Mathematical Logic Quarterly © WILEY-VCH Verlag Berlin GmbH 2001

Cut-elimination Theorems for Some Infinitary Modal Logics

Yoshihito Tanaka¹⁾

Kyushu Sangyo University, Higashi-ku, Fukuoka 813-8503, Japan²⁾

Abstract. In this article, a cut-free system TLM_{ω_1} for infinitary propositional modal logic is proposed which is complete with respect to the class of all Kripke frames. The system TLM_{ω_1} is a kind of Gentzen style sequent calculus, but a sequent of TLM_{ω_1} is defined as a finite tree of sequents in a standard sense. We prove the cut-elimination theorem for TLM_{ω_1} via its Kripke completeness.

Mathematics Subject Classification: 03B45, 03F05.

Keywords: Infinitary logic, Modal logic, Cut-elimination.

1 Introduction

Let LM be the formal system for propositional modal logic which consists of the propositional fragment of GENTZEN's sequent calculus LK (see, e.g., [2]) and the following inference rule for the modal operator \Box :

$$\frac{\Gamma \to \varphi}{\Box \Gamma \to \Box \varphi} \text{ (nec)}, \quad \text{where } \Box \Gamma = \{\Box \gamma : \gamma \in \Gamma\}.$$

It is known that the logic \mathbf{K} , that is, the propositional modal logic characterized by the class of all Kripke frames, is axiomatized by LM. It is also well-known that since the cut-elimination algorithm for \mathbf{LK} (see, e. g., [14, 2]) also works for LM, LM is cut-free and \mathbf{K} has a formal system which satisfies the subformula property. Now, we discuss infinitary propositional modal logic in the same way. Let LK_{ω_1} be the formal system which consists of the propositional fragment of LK and the following inference rules for infinitary connectives (the formal definition of LK_{ω_1} is given in Section 3, see also [4]):

$$\frac{\frac{\Gamma \to \Delta, \varphi \quad (\text{for all } \varphi \in \Theta)}{\Gamma \to \Delta, \Lambda \Theta} (\to \Lambda), \qquad \frac{\varphi, \Gamma \to \Delta \quad (\text{for some } \varphi \in \Theta)}{\Lambda \Theta, \Gamma \to \Delta} (\Lambda \to), \\ \frac{\Gamma \to \Delta, \varphi \quad (\text{for some } \varphi \in \Theta)}{\Gamma \to \Delta, \vee \Theta} (\to \vee), \qquad \frac{\varphi, \Gamma \to \Delta \quad (\text{for all } \varphi \in \Theta)}{\vee \Theta, \Gamma \to \Delta} (\vee \to).$$

Here, Θ is a countable set of formulas and the upper sequents of $(\rightarrow \Lambda)$ and $(\bigvee \rightarrow)$ are countable. We write LM_{ω_1} for the system which consists of LK_{ω_1} and the inference rule (nec) for the modal operator, and write \mathbf{K}_{ω_1} for the logic axiomatized by LM_{ω_1} . Since the cut-elimination algorithm for LK_{ω_1} in [4] also works for LM_{ω_1} , LM_{ω_1} is cut-free.

 $^{^{1)}{\}rm The}$ author would like to thank RYO KASHIMA for his helpful comments and suggestions.

²⁾e-mail: ytanaka@ip.kyusan-u.ac.jp

However, LM_{ω_1} does not axiomatize the infinitary modal logic characterized by the class of all Kripke frames. Let BF_{ω_1} be the formula $\bigwedge_{i \in \omega} \Box p_i \supset \Box \bigwedge_{i \in \omega} p_i$ of infinitary modal logic which corresponds to the *Barcan formula* BF, that is, the formula $\forall x \Box \varphi \supset \Box \forall x \varphi$ of predicate modal logic. It is easy to see that BF_{ω_1} is valid in every Kripke model. Hence, BF_{ω_1} is necessary to axiomatize the infinitary modal logic characterized by the class of all Kripke frames (see [11, 3, 16, 15]). However, BF_{ω_1} is not derivable in LM_{ω_1} , hence, LM_{ω_1} is Kripke incomplete, though it is a natural extension of LM. On the other hand, the system which consists of LM_{ω_1} and the axiom schema $\rightarrow BF_{\omega_1}$ axiