimit structure, Actually,

most of the work for this has been done in Section 6, First

78'5 - '75"11'»,4*1.7“[‘0 - :‘”71!" [T
= 31
Secondly
SP.F 5 I L G DT gy LT, L
and by lemma 6.3, the equation continués

-9 _ —
R R P v I o TR

EECREEN  IEEL o R
This proves that 5 is a prelimit structure,

To prove that it is a colimit assignment, consider a functor
R .
A ——> §,

L REISBT; in particular , A I-,vﬁ\ Cat| , Also consider the morphisms in ST




Ac |A |, Now R¥ is JT_ of an () -category (R)T.Th with object

Ry
A€ Al
the morphisms (“A-FR) are éé.sily__séén to go to the set mapfoings

set

incl, :
AR ————> R§ :
given by '
The incl,'s constitute RE as a colimit of R, First, it is clear from
the defini'l:,ion of morphisms in RIT Hl that given a : A—>A' in /A

and X € AR, we can conmest X, to ((x)(aR))A, in RTT[LI, so that
X)p = ((X)(aR))A,p .

This gives aR ., i_nclA" = incl, . Next, let a family of mappings fA in

S ve given : f; : AR—>M, such that for each a : A—3A' in /A

(7.1) fA = ak . fA: .
Define f4, :t RE—>M by
I

fo%)

X € AR, This is well defined, for if X,p = X',,p, i.e, 1X,} = {xiA", ,

‘then 1t is easy, using the ‘equatidns (7.1), to prove (VXV;‘)"fA‘ - (xt)fA, .
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It is clear that inel, , f = fA’ and that £, is the unique mapping

o0
R:f-e'M having this property. This proves that % has proﬁerty (ii)
of Definition 7.1, so it is a colimit assignment, Finally, JC'e being

a homomorphism follows directly from Lemma 6,1, The proof is complete,

. | n |
DEFINITION 7.3. Given a functor A —>8 with /A ¢ |catl, so

that RE is defined, Call R¥ the natural colimit of R, and denote it

RE = lin(R) .

REMARK 7.h. Let (3 ,BT—P->@B be a colimit algebra (or just a

finite - sum algebra, i;e; with T defined with respect to the subcatego-

ry &Sy, S Cat). Denote J_L-'z A; by A+ Ay . Then
(Ag+hy)ahy = JBLAi = A +{Ay+hy),

"and the following diagrams commute

1nc1 incl

A, —2 3 A oty LN (Ag+ap)+ho

Ag > Uy
incl b
o
incll inel,
incly 3 ‘
inel.

|| I
b, ——— _LL A

incly

wo
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similarly for the three analogous diagrams formed by considering Ag+(Aq+hs).
One might'express this by saying: binary sums are associative in a colimit.
algebra. This is justification for using "associative colimit assignment"

synonymous with “colimit algebra structure",

We use this remark to show that & is in some sense the smallest
tcategory of sets® which can carry associative colimits - at least if one
admits that the only natural category of sets smaller than E is the

skeletal one, Precisely

PROPOSITION 7.5, The skeletal category S of sets in U does not ad-
mit an associative colimit assignment, not even a finite associative sum

assignment,

PROOF, Since the category is skeletal, the chosen sum diagram for
N, ¥, 1s _
incl

incl
(7.3) N, Y, < L& .

Assume that the bfnary sum formatiom comes from a structure ?) as in Re-
mark 7.1 (with & for (B). Putting Ay = Ay = Ay =S, in the

commutative diagrams there, one gets (with incl,, inclq . the maps in (7,5):

inel . inel, = incly , incl = : Jggo__51£§5

which is comtrary to the fact that incl and incl, have disjoint ima-

ges, This proves the proposition,

8. Further properties of &, ¥.

For fubure reference, we collect some useful facts about S. We have

alréady in Definition 6,1 put & choice of quotient objects on S, These

o .

. w e P PN voa e .
R LI R (R SR B G x o sty Sl
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are related to the natural colimit structure 5 o

PROPOSITION 8,1, Let q; : A,—>B; be 0 -chosen quotients in &
for i€ Ic |8, Then
. lia
-[_L Az ——"'1"‘)‘-11- B,
I 1t

is an W e -chosen quotient .
The proof is easy.

et & e |cat| be given by

€1 - 2

. E@,1) =0
. (8.1)
g, 0) = &(1,1) = 1

CE@,0) = 2,
i.e, it looks like

“-—‘-_)5

. 3
1
- R
let & —>&  give the diagram
N
(1R =3 (O)R

in & , Then there is a smallest equivalence relation ~v on (0O)R with

(a)f ~ (a)g Va e (1)R .

So a quotient of (O)R is determined, It is now easy to see that if q

is the 08 -chosen quotient, then




36

f
(1R =3 (0R ——> q
g

is also the colimit diagram according to g , in particular (O-R):

1 GO )—8
(8.2) 6(% /
&

goes by 3 to q; Conversely, any chosen quotient map in 5 can be. got=

ten as § acting on (8.2) for suitable R,

The proof of these facts is easy,

R
PROPOSITION 8,2, let ID— % be arbitrary. Then the canonical

map g

(8.3) Al w2 >(RE

D € D]

- given by inch .q = (D-R)E isan (0 o —chosen quo{;ient inapping, (D-R)

denoting the morphism

" ém\ /R
) .

PROOF, This is essentially just to observe that (Rg was defined

as 7Co of an W -category with object set the sum in (8,3),




CHAPTER IT

THE COLIMIT MONADS

1, The functors Gray.¢,.

U
ror o € CATV , we shall produce a functor

gray.g, opp

» (U-Ens )‘”

(1.1) [Cat’, €]
Likewise, for Ae C:antV , we shall produce

' Gray, opp
(1.2) [cat’, €] fo y &

We are prevented from saying that these functors are natural in ‘4 by

the fact that the codomain categories do not depend functorial in /3

In [L], Gray constructs a pair of adjoint functors between 1): the
category of categories over o}, (CAT ’ed)’ and 2): the categories split
fibered over /. His definition of the functor from 1) to 2) is easily
extended to [CAT, € (ﬂ-] . Applying "7(0 fiverwise" (the Cr o to be made pre-
cise below) sends us into the category of categories split fibered over
JI’ and with discrete fibres; this category is equivalent to the category
of contravariant set valued functors on Jf.

The composite (1,1) can be described explicitely as follows,

let R : D—>d be an object of [CatU,ed,]. Then _(R)gray,?o is

the functor dl-o.pp—)U—Ens given by (with XX o @s in (1,6.6))

! A A~ (EA,R)TCO
(1.3) . . )
(a1 = 1) A ({2 —— DR} > fa > A »DR}) .

57
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Here { -} denotes JC  -classes in (€p,R), (€ A"R;.).’ resﬁectively,
and the notation A—2>DR is obvious for an object in (€,,R), and is
explained in Section_‘h of Chapter I,
Next, let there be given a morphism:in [CatU, Ed,l]

(1.1)

'
then ()gray, @o 1is the transformation whose A -component is

o N |
(1.5) {8 ~——>m} ~ {1 >0 —L >prpl .

cnnm

v
ordered by the canonical isomorphism

1t o € cat_, i.e, is locally well ordered, then [(€,,R) is well

(e',a') = _ JMa,DR) .
(e paR) e

Iet (€ A’R) Jt, have the quotient well ordering (Section 6 of Chapter I)
and use (& A ,R)ﬂ‘o to denote also the corresponding ordinal number,
Then (1,3) and (1,5) defines the functor Gray.p  of (1.2),

Restricting Gray. % to

' U
Jr = [cat, €] < [Cat, €yl
gives a functor

| Gray,p,
(1,6) . JT ______iq__>

QAP

OPP v -
Now S‘/’z is a colimit algebra with the structure inherited by the

_structqre on g (I;'7); and c/lT carz;ies the prelimit structure /A(/‘l,

Relative to these we have

¥
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PROPOSITION 1,1, The functor Gray.¢@, in (1.6) is a prelimit homo-

morphism

The proof is omitted, since we will later factor Gray.q)o into two

functors, each of which will be proved a homomorphism.

Y (U-Ens )'/’ PP

For A ‘é CATy we will in general have the hom sets in

are big, i.e, in V, We have however,

PROPOSITION 1.2, The full image of the functor gray. ¢, in (1.1) has
hom sets of the size of sets in U,
PROOF, By a theorem of Isbell [6], it suffices to prove that every
opp
object (R)gray.q)o is proper in the sense of [6]: A functor F : g —
= U-Ens is proper, if there is an M € U and an M -indexed family
of pairs (Ap,x ), A€ IJH, x, € (Am)F, so that for every A and every

x € (A)F there is an m and an a € (ﬂ(A,Am) so that

"
]

(xm) (a)F .

It

It is easily seen that for F (R)gray.@, we can get a |Dl-indexed

family with this property, ( [D being the domain of R), namely

I
(DR, { DR -=— DR}) D € |DL

| U
2. The endofunctor W on CATV.
Let

U
c CATV—-)CatV

‘ U
denote a fixed equivalence, having the inclusion Catv < CATV as a left

inverse, .1, ¢ = ICat .
v
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U L\
Let for fixed o & CATy H® and A® denote the full images

of the functors gray.q,, c.Gray.g,, respectively, i.e;

U gray.o AOPP
[Cat ,€y] ——— A@E < U-Ens

U Gray.¢ ~ AOPP’
[Cat ,€,,] ——JB < " .,
They will satisfy

, 1) Jo = A8
U ‘ u
(2,1) (1i) ® is an endofunctor cATV—-—wA_.TV
(1ii) A® admits associative colimits.

One would like (ii) and (iii) satisfied simultaneously, We shall construct

a functor ¥ so that

, 1) M =2 SO = UO
(2,2) (ii) Y is an endofunctor CAT;,J-%GAT:;

(i11) AW admits associative colimits,

. : ‘ U'
Let A and B denote categories in CATV. We define an equivalence

relation = on 'I[CatU, éqll .

DEFINITION 2,1, Put

D—2g = D—2 4
"
(2.3) Dl =PI A Irl = gy
and

(2.1) R)gray.§y = (RUFay.f .
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This is clearly equivalent to saying: (2,3) holds, and for‘all A ¢ hﬂl
a a |
{as—>1DR} ~» {4 —> DR'}
is well defined and defines the ideqtity'mapping.

G
LEMMA 2.2, Tet M —>® be an arbitrary functor in CATg . Then

with R, R' as in the Definition

R == R' => R.G =R'.G .

b b
PROOF, Let B ——>DRG ~ B —**>D'RG in (&p,R). This means

Y
that there exists a chain comnecting them, as displayed in the left half

of the diagram

s0a

S Lot > 1
D.R = : DR

(2.5). T | age anl \N\/&;’m,
Dpa1® Dy |

€4 noR). Therefore by

assumption d R : DR —>D,, .4R! and D R-ﬂu£w> D,R' can be connected in

(GI)R,R }s a comnection is dlsplayed in the right half of the diagrmn
above, For each triangle appearing on the "left hand. smde, form such a connec%»

*ﬁion. ‘Pike G on all the diagrams on the right hand aide and patch them
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together with the left hand diagram and get a connection establishing

b b
B —>DR'G ~ B ——> D'RIG,

The lemma now is immediate,
It will be convenient to introduce the following notation, Let
o b .
(2.6) ™ >N E >N

U C/IPPP
be objects in [Cat 9€dl]’ and let m be a morphism in U-Ens

m

2.7) ®gray.g, —> (Pleray.fy -

For D¢ |ID]|, we get an element
I
'{DR ‘_—-—_)P-R}mDR £ (EDR’P)IO .

Chose an object in (GDR,P) representing this element
D

M
DR ———>EP
(This use of the axiom of choice is absolutely unessential, it is just a
notational convenience), o |
It is easy to see the following: let in addition to (2;6) and (2.7)
S : €—>d} be given together with

n
(S)eray.go —> (R)eray.@o .

Then for ¢ € |€|, *nc : CS—>DR , we have

c c
(2.8) Lem o~ oun, an
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in (€CS’P)° Observe likewise that if d : D—D' is a morphism in ID,

then .

' D! D
(209) dR ° *m s *m
in ( EDR,R)(:

U
DEFINITION 2.3, Let o € GAT_ . ‘Lot AW denote the category with

~

el = e el s
if R, P € I[catU, 6(4“ and {R}," {p} denqtgg their = classes, then
opp. |
(APY)AR},{P}) = (v-Ens? (R Lo 2P Pgray.g,) -

Composition in the category AY is defined by‘. means of the composition
in (U-Ens)Y" |, = Further:’ \
G L
U
Let (}———->@ be a morphism in CATy . Let (G)§ denote the

functor

{G)’\D : Y —> BY,
given on objects by | -

oW
(2.10) {rR} ~> {r.a}

and on maps by

((R)gray.cpo —_—> (P)‘gr’aye%)

b (m) (G)y b
~> ({ B

#
>DRGY -~y 1B > DRG > g._m})
where R, P, and m are as in (2.6), (2,7), respectively,

It is clear from the definition that AW 22 JA®), so that we imme-

diately have (i) and (1i) of (2,2) satisfied.v Of course, one has to check
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various points of the definition, By Lemma 2,2, (2.1l0) does not depend
on the choice of R in {R}. Also, it is easily checked that (2,11) does
not depend on the choice of R, P, *mD and B -—b—) DRG in their respec-
tive classes. Finally, the same arguments will prove that Y cammtes
with composition, (d LENY = (@)Y LGV,

Also, by proposition 1,2, the hom sets of HY are (isomorphic to)
sets in U, so that JW may be considered as being in CATY,

One reason why it is natural to consider the relation = 1s given by

R!?

R
PROPOSITION 2.4. Let D —> A = D' ——>JF , and let
inch
DR ————> lim (R) ,
——p
D € ID! = (D1, be a colimit diagram for R, Then it is also a colimit

diagram for R',

PROOF, It suffices tp prove that for any choice of colimit diagrams
for R and R', there exists an isomorphism d making the diagrams

L, (R1) —— 1in, ()

incl! inch

DR? DR

commute for all D€ || = |(D'|. For this, it suffices to prove that

d
D——3)D' in 1{p' implies commtativity of
lim_(R)
(2.12) incl; incly,

DR (d)R'

» D'R
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(and a converse statement) Since in (EDR,R')
I (a)R'

DR = DIR! ———'"923' ~ DR —————> 2_'_R' R
we have by assumptiéﬁ
| I (d)R!
DR——>DR o~ DR——>D'R

in (€ppsR). Let a ‘connection be as in the left side of the diagram

D'R

L N 2

(2;15) ~ DR/ ldR Dn“"--> linm (R)

\ 1R ’inchn)/

I ' / :mch

DR

Now commutativity of the total diagram in (2A3) (i.e, of (2,12)) follows
. . ¥
from the commutativity of the small triangles in (2.12), The proposition

follows,

5. The monad structure on ¥ .

We still have to equip AW as a colimit algebra, We get a slightly
more precise information by making W . into a monad and bprodu'.ce a morphism

of monads T—E->"LlJ s 1.8,
T
1 - [Cat,€q] —5> P,

.
DEFINITION 5.1, Let of € CATy ., Then

A J‘”’““”ﬂﬂw .
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is the functor given by

A~ {2 -—9—*#} @ e 1)

-1

1 :
a €[a]

A2 AT A €y \ = / G gray.,?)o .
S

Clearly 4, is ndtural in o,

DEFINITION 3,2, Let A ECATU . Then

v

AW — ek s Y

R
is the functor given as follows, lLet {']D -——-—}(ﬂ'q)} be an object in
2
AP . Let T be a lifting of IR|:

(3.1)

v
o - RV
~Then {Blpy € |dYP! s 13 of the following object RU —>J in

\pl

[Ca‘bU,ém] . , . . .

RV = _U_IDE_I

D ¢ |l

RV)(Xp, X'p) € H(E)Dr, (x)D'E) ,

namely consisting of those a for which there exists a conneétion in ID

from D' to D

, d d
D! ... ":B"?'"‘"' D1 - 2o > Dy e 00D

H
7
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and a commatative diagram of the form

(x*)p'r

e

(5.2) (X)or

(X)or

the shaded diagram designates a connection

]
a'n

—>(X'y)D r

(X)or «—ir-!—-é- (Xn)Dnr ~ (X)Dr -

’ X
1n (€ xpps Dnr) ;3 X, is determined since *(dn-lR) n-; strictly is an
object of a comma category, not just a morphism in A.

Composition in RV 1is inherited from the composition in cﬂ—
The functor RY assigns to X (X)Dr, and to a € (R V) (Eps X'D,)
as above it assigns a € JA((X)Dbr, (X')D'r) .

2
On morphisms in JI—"{J » flw_ is defined as follows, lLet

{25 d}—— {€ P >ﬂtp},
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and let r be a 1lifting of |Rl as before, and similarly p a liftAing

of |P|. Then |
(m)'ud : (Rv)gray.?oﬁ (Pv)gray.?)o

J)_OPP

in U-Ens is given by

b b )
(3.3) (o —> @Ry}~ {A —>@)Dr — >(@Ep = ()P}

DX
Here ends Definition 3.2. Note how in (3,3) ,(,m ) uniquely makes
sense according to the convention of Section 2: m goes from (R)gray.%

to (13’)gray,<l)o , so we have for D ¢ |ID|
D

)’(J'n “
DR —> EP
opp
in JY, that is, a morphism in U-Ens 9

(Dr)gray.<po —_> (Ep)gray.gﬁo 3

= DX
so for X € Iprl, 'r‘('("'rm )" makes sense and goes as indicated,

We have to justify the definition, Call the triangles in the shaded

areas of (3.2) inessential. (They are of the form

'm (Xm)Dnr
a
. (X)!ﬁ (X)Dr (x)Dnr
n+l
a (Xm+l)Dnr | B

Because of the inessential triangles in (3.,2), one easily sees that for
o R

. fixed R€{R} and fixed lifting r ¥3.1), RY —> L  is indepen-
X

dent of the choice of the elements 4 (dR) in their respective components,

Next we prove that for fixed R € {R} , any choice of lifting r (3.1)
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gives the same Rv. For, for d : D—>D' in ID and X € [Or | = lor, |

X .
(r. and r, being the two liftings), we can chose *(QR)O = *(dR)]](_ .

o}
Finally Ry does not depend on the choice of RE {R}. (A fortiori, {Rv}

= {r} Pop is well defined.) Let namely R, P € {R}

R P
D—sd E ——d
_ IID! = lEl, IRl = |P|. €hoose a common lifting r (3.1) for IRl and IPI,

Then clearly |Rv| = [Pv|. We just have to prove that the two conditi-
ons for S

a s (X)or —> (X'")D'r

’ to be in (RT)(Xp, X'pi), respectively (PV)(Xp, XID;’)‘- are equivalent,
So let there exist :a diagram ,'(5.2). We produce a d:'lLagram of the same type
proving a € (PY)(XEp, X'p1) . The inessential triangles we leave as they
are, (;onsidér now an essential triangle, e,g; the (only) one d‘iSplayed
in (3.2). Since (R)gray.?o = (P)gray.qio , we have

(dn-l)R «
DpaP = Dy oR 7 DRt = P_EP
I
Ve, Dn_lP*—~——%>DnniP

——————

in (P)gray;% . If a connecting chain with k links exist between these

two objects, a typical link being

E;P
1
,ﬁ/?
Dn_iP elP
£, |
isl Ei-!-lP s

then using (2,8) 1t 1s easily seen that the displéyed essential triangle




50

can be replaced by a chain consisting of k essential triangles of the

form
. 2
(X)br w#(e;P) +
(Zi+1)Ei+1P 'S
wh V4 [E.p| and bs; = a f *n-1 »lus some inesse ti;a,l tri
ere Z; ¢ [Bsjp| an 1 = 8 9 . x%fy s P ome inessen i-
angels,

To prove that ,A(ﬂ_ is well defined on morphisms, we need

. .
IEMMA 3,3, Iet [E ——> JW, and let

» n £

B——>EP ~J B ——>EP

in (&€pgsP) . Then if B is represented by /A — > A ,and & c Al

: A - ~A
y n %1 ~
(3.5) Aa —S 3T PV~ Aa ——> TPy

in (AéA_sP\)) o

PROOF. Clearly it suffices to assume that n and ‘# ean be cormected

in just one step

o .
B (e)p . E—23E in (E,

let ,n* be A—>¥Ep . Then by (2,8)

S AL ep)

. o ._

o, a
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Ep .
in (€,, fp) , where Ep —> A represents EP, and similarly for

Ep. let a connection be given, having k links, say;

«(n.ep)? ?Ep
Y'“Ep
\\T @i
T lEp
Y (P }
| I'Ep .

YEp . ~ _ '
L(eP) € (PD)(¥g, Y'g) , and (y)Ep € (PO)(¥''g, YMg), The dia-
gram can now gas:@.ly be reinterpreted as a cormection (of length k+l) re-

P

quired for (3.5).

Now we can prove that the defimition (3,3) does not depend on the ¢

choice of b in its component of (€,, RV), Clearly it suffices to prove

b/"

A (a)RY = a

b\) (X'DI)RV = X'D'r

‘give same value, The condition on a is that it fits into a diagram (3,2).

that b and b* = b,
(XD)R\) = XDr

So it again suffices to prove that we get the same rTight hand side of (3.3)

for

a - : | |
Wr —2=b o (&, )y RV and Xor f—a—’?-ﬁ((xn>Dn)Rv ;

and in twn for this and - _
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a'n ’
(X)Dr —-———-—)(x'n)n RV.
n

For the essential trisngle, note that d .R ~ I qr In (e P

n-1 n-lR‘
Apply Lemma 3,5 with Dr for g, X for A, and dn-’l?’ and‘ 'IDn-la for
n and 7, respectively, Then (3,5) gives the desired equality. For the

second equality, use (2.9) together with the obvious fact that

. . | o

(3.6) . A——>YEp ~ A ——>1I'Ep

in (EA’ EP) iﬁplies ‘ o . .
.‘ ¢ cl ‘

(3.7) A——>T P~ A ——>TIPY,

This shows (3,3) independent of chaice of a,

The implication (3.6) = (3.7) also shows that the (5.5) for fixed
choice of *mD does not depend on choice of *(*m ) . And the Lerma 3,3
shows that it does not depend on the choice :'of *mD either. Finally, the
choice of R and P in thei# respective classes are inmaterial; for, |
we can chose the same *mn for R, P and R'!, P'.

The proof that P, 4, Jt constitutes a monad is contained in the

next section,

i, Proof of the monad laws for VWV, @, .
‘ J / _

THEOREM L1, et ¥, 4, f be as in the Definitions 2.3, 5.1, and
| | | U
5,2, respectively, Then Y , 4, /4 is a monad on CAT_. :

PROOF, We are required to prove commutativity of the diagram
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,‘“;%? .~ ‘MW\[ o lm

Ay T > Ay

R | o
Let ID —-9'4/1-‘\')2 represent an object of (/1‘11)5 , and let

U SN
» AN e b7 Sl
k2) Les / L
| D———> [ AP ™ oE ———— [ AW
[rl ' / br|

(the-last for every D€ |DI) be 1iftings as indicated, In particular, ‘for

XDs

Xe IDF|, XDs is a functor
- s — A,

_ : o (B)V ‘
and for Y € |xDsl, WDs¢ |JH. Construct (R)D —_— Y _ according

to Definition 2,3 with oY in place of ¢/}, The liftings (L.2) give
a‘lifting ' ‘ |
. _lteat?, el
/ s

(B i [V
e

sending XD to X:Ds; Use this lifting to construct (R)VV,

R — (VY
(4.3) (R)VV >

representing ({RY) {Mdh,u Nc/].. ' ,
"~ On the other 'hand , {RI( F(/P)l‘) is represented by R , /u(ﬂ , for which
we have a lifting t |




U .
= [Cat ;€]

|

DI - > [yl
IR . Pl

given by )
Dt — (or)v '
E— A = O —>H.,

" 'Use this lifting to compute

' | (R . )V
(1) @. g —LE7 g
representing ({R})( W)‘\P) V(ﬂ . We claim that (4.3) = (L.4). The sets

of objects of the two categories are the ordinal numbers

___L[___ |xDs| J_L( iJ_ lXD'é'l),

x;6 L loFl D€ IDl X ¢ joF| .
De |l

which are equal by associativity of ordinal sum (I.2.3). Also , the two
object mappings in (4,3) and (h.L) are equal:
L = (Y)p ~> WDs € A

D
We have to prove

(L5 “R)’.‘”_’)(Yxn’ z'x,]’)') = (R pg)V)((ps (T'xadpe)
Both sides in (L,5) are subsets of c/I—(IXDs,*Y'X'D's‘).K,- and since the func-
tors (h;i) and (L,4) have the inclusions as hom set mappings, (4,5) will
prove (4,3) = (b.4). | |

The condition for

(L.8) ) b 3 YXDs —->TY'X!'Dis
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being in the left hand side of (4,5) is the existence of a diagram analo-

gous to (3,2)
(gl)f('D's

: (T )X DS o (Xn);p
/—l an l : a. in RV.'-
. *
(b.7)  TDs me—— (L) XpDps (n)y
| \ T(y)XmDms W
: ’I‘y in XpDmd
I. g
m

(1)XDs

(one essential and one inessential. triangle displayea),_Nowa;a¢gbeing a mor=
phism in RV sits in a diagram (3.2) (with X, D for- X, D, and Xy, Dy
for X', D'). Let it have k links, say. Then it is easily seen that the
essential triangle in (L,7) can be replaced by ‘k eSsentiﬁl triangles

having as vertical part either

(1.8) L (ah’
OI'. ~
(1.9) (@)

( d a morphism in ID , x a morphism-in br, X in soﬁe ‘|ﬁ?l, ¥ in iﬁs,
¥ in some %ﬁ?) interspersed with inessential triangles like the one al-
ready displayed:

(,.10) (y)XDs .

The condition for b in (4,6) to be in the right hand side of (4.5)

48 the existence of a diagranm




56

Y'X'D's = (YI'_ )D't
o 1

D
n
\l/d in .]D
(L.11) TXDs . I
Y,
mxm
T u in DT
Yl
n
. le
wps = (T)Db )

again with an essential and an inessential triangle displayed. By the very
definition of ‘ m on a morphism, the essential triangle in gh;ll) is |
of the form (4,8). Now consider the inessential triangle in (h;li)é“u , being
in Dm'f,' = (Dmr)\_) , Sits as an a in a diag?am analﬁgous to (3.2) (with
k triangles, say), its essential and :‘Lnessén'bial triangles having as verti-
cal part morphisms (4.9) and (L.10) (wi_th,xm in place. of,.'Xv;). The functor
t being an inclusion then easily gives that the inessential triangle in
(h,11) can be replaced by k triangles of form (4.9) and (4.10).

Conversely, a connection from Iyyps b0 b usingas connecting mor-
phisms morphisms of the form (4,8), (h:,:9), and (4,10) can, by the same
analysis ‘of the involved categories of the form (P)V , be interpreted
either as a diagram defining b to be in R VD, or as one defining b
to be in (R . r(ﬂ) V.

Given next a morphism‘
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m s {R}——)—{P]

in dlr'q) ; it is not difficult to trace it the two ways round in (k. 1)

‘ opp
and see that the resulting morphism in J)TP, i.e, in U—Ens“jl' in both

cases have A ~-component (A € lJ}):

a
{p ——>xmps = (YXD)Rw}
a o N
~> {A———>XXDs >Y1XDts. = (T

“)PVY }

The theorem now follows,

5. The relation between the monads T aﬁd W

Recall that if T, /'f,',F and Y, 4, ) are monads on a category é,
then a morphism of monads ¥ : (T, /?z', F) —> (Y, B /A_) is a functor teams-
formation T —L—>"¢’ satisfying: For each ol |§|, the following dia-

grams commute : o ~
AT At b >A-T
| V e _(M))T,/ 3
(5.1) J L) Jyr ATY | ¥
N v : thp . /' MW 14
u c/ﬂl.) qu,) - o > AY

It follows. that a Y -algebra structure on an object cﬂé Iﬁl i.e, a mor-

phism cﬂ(q)———-h/# satisfying #, . § = Ig- )Ac/l-"} = ¥Y. ¥

gives rise to a T =algebra structure on J , namely

JHT m—"‘-><ﬂ'l}) n—m-%c/l
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Also, XU} is a homomorphism of T -algebras, (T and Jl{»’ having
the T -algebra structure Fd]_ and Xd_ . HU‘ , respectively.
Letting now T, éz 5 ["; denote the prelimit monad of Chapter I (with
respect to Cat, = Cat), and W, Y, r— the monad of Section 3, We pro-

duce a morphism of monads on GA‘I‘%TI s

o ¥ ‘
4 f) 2 Y
It will follow from the remarks above that a '\|) -algebra canonically gives

rise to a prelimit algebra, The inorphism ¥ is given in the obvious way:

DEFINITION 5.1. Let A € ch'rgl. Define

(5.2) dr — sy

to be the obvious functor given on objects by

’Dj—;cﬂ ~ {D ——E—-}Jl};

(ID being in Cat is a fortiori in Cat', so that the class of R mo-

dulo = (Section 2) is defined,) On morphisms, Y,  is given by sending

‘a morphism

(5.3)

| J— | opp
in /AT to the morphism (R)eray.g, —> (Plgray.@, in s | wnose
A -component (A € f}) is : i
2, o : & ?‘D .
b @ > B o) .

M I T
¥+ x » =
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Obviously ¥ (ﬂ- is a functor, and it is natural in. cﬂ—

PROPOSITION 5,2, The transformation ¥ T—->w given by (5 2)

is a morphism of monads,

PROOF, It is clear from the definitions that the first diagram of
(5,1) commutes, Let -
R
D —>AT
be an object in c/-LTz. Tracing it counterclockwise in the diagram gives

an object represented by the obvious functor from the cetegory having as

__ll |DR |

D € |D|

set of objects

and with hom(Xp,X'p) € JH(XDR,X'D'R), namely those a for which

there exists a diagram (3.,2), But clearly we may choose

@ &)™l . (@ R
#*' n=1 ‘ n-1""n-1

in that diagram, It is now immediate from the definitions that the object
in [CatU,édl_] described by this is equivalent under = to »(R),“; "
(Definition I,5,3, except for a minor change in noi}atioﬁ).

Consider next a morphism A in c/)-T2 , say (5,3) with /! replaced

by oFT . It is then easy to see that we can choose

‘ D
*((?‘)( KmT) X(m},) = O‘D)\‘(ﬂ
for D& D and
X
*((AD) X(ﬂ) = (Q‘D)X

for X € |DR|, Now it is obvious that chasing A the two ways round in
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the second diagram of (5,2) gﬁesthe following morphism in (ﬂ'q)
. | .
{8 — (X )R}y }

Ap)x

"y {A—> @) S@AELE = (DA P Fey )

This proves the proposition,

DEFINITION 5.3, A pair (A ,E), vwhere § is a P -algebra struc-

ture on of is called a regular colimit algebra,

This name will be justified in Section 9, where it is proved that
such a S automatically will have the property that the corresponding

T -algebra structure

4 cﬂtp-——-g-—%c/l

is a colimit assignment and therefore () (ﬂf) a colimit algebra, ‘(Jﬁefi.‘.

nition 1;7.1';)

OPP
6, The relation between cﬂ"-l—) and cﬂ@ gcﬁ

The present section is not essential for the main results in Sections
7 and 9, 'l _ _
Let A € lcaty|, i.e. be locally an () -category. There is an ob- .
vious equivalence of categories o

©1) 8 cﬂw-—-%ﬂ@D Sd‘m

(A® being, as in Section 2, the full image of
OPP '

Gray.?o( : [Cat ,EdL]—*-—)S‘ﬂ

It 18 given by the
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'DEFINITION 6.1, Let @ in (6.1) be the functor given on objects by
D5 ) |
{ — > ~ (Ri)Gray,?o
and on morphisms by

. n . a0
((Ro)gray.?o—————>(Rl)gray,?o) A KLy .m Ky,
AP

to (Ry)Gray.q, which for each A € ||l is orderpreseving, (€ A,Ri) 7T,

where o is the (unique) isomorphism in U -Ens from (Ri)gray.(po

being well ordered as quotient set of the well ordered set
|(€p.R) = _L_. KA ,Dr )
De |D

It is obvious that

. - wopp
(6.2) ¥op - 3 = Crav.q, : (cat’ 6@]-—95
¥ oA as in Definition 5.1,
To state the following lemma, it will be convenient to extend W
to an endofunctor on all of CATy, This is done by replacing U in Section
2 everywhere by V, In particular, the hom sets of an xpP may now be
PP
hom sets of V -Ens R
Recall the canonical colimit algebra structure g omn S (I.7),
which by the usual "pointwise limit® comstruction immediately gives a co=-

limit algebra structure (also denoted 5 or I_L_'Jin_)) on any.category of the

form 865. It is possible to factor this § as follows:

SHy . ‘[Cat, 68 JdPP] N S‘ﬂopp
X lopp £
&4

i
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where 0 is given on objects by the commutativity of this diagram, and

on morphisms by sending

R opp ) m P opp _
(D —>&4 ) gray.p. — > ([E >a/ ) eray.q,

to the morphism (m)P : (R)§-—-——> (P)§ given by commutativity of the

diagrams
(m)p
(R)E >(P)§
(D.Rl?: inc]_D inclE = (E:'P)§
" IR > EP
v *mD

J;OPP
where (D-R) is the morphism in & T

€
1 —2 - \D

__oPP
Scﬁ

and (E-P) is defined in a similar way.

The only non trivial thing to prove to see that this actuaily well ~

defines )6 , iss
R opp R? opp - '
(p—gd ) =D —>g4) =S ®F - @I .

This follows eaéily from the special property (Proposition I,8.3) of E

which makes both (R)E and (R')§ chosen quotients of || or =

D
| DR' , - together with Proposition 2.k, |

|D'|

LEMMA 6,2. Let f € Caty, Then with & and /5 as above, we have

a commutative diagram
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R i\ N Sdﬂ‘" Ny
6wy P

'
. tﬂ’-“ﬂ’_
My ———> 8T

PROOF. Let an object {R}é IJ?-'\PZI be given, It is easy to prove,
Q#OPP
just using the fact that g is a colimit a_\ss:.gnment‘on £ that
an isomorphism j i (R.&)f —> (V) Gray.q, is defined by incl; . J
= 4§ , where ‘ ;
JD’

a Jp a
{a——>xo} & {a——>xrv}

(all notation being that of Definition 5.2). For each D& |ID\, let Ky €
r (ﬂOPPI .
S

A ~» |(€,,0r) - 1L c/l(A XDr) ,
- . X¢ |pri

and let kj : Kp—>(Dr) Gray.g, be the obvious map. The ,definition of

j can now be stated by commutativity of the diagram

(R.&) F

tinp 7
_U_ (Dr)Gray, cFo

Delp)

b“
R

P

| v
(RV) Gray .,

Rapt

qD ZD-——>(R\)) Gray, @0 given by

A-»-—-)x e {a- -—-——-yx__p nv}




6h .

Evaluate the whole diagram on a fixed A € |J/H| Clearly {qD}A and each
(kp)y, become @e ~chosen epimorphisms-in & . So by Proposition I.8.1
(_l'__LkD) y isa chosen epimorphism in 8 . Finally, by Proposition 1.8.2
{jD}A is a chosen epimorphism in s. ‘This implies that each J, and there-
fore j must be the identity. But (R.¢)§ and (R V) Gray,fo are the
results of carrying {R} clockwise and counterclockwise around in the dia-
gram (6.3). . |

It is now trivial to check commutativity of the diagram (6,3) on mor-

phisms in rﬂflq)z ., The lemma is proved,

It is clear from (6,2) and the fact that | K(/ll is an onto mapping

that the full image AS of Gray;po equals the full image of B, So
s : JAY ————'9#@/
is an equivalence and has ¢l an onto map. We can deduce
LEMMA 6.5; For any n>0
(3 )?.Vn . P/Jr,LPn-r-l_____}(ﬂ@w,n
is an equivalence of categories and |(& )"(l)nl is an oﬁtq mgﬁ,

PROOF, First, W ‘always carries equivalences to ‘equiv'alences, This
follows from the fact that Y can be extended to a strong functor with

respect to the enric.hanen‘cg' ot CATg over CA’I‘g . Next let

()™« " —> AOY™Y

_ . v R e _ ~ ! A
be onto, and let {]D ; >(ﬂ@'l+)_n 1} be an object in (ﬂ@'lpn, Since

(o )"l{)nﬁl" is an equivalence and onto on objac;:@h_'ejtage,‘ there exists a 1ift4ing



now {R} = {R'}(3)Y".

In view of Lemma 6.5, we can now get more informai':ion about the dia-

gram (6,3). Namely

PROPOSITION 6.4, The diagram (6,3) can be factored as follows

s 2> aby —> @y
(6.4) ] ) l P
AY > S > S‘.”f" ‘

* for a -(necesgariiy ﬁniqu_e) )o .

‘ PROOF, Immediate from (i): commutativity of the outer diagram (Lemma
6.2), (ii): 3% being onto as well objects as _xﬁorphisms (Lemma 6,3), and
(iii): 1 being a full and faithful inclusion. '

PROPOSITION 6,5, The functor © makes AO into a regular colimit

algebra (Definition 5,3).

FROOF, We must see that it is a structure for the monad W, 7%, N .
Obviously 111 d}@ . IO = I d}é“ The other equation for being a struc- |

ture is commutativity of the lower right hand diagram in
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Mwl\*\’” o \1; 5

w PV Ay
e Jras p
N Lﬁ”

O 5

By Lemma 6,3, (G )‘LPZ is an epimorphism in GATE, so it suffices to prove

commutativity of the total diagram. Apply the equation of Proposition 6.4

G’I-P ° P = }ACA 'Y 6
twice; then commutativity follows immediately from the associativity law
for (uu

The fact that Y g . P : AGT — >0 is a colimit assignment
is jmmediate from the fact that S = X%J;OPP .P is a colimit assign-
ment on gfﬂ PP . And since 3 JY —>A® is an equivalence and ﬁy (6 h)
a homomorphism with respect to the T =-structures ¥ oy - Mops X oS- P s
we immediately have that ‘((m‘) . f’d is a colimit assignment, Let us sum-

marize this in

PROPOSITION 6.6, The structure Wy mekes of% into a regular co-

1limit algebra; and de . (ud, is a colimit assignment.,

The Theorem of Section 9 will show that the last statement in this
proposition follows from the first, Note how the Propositions 5,2, 6;.& 5

6.5, and 6,6 analyze the constituents of the composite functor Gray.(, :

[cat, gg) —> Y —?Jl??-*ig“m;.;'

T

' f“.’ .
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In particular, we may conclude that the composite is a ‘tpreli‘mit homomor-
phism, Note e;lso that Proposition 6.6 holds also for any HN € CATg 3 this
follows from the fact that such an s isisomorphic to an JH# in the

U
subcategory Cat.v < CATV.

7. The main properties of Y,

U
One main property (the other one comes in Section 9) of "Ll) : C.ATV——->-
U : ’ K
e CA‘I‘V is that it is a functor and assigns to a category a free right

complete category on it, in the following sense,

DEFINITION 7.1. A free right complete category on a category S is

P
a right complete category oJf together with a functor
. ; .
S ——> N

so that if Jt——>® is any functor to a right complete category,

~ there exists'a right cont:}nuoué"fuhctof H: ﬁ-—-}@ , unique up to iso-

morphism, with y,H = h,

"Right complete" means here: having colimits over ipgiexcategories in

CAT

g ; tright continuous® is dndetrsbood relative. tt; these,
Not.é that H is not required to be unique, only unique up to isomor=- -
A

phism, For the same reason, Mt is only determined vy o up to equiva-
N

lence 6f"‘Cat.égories; in particxiiar:; chosing an Jt s ¥ fo:;'" each cf}’ "does
noﬁ :m géﬁérél determine a functor A . Recently, Ulmer [10] has shown that
U U
a free right complete category rji € CATV_ exists for any oA € CAT_, He
A . . q0PpP
ta}kgs J %o be a suitable subcategory of UsEns® .- For A small,
: L ﬁ : r/LOPP :
i.e. A€ CAT » his reduces. to U-Ens , with y the Yoneda

“r
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JLOPP

embedding, However, no way is known to make U-Ens depend strictly

opp . .

functorial on o} € CATg . (The same applies to 8‘” L)
The present P , however, solves the problem in a functorial way.
(And at the same time, we get an associative choice of colimits on the

solution:)

| U
THEOREM 7,2, The monad W, 4, ,b on CAT, has the property: for each

U
He lGATVI, MY, 41% is a free right complete category on of.

' PROOF, By Proposition 6.6, Jnt) has colimits for indexcategories in
Cat, Therefore colimits exist in of for all indexcategories in CAT.
We just have to prove the talmost" ~-universality. To do this, we need some

notions,

DEFINITION 7,3, A colimit assignment on a category (B -

.- Y@ 1im,
(7.1) BT —— Y —— 3]
which factors through ‘8@, is called regular if the following diagram com-
mutes up to an isomorphism o

ey —=2F 5 gy

(7;2) e & e

Y Tin > @&

PROPOSITION 7.L. Any colimit assignment @f the form (7.1) is regudam.

’I?ROPIOSI'I_‘I‘OI_T 7.5, Any right complete category admits a regular colimit

aseignment {7.1),(Not necessarily associative ')
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- 0 .
FROOF of Proposition 7,i. Consider an object {ID —> @Y} in BY,
and let r and RY be as in Definition 3.2 (with ® in place of <A).
We produce an isomorphism « {&} (upper line in the diagram):

R Lim, «,
lig (DD > ®Y >0 ) &

A (1)

> Um, (RV)

iHClD

(7.3) Lim (Dr)

(X)Dr

by requiring the triangles (i) to commute for all D € |TD|; here jD is
determined by requiring the triangles (ii) to cammute for all X €& lDFlo‘
The fact that each jj is well determined is easy..To see that (dR)lim , g

= jp for d :D—3D' in ID, we observe that for all X €IDTl, the

diagrams ()
dR)1lim
Lim, (Dr) —2 > Lim (D'r)
(74)  inel incl,,
X Dr ¥ X' D'r
o (dR)

camutbe 3 fof', this diagram is the functor lim acting on the diagram in

e '
?i@- | . {Pf} J & » >_{D'r}
e xpo™ (*(dn)i)n) '5’_{5fo!?'&}




| [ , |

(the vertical arrows being the obvious ones). The desired comﬁutativity
now follows because each *(dR)x is a morphism XD'—.'*X'D" in RV.

The inverse" o( '%R.} is given by | |

incl . «7F . = incl . incly ;
D {r}

to prove that this defines a morphism between the two limits, consider a
morphism a : X ;—>X',, in RV » @ a8 in the diagram (3,2), Place
lim ( D SLIN By A5 @ ) to the right of that diag_raxﬁ; It is then
obvious that it suffices to prove commutativity of diagrams of the form
(i) or (ii): | o

{

(Xn"l_)]}n"lr

X, incly _.inely- -
W™ | e e

V' inclx .inel R | o
(I —— T (D — BY BB,
/\ y ° . ‘ .
(x)D,r (1)

"nc <Jdncl..
tnely, .ncly

(Xp)D T

For type (ii) (corresponding to the inessemtial triangles of (3,2)), this
is obvious; for type (i); it is an immediate consequence of commutativity
of (7.4). | |

To prove naturality in {R}, let an m: {RY—{P)} be given, as in
Section 3, with (B instead of ¢, Then the definition (3.3) of (m) e
together with an ;.rgument similar to that establishing commutativity of -

(7.4), gives commutativity of the curved diagram in
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R 1 o« _
Lin (D —— 8P —®) &) > lin BY)

A (m)B)1im, 1 o (m) i Lim

:_L_ig_)(-EE,—?—a@xp UL, R) — < Lin(P V)

inecl
E

Two appliggtidns of the said argument, on the other r_za'nd, give the commu-
tativity of the two left hand squé.zfeé in the dié.gram. This proves natural- -
ity of o(, thus the Proposition 7,i.

PROOF of Proposition 7,5. By the Proposition 7.k, we just have to "
produce a colimit;assigmment of the form (7.1). We.first make a choice
of colimit diigrams in ®, i.e. construct a functor | |

11m
[Gat E(B] ———————)

~so that '
(1) 7'[03, - Lm, = Ig
R R
(11) (P— @) = (D—®) =3

the colimit diagrams for R and R' are idemtical,

That this can be done follows from (B)%—— (1:1')/20g :—# B = Bt , .
and from Propos:.tion 2,h,
We then au’amtica.lly get a functor 1_1_15 s whose ob;]ect function fac-

{
“v




T2
tors over |3 @!. To produce a functor lim : ®Y—->B we take on ob-
Jjects:

R | R |
1im, ({D—> @) = n (D—@) .

On morphisnis s S8y

' m
(R) gray.f, —>(P) grayf,

(with P : [E—>(B) we take (m) lim so that the diagrams

(m) 1i
lin, (R) — >1im, (P)

(7.5) incly incly,

DR > EP
D
*m

commute for all D € [IDl, with *mD as in Section 2, That the diagrams
(7.5) determine (m) lim follows from universality of lim (R), together

with (2,9) and the equations

:I.nclE = (e)P ., ‘inclE,"

e .
for E——>E' in [E, Functorality of lim follows simlilarly, using

(2.8) instead of (2.9). Proposition 7,5 is proved,

The following proposition is obvious,
o l.m)i
PROPOSITION 7.6, Let (B, W ———> (B, Ve regular colimit assign-

ments, i = O, 1, Then a functor
H : U%O*_)@l

is right continuous (with respect to colimits with indexoategqrie'ih

T
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CATg) if and only if the following diagram cammutes up to an isomorphism S:

@y———ay

(7.6) Lim® 1

E

@, = @,

H
We can now complete the proo‘f of Theorem 7.2; it will really just
be a repetition-in the 2 -dimensional case of the fz?miliar construction
of free algebras for the algebras over a monad , Let G t A —>R ve
given, where @B is r:_i.ght complete, By I;‘roposi.:tion 7.5, we can put a re-
gular coldmit assignment 1__:&) on 03 . We define a functoz; H by commu-

tativity of the triangle (1) in

AP

By naturality of f7 and by 7@ . ;Hx_) = 103 s We éet commutativity

of (i1), To prove that. H is right continuous, we must by Proposition 7.6
prove the existence of a diagram (7.6) with (3, lim for @1, :L:@)_l and
AV, ko for (Bgs 1@3 . But

ba B o= g 0. um = 6y . m
x 6192,(1.:1-_1‘19_)’\;) . lim

(G’l').l_iﬂ,,)‘\‘) o lim .= H"Lt) lim, ,
the isomorphism sign by (7.2). This proves .H right continuous, If also

K 18 right continuons and has /) . H' = G, we geb - B



h
B o= (g g B E (Y EDY L Un
= (G)lp o lm = ﬁ.,

the isomorphism sign by right continuity (7.6). So a right continuous ex-
tension of G over " o exists and is unique up to isomorphism, and

the theorem is proved,

The theorem and proof is immediately ®"relativizable® in the sense
that one may construct also the "free- category - with - colimits - over -
indexcategories - in - Catg," where Catg is any suitable subcategory of
CatU, We briefly sketch this in the next section, in particular exﬁlain
what we mean by "suitable" in this context, (It will of course mean, some-

thing related to "admitting a calculus of prelimits.")

8. Submonads of 'W .

Just as we in Section 5 constructed not just ome p?elimif. monad T
but one T for each subcategory Cat 6 & Cat admittiﬁg a calculus of
preli:nj.ts, we can construct the wo relative to dertain of these subcate-
gories,

Consider [Cat 02 € dl] < [CatU, édl]' The equivalence relation = on
I[GatU, 6(4]| restricts to an equivalence relation = on ‘.|[Cato, e(/‘]| .
In this wey, a full subcategory ‘

(8.1) Ay, < AP
is created, Z'[f 1€ .Idaté.l" /Z/I- factors through o3P .
DEFINITION 8,1, We say that a full subcategory Cat o <4 :,CaﬁU g._gm

& caloulus of regular prelimits if 1€ fpat,|, and if, yl?enairgr-, De lc"t‘ol -
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U
the following holds for all JI [ ICATVI:

R
D — Jhr’ factors through JM')O

implies

{rypg € Iyl

The definition says, briefly, that W/ = must be a submonad of .
The arguments of the preceding section immediately carries over to
give e.g, that J"Vo is a free Cato camplete category on the category J’

The proof of the following proposition is obvious,

U

PROPOSITION 8.2, If € is a regular cardinal, then 8; ¢ Cat

(the full subcategory of Cat consisting of discrete Y -categories of
cardinality < £) admits a calculus of regular prelimits; the correspond-

ing monad is isomorphic to the prelimit monad for Cat_ = 8. (1.5).
0 o €

In particular, the free category with associative sums of cardinality

< € onacategory ¢} can be described simply as [Sc , € dl] .

PROPOSITIO%I 8.3. Iet € ©be an uncountable regular cardinal, The
category Cat g of categories ID with |ID]| an ordinal number of car-
dinality < €, and each W(D,D') a set in U of cardinality < €, ad-

mits a calculus of regular prelimits,

PROOF, Let 1D——-—>dl1p° < Jw be given with DD € ca t(E)

and with Y  ss in (8,1) with cat(®) for Cat,. If we construct
RV as in Definition 3.2, we will arrive at a category with less than ¢
objects; but we cannot control the size of the hom sets, since we have

assumed nothing about the hom sets of U; . But it is easy to see that
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- Rv .
R ———3cfl  stands in the relation = to the following functor

RY
RY ——> A ,

where |R¥| = |RV|, and whose structure as a category is the free cate-
gory on the graph having as edges symbols of the form (i) and (ii)

Le(cR)¥]
(1) X, > X1y,

d
for D-—>D' in T and L(@®)® = @Dr —>XD'r) € (&4 ,D'r) as

in Section 2;
[ (x)Dr]
(ii) X > X'y

for x ¢+ X—X' in Dr.
This graph has less than & edges, Since & was uncountable, we
get the same bound on the size of the hom sets in the free category on the

graph, and the Proposition is proved,

By putting a well ordering on the hom sets of the free category con-

structed, one obtains an (0 ~category isomorphic to RV, and therefore

' ' €
to it, So the Proposition also holds true if we read Cat(g) as

Il

also

the category of (0 -categories with the same cardinality limitations,

9, Algebras for the monad "y,

We prove here that an algebra for the monad Y is automatically
a colimit algebra,

Let Cato c Cat < CatU be a subcategory admitting a calculus of
prélimits and of regular prelimits (Definitions I,5,1 and 8,1). Thus we

get the monads corresponding to Gatoz r
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W’ﬁsF’ and Ts’i\{sFa

and a morphism of monads

fy ¢ ot — A,

given by Definition 5.1. The monads and ¥ are fixed in this section,

If RE€ |}T|, we shall as usual often write {R} for (R)Y¥ K

| THEOREM 9.1. Let  /JY S} be a structure for the monad Y,
ibe. » v | .
57.5 = Mg-§
wes =

Then cﬂ-T.——K-‘A—> Jm\)-ﬁ——) S is a colimit assignment (relative

(9.1)

to Gato) .

PROOF, We produce a transformation

T

Ty >3-

(we shall not need naturality); each instance

Tay
Ry —>®)y, 51,
will be of the form (i) XJL s where

i N
R ——>{2)E ¥,
is a morphiém in ¢lT

D ——> 1

NG
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with i DR——>{R}§ in turn given as the value of ¥ } at the

morphism

€p

> D
G&/R
S

in ¢/~1—T. The morphism (9.2) we denote (D-R), To see that i is natural,

1

(9.2)

note that for d : D—>D' a morphism in ID, the diagram

IR .
(9.3) dR NK {r}3

D'R

is the value of ¥ i S at the diagram in (¢} T

(D-R)
\ R

€pp ~ @'R) .

SDR

In general, (9.L4) is not commutative in AT, but X(ﬁ‘ of it is easily
seen to be commutative in cﬂ"{), The commutativity of (9.3) then follows, ‘
To prove that ,X(ﬂ . g is a colimit assigmment; let R : [D—> A

be an object in AT, We must show that the morphisms in J

iD = (]5-]3.) X(ﬁag- 2 DR—"}'{R}g,

 DEID|, forn a colimit dlagram for R, Commutetivity of the diagrams (9,3) .
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is proved already, Next assume that

(9.5) R\~ /¢

is given, We must find a unique

foo
{RIfE ——a
with ‘ .
(9.6) iy £ = £,  VDEMD|

The existence of such an f. 1is easy: simply take ¥ h - § ~on the mor-
phism (9,5) in ¢lT, To prove uniqueness, let f,, satisfy (9.6), This
means that we have a commutative diagram in Jit

i

' > GuiF

Apply X n § to this diagram and get
(1) . |
iR} Iy § > (€ipyg) B8 - {r}%

| (£)%,§ for

(GA)X(Ag = A .

If we can prove the top arrow to be I{ng , unigueness of foo 1i8 'hmne-
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diate. Consider the morphism in AT

JD > 1
25
R @ €tx)
Y |

A_ = (D-R) g -

D

given by

Naturality of A follows again from commutativity of %4 of the dia-

grams (9,4), It is now easy to see that

A By - FP = NFr. Yy = DYy,
and so by (9.1) _ |
(9.7) @ g § = Ny Pg -5
But (A_) de) . F(ﬂ = I{R'B) , as is easily seen using the defini-

D
. tion (3,3) of f‘(ﬁ‘ 's value on a morphism., (In (3.3), 4n can now be chosen
D.O
m )

tobe Ap = (D-R)Y, , and L, can be chosen to be Ipp : DR—>DR.)

So (9,7) must be the identity morphism, and the theorem follows,

The theorem proved can be expressed: The concept of a category - with -~

regular - colimit - structure (relative to Cato) is monadic or doctrinal

U
over CATV. This is the terminology of Beck and Lawvere, A special case of
the theorem was proved by them, namely: The concept of category - with -
chosen - initial - object is doctrinal, It appears here by taking Cat,

to consist of discrete (0 -categories D with IDl= 0 or = 1,




CHAPTER III
ASSOCIATIVITIES ARISING FROM &

1. A general construction of regular associative colimits.

It is well known [7] that coequalizers and sums in a category suffice
to construct arbitrary colimits, There is a simple condition which will
insure that the constructed colimits form a regular colimit structure (in
particular, the colimit formation will be associative)

Let & be a regular uncountable cardinal, and let 7Y =~ be the sub-
monad corresponding to Cat(:). (II, Secbion 8.)

Assume that a category Q has associative sums of cardinality < €
satisfying 111 X = X , a full choice of quotient objects, and that co-
equalizers exist, Further assume that if q ¢ Ax-——-) Bx are chosen quo-

tients for all x ¢ X, X < €, then
dla,
Uy —=51 5
X

is a chosen quotient, In this case we can construct a functor CB’VO — R
which turns (B into a regular colimit algebra relative to ’\Vo'

R €
Let [D——> B represent an object in @"l')o, D¢ Ca't;(s ), Form the

usual coequalizer diagram, q_ being the chosen quotient in the class deter-
quatis R

mined by the coequalizer:

£ q
| I | DR—'Q'_; 1] bR —E—1im (R) ;
peiml p'e |l MXD,D') £, Delbl —
inch i =0
incly . incly, . inmcly D £y =
(aR).incly, i =1

81
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(Henceforth, arrows -—-—> denote chosen quotient morphisms,) Strictly,
the index set ‘L'D(D,D') in the left hand sum is not in $ 3 the sum shall
then just mean % sﬁm with that index set, Denote by inD the composite

in  : DR it BN —i»lim ®) .

D € ID]
These Ing form a 6olimit diagram for R, as is well known, It is easily
seen that 2._1_1>n (R) and the ing do not depend on the choice of R€{R)
€ |(B‘L,)O-|. On morphisms, say m : {R}—{P}, lim is given the value

(m)Lin determined by commtativity of the diagrams
DR _———1?-9———;1:1::1 (R) ‘
P —

»,ng l ' ” J/(m)l—éﬂ |
. EP——1lin (P) -,

ing
notation as in 1IT,2,
We can then easily show"c.hat‘ lim is a structure for the monad Y.
The unit law obviously holds, So we ;‘just'. have to prove that"t.:he natural
isomorphism constucted in Préposition II,2.1 is the identity, The isomor-
phism is given by commutativity of the‘ triangle (i) below for all X, D

hence the outer diagram commutes:

lim, (R . lim) =
/ ’ inp

J_L:gz_:g,,(mw—————;i:g)(na) (i) |

Dcl[Dl 1nch T \\iljx ‘
Le | o ey \in\clxn
' /mcl | ‘ | '

D | { XIR

"lﬁjﬂ A oxm == = ,
« . DeMDI X €IoRl S . Xpe 1]JORI

S

R
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A1l morphisms which come as chosen quotients by definition, are marked ——§>.

But now by assumption, _“,qD is a chosen quotient mapping. Since .choéen

"quotients are stable under composition, the diagram is of the form

——-.._)g »

NS

' This implies that the isomorphism is an identity,

An unpleasant defect of ihe present .work is that we ‘have been unable
to show that every category with colimii?s is equivalent to a category with

a regular associative colimit structure. Bénabou has a construction which

.out of a multipl!.icative category produces a strictly ‘assoclative mult%.pli-

cative caf.egory. Iawvere has pointed out to the author that the method

can be applied here to manufacture associative sums.

b}

THEOREM 1.1. Iet o4 be a category ﬁth chosen sum diagrems’for index
sets of cardinality <M, where X. is a regular cardinal, Then M is oquive
alent to a category (-/I with associative ‘sums 61’ cardinality less than 3,
i.e, j]— can be equipped with a structure for the mona'd-. T, /7 s ,,._ defined
in I.5 (with respgct to Cat, = &, , the category of discrete « ) ~cate-

gories of cardinality < M), | . ' 4
PROOF, The choice of sums in c/l defines a functor

z .
AT = [,y —> .
Define ot by

PRy

r,p) = HEE,(RIT)

L . “
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with composition in C/I- defined by means of composition in ﬂ . We shall

define a structure

3

AT —=> A .
The object mapping of § 1is defined by I¥| = Irdﬂ ; this makes sense,

since I{{ll = |ATl, and for all categories B
@t - sl .

Writing this definition of |§| out in terms of elememts, it will be ob-
vious how to defime § on morphisms; and the proof of ET }5 = M . g
is essentially the same as the proof of associativity of rp (and is any-

way simple, since all indexcategories are discrete).

2, Finite left limits in .

Let Ay, ... » A _; be ordinal mmbers (n finite), Then the set
theoretic product
(2.1) - i>€<n Ay
é_aq be well ordered by means of the ordefings of the Aj's: namely“ by the
lgax:?.cographic ordering; We can also well order it antilexicogréphically,,
i.e, lexicographically from the right, This is the traditional well ordering

of a product of ordinal nﬁmb.ers s and it will become clear in the next section

that it is better, So let TT Ay denote the unique ordinal number of
. ‘ i€n

order type (2,1) ordered lexicographically from the right, and let =¢ de-

note the (unique) order isomorphism - T
ol '
T g —> < g,
i1€n iéen

Composing o with the n p;tjo.jacfoibn mappings, we get. n ,,.n;q:'phiamq' in 8: ey
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L S A
1LEnN
i € n, and it is clear that they constitute 1le1"1 A; as the categorical

product (discrete (left) limit) of the "A;'s, The following morphisms,
natural in the Ay's , are easily seen to be order preserving isamorphisms,

i.e, identities, for X and Yx finite ordinals:

; proj
(2.2) 1T s — 0 sy
1 ,
. o .
(2.3) T 1 )y — i ' Ay
xeX yelx _ : b4
Ix € 1 I -
x¢X
e given by
(2.4) | e, prOJyx = Projy . projy .

This says that % has finite, associative prqducts -ﬁ or that &°PP
has finite associative sums, Furthermore, in I.6 we constructed a full
choice of subobjects on & s 1.6, a full choice of quotient objects on:
8PP We can now apply the technique of Section 1 to B = BPP +to
construct all finite colimits in SO°PP, It will be a regular colimit o+
structure | .

(2.1) | P L

wo the submonad (II.B) corresponding to Cat, & Cat, O ~-categories
with finite object set, We of course interpre-t § as an associative (1eft),
limit structure on S .

It is easily seen that_ the products distribute from the left’ over co-
limits in &, e.g.

Ax(BeC) = (AxB)a(A%C) ,

i
§
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the equality being the usual natural distributivity isomorphism. The corre-
sponding distributivity - fram - the - right holds only up to isomorphism.

But this must be so, For

PROPOSITION 3,1, let & be a category = U-Ens with sm + and
product X , Then the two natural distributivity isomorphisms

P
(AxB)+(AxC) A,8,C

> Ax(B4C)

PB,c,A

(BxA)+(CxA) > (B+C)xA
cannot both have all their instances to be identities,

PROOF. Consider (A+B)x(CaD). Then by the definition of the distrib-

utivity isomorphisms A and /O , one getsv a commutative diagram

(AXC + AKD) + (BxC »+ B*D)
\L‘)H)

inclg,incly (A x (CsD)) + (B x(C+D)
i
AxD (A4B) x(C4+D)
. M
inely incl, ((a+B) x C) + ((A+B)x D)
fprp

(AxC 4 BxC) + (AxD » BxD) ,

Bubnowput A = B = C = D # O, If the vertical maps were all
identities, the images of the two maps':‘ incloo i_ncl1 and incll . inclO

would be non - disjoint, But in 5 o U-Ens, this is false,

3, Colimits in module categories.

For an arbitrary ring A , we put a regular colimit structure on a
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category cquivalent to the category of all A -modules in U,

We use same notation for a module and its underlying set.

DEFINITION 3.1, Let ¥ be the category of all those lett A -
modules A, where A¢ |[®| and the zero element of A is the first element

in A, i.e, the ordinal number O,

THEOREM 3,2. For any ring A, .MM can be equipped with a regular
N

colimit structure

PROOF, We shall construct specific sums and quotient objects and use
Section 1, First, since an epimorphism in the category of modules also is
an epimorphism in the category of sets, we take the chosen quotient mor-
phisms of /\m to be those epimorphisms which considered as mappings
in 8 are @ e -chosen quotient morphisms,

The more delicate thing is the éonstruction of sums. To do this, we
need transfinite products of ordinal mmbers (Sierpifiski [9], XIV §l7),
generalizing the product of Section 2,

Let A, bean X -indexed family of ordinal numbers, where X 1is
an ordinal number, Let ~

(3.1)
x€X

denote the set of all X -sequences of ordinal numbers satisfying
(1) (x)f € A, for all x €X
(1i) (x)f ¢ O for at most finitely many x .

The set is ordered lexicographically from the right, i,e,: f < g iff
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x,f < xg where x & X is the 1argest} element where f and g have
different- values, (A largest one exists because of condition (ii),) It
is now well known that (3.,1) is well ordered by < , (The proof of [9],

XTIV §15 , carries over to our case where the A, may be different, simply

by replacing the A,'s by a common upper bound K, and get (3.1) as a sub- v

. ¥ x
set of what Sierpifski calls K .)
For each x € X, let »
xeX

be given by

a if x - x! ..
(x')(a)i, = {0 i t'
) not.

let the ordinal number corresponding to the well ordered set (3.1)

be denoted by €D A, , and let the unique order isemorphism be . ;
xeX :
let incl, denote the camposite

. . TN < @
incl, . ¢ Ay ———> X/ Ay —> Ay .
' 4 xe X xeX
Suppose now that each A, is in l\/m 3 80 it is equipped with a A -

module structure +  and /'\5c for all A€ /A . We can put a A -module

structure on @ Ay by putting
xeX

(x)(£ +g) = (x) +» (x)g;
similarly for scalar multiplication, Then with this, GBAX is in A’Wl s

xeX _
and each i.nclx is a morphism in ,\/Wl . Furthermore, it is clear that

.what we have constructed is nothing bubt a usual categorical sun of mod.uléé, »

. We must show associativity of the sum, i,e, that the canonical iso-

‘morphisms




'  in
(3.2) | Ninta N>

and

[ .

(5.3) @Ayx‘ £ D D,

xeX ye¢ X
» x
Y. € i_LY
x ‘x'eX X

are identities, i,e, order preserving isamorphisms, Here € is given by
inel, . & =" dnel_ ., incl_,
Ly, oo 0cdy

It is well known to be an 'ﬁ.somorphi§m; its inverse is in fact nothing but
an appropriate generalization.of (2,h): replace the signs 0 by P,
-~

and note that (2,4) makes sense if we let proj 5 mean the compo'site

A . . ) proji
@Ai =5 b b & 2> A, —
. . i i
ieTI iel S iel

where I 1is an ordinal number and >< A; is just the (infinite) set

_ iel '

theoretic product of the I -indexed family A;. But it is easy to prove
that e in (2,3), reinterpreted in this way, is orderpreserving. It follows

that (5_.5) is orderpreserving.- This establishes unit and associative laws

for the sum ED in /\W.
To apply the construction of Secticn 1, we have to prove that if

Ay ¢ Ax-—é*Bx is a chosen quotient in /\WL for all x,e‘X, -then so is

(3.14) D 4, O, @B; :

xe X ° XGX'..

et f 0. < £, be elements in S7: W Defix}e': g € GBAX by

X ~> .min(qul(xfi))l e Ay

i = 'O, 1, Clearly

3




90

(3.5) | gy = min((Pa,) “(£;)) . B
et x € X be the last element where the fi's differ, Then xi'o <, 'Xfl .
But
. - ’ . -1
xf, < xf; = min(gg Yxgo)) < min(q, ~(xf1)) ,

------

' since q, is a chosen quotient, This says that ., "y
xg, < Xgq .

But clearly x is the 1as§ element where g o ¥ gy 3 so g, < g This and
(3,5) shows that (3.4) is a chosen quotient,

Now Section 1 applies, and the theorem is proved,

Note that the proof depended heavily on the peculiar properties of

the categorical sum in module categorie‘s, So it cannot be carried over to .

the category of (non abeliah) groups, say.

L, Tensorproducts over commutative rings.

o (N)
Let /\ be a comutative ring. We show here that the category .

of /\ -modules in & admits an associstive tensorproduct., The proof

’ A
would also apply to the subcategory /\m c 8 (A) considered in

~Section 3, | : BN
We may assume that the underlying set of A is in &, and that the
zero of the ring is the number O, and that the unit of the ring is the mjﬁn-
ber 1, This is not just for notational conve’ﬁience.-

We first construct a monad F in S , assigning to A (%he under- e

lying of) the free /\ -module on A. Puj
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=QA9A ;
Ya

A ———>AF

is given by (a')(a)w, = B(é,a') , a, a' € A, By the last Section, aF
carries a canonical /\ -module structure, So we don't have to describe ("'
further. Functorality of F in A follows from the fact that EB A
is a categorical sum in 8(/\) with index set A,

If A and B are /\ -modules, it is well known that A® B can
be constructed as a quotient module of the free /\ -module on the set
A x B, Ietting X denote the binary version of the products introduced
on S in Section 2, we can thus completely describe a specific construc-
tion of tensorproducts in 5(/\) by requiring A ® B to be the chosen
quotient of (A x B)F
(k1) (axB)F —AB 3 @5,

A, BES(A) .

THEOREM L.1. The tensorproduct described by (L.l) is associative,
Unfortunately, the tensorproduct has no strict units,

PROOF of the theorem, We compare (A® B)® C and A ® (B .®C) with
A®B ®C (defined as the correct, chosen quotient of " (A x B » C)E Vs
and show that the natural isomorphisms are in both cases ideéntities, Con-
sider the diagram | .

(A®B) ®C<——5 (4® B)  O)F

. ‘ | h )
(4.2) k T% | SI. lR

. | q |
A9B®C T/ (AX BXO) ,
A
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where q and q' are the chosen quotient mappings, h andv h'  left in-
verses - with - minimal - values for q and q' respectively (which dster-
mines h and h' uniquely), and where finally S and R are constructed
as follows: S is (s)F, where s is | |

9 x G : q xC '
S3 AXBXC ——>(AXBFXC ——>(A®B) %C ;

q is the chosen quotient mapping defining A® B; S is a /\ -module

homomorphism, And R is the A -module homomorphism determined by the

set mapping r

) h x G f)
L3 r: A®B)xC —>(A xB)F X C

> (A x B xC)F ,

where h is the minimal left inverse. for q : (A x B)f —A ®B and p
is given by :

(f,c) /fxg,) ((a,bse’) ~> (azb)f - g(c,c')),

f:AxB~>/ an element in (A X B)F .

Then it is easily seen that

1
Q-
a -
w

S, q'
R.q.k - qat .
In particular, for f € (A X B XC)F ,
(h;h) ’ (f)sr = £,

where = 1is the congruence relation defining q.

LEMMA .2, We have h , S = k , h' ,
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PROOF, Define for f € ZF the support of I, supp(f), to be the set

71 ¢ 7 where f 2 Z—>/\ takes non zero values, We need a sublemma:

IEMMA 4.5, Let £ € (AxBxC)F be in the image of h, and let (a,b,e)
¢ supp( L), Then (a,b)4 &€ (A x B)F is in the image of h: A® B —>

—>(A xB)F , B as in (4.3).

PROOF, Let g = (a,b)/y with g the minimal element in (A x B)F
having this property. It suffices to prove g = (asb)/;]-. Suppose
g < (a,b)JZ. Then by definition | S

' S.R .

(L.5) (a;b,e)  ~>  (gs0)p # (asbye)y
since (© for fixed ¢ is 1-1, Since 1 € A is the amallest non zero
element in A, we get (a',b') ¢ supp(g) = (a',b') < (a,b) , and so
also

k.6) (a',b',et) € supp((g,0) o) = (atbl,et) < (asb,e) .

By (h;h) and (u;S) we get on ;;he other hand : - .
| '(g,IC)O = '(a,b,c)/y

Then if (a,b,cjlc = n

(’h;7) ! =1- (a,b,c)/t{ ;n + (g,c)/d n A

and ' is like :,K for (a',b',c') > (a,b,c) but has value O on
. ’ . ! |
(agb,e) by (L,6). So L'< ] , A =), contradicting the assumption

that £ was in the image of h and thus minimal in its class,
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3¢ A is in the image of h, then ( £)S 4is in the image of h', Suppose

this were not soj then there would exist a t € ((A® B) x C)F with
(4.8) | t = (L)s
(4.9) t < (f)s.

The support of S consiste entirely of elements of the form ((a,b) /73, e),
so by (4,9) the last point of difference between t and ( l )S 1is of

this form, say that one displayed, Let r be like t on elements 2>
((a,b)ola, ¢), and O elsewhere, So suppr £ sSupp £ , and therefore

one easily gets, using Lemma L,5, that the last difference between (r)s
and f is (a,b,c), and on that, { is bigger, Consider next t -r ; we

show

(4,10) (a',b',c') € supp ((t - r)Rj = (a',b',c') < (a,b,e) ,
For, the condition implies the existence of an f€ A® B so that
(L.11) (f,c') € supp (t -r) and (a',b!') € supp((£)h) .
But we constructed t - r so that

(f,e') € supp (t - r) = (f,e') < ((2,0)4q, ¢) .

If ¢! ¢ c , the conclusion of (L,lo) automatically holds, If c¢' = c ,

f < (a,b)/;,a' , which implies
(£)F < (a,b)gqn = (a,b)nf,

the last equality sign again because of Lemma L,3, Since 1 €& /A is the

smallest non zero element, we conclude that the supporting elements of
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(f)n ‘are smaller than (a,b); this then holds in particular for (a',b')
by (L4.11). So we have proved (L4.lo). Since £ th lia.l;ger value on (a,b,c)
than (r)R has, and same value on larger triples, we conclude by (4,1o0)

that ()R = (t -7)R+ ()R < £, On the other hand by (L.8), (R
(t)R = (L)sr EL
This contradicts the minimality of L and proves Lemma 4.2,
LEMMA L.L, The mapping h.S is orderpreserving.
PROOF, This is an easy consequence of Lemma L,3.

It is now easy to use the Lemmas 4.2 and L. to prove that k in
(4,2) is orderpreserving, hence the identity, The proof that the other
jsomorphism A ® B®C—>A ® (B®C) is likewise the identity, is simi-
lar (we have not used that A X B x C was ordered lexicographically ;‘_I_'_g_g_

the right in an essential way), This then proves the theorem,

5. Associative composition of profunctors,

We shall recall Bénabou's definition of profunctors and their compo-
sition, We restrict to profunctors relative to the categories Cat and
& of Chapter I, It will be fairly obvious that the definition we give
is equivalent to Bénabou's,

Note first that since Cat is 'based' on %, there is an obvious
full choice of subobjects in Cat, A chosen subobject will be denoted >—>,
Let 2 denote the category with 2| = 2, 2(0,1) = 1, 2(1,0) = o,

Y,

and J(i,i) = 1 for i = 0, 1.

DEFINITION 5,1, Let A, B ¢lcat|, A profunctor R : A—>B isa
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category E ElCat| together with a functor R : B ——-)2 , S0 that the two
diagrams (i) and (11) in . _
Ar—>Ee<B-
|m
(1) (ii)

1€0/2’<€1 1l

‘are meet (pull back) diagrams,’

We shall usually amit i and j from the notation,
If S: B—>C is another profunctor, we define the composite

profunctor

R %8 : LA—HC.

as follows, Construct a comeet diagram ¥ in Cat (which one is described

\/\/
\/

5@?10&0 i

a:;_d take m to be the fulgl S_ubcétegory generated ‘by the images of
i,k and j. ﬁ. . I‘b will be clear ffom the description of R_:S' below that
the images of ik and J. 4 are d:.s;joint and that no morphisms go from
the latter to the former s wherefore a :t'unctor ma %2 s dafj,ned

The category i"s" is described by
751 = ] <18« el

) - Ba)
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9

and (ﬁ':ﬁ)(Ao sCp) the chosen quotient of the (lexicographically ordered)
S — -

set Wi:c of triples (m,B,n) with m € R(4,B), n € S(B,C), under the

equivalence relation

(m,B,n) ~ (m',B',n')

if there exists b : B—>B' in B so that both the diagrams

B! B!

commute (in B and §, lrespectively)l.

Camposition in R-5 is obvious,

Note that compoSit.ion of profunctors is expressed' entirely in terms‘
of certain finite limits and colimits (certain meets and comeats in Cat).

We can now show that the composition described is assbciative. The
methed is very much the same as in Section L, Let a third profunctor T :
€ 4> be given, We shall compare (R#S)*T and Rx%(S«T) with an ob-
vious R#S%T, having (R#S¥T)(A,D) the chosen quotienﬁ of the set wﬁig’T
-of ‘quintuples
(5.1) (m,B,4n,C,0)

where

e ST o
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R,S,T
Again we use lexicographic ordering for WA D
, i
tative diagram
R, (S#T
R#(SuT) &—— W  (S¥T)
_ A,D
(5.2) a T o P
S
R#S%T &— W ’T,

t given by sending (5,1) to

(m,B,«{(n,C,c’)}-) o

. One may now find a commu-

It is then easily seen that t 1s a chosen quotient, So (5.2) gives that

a is the identity, The other identity (R#S)«T

same method,

= R#¥S*T comes by the
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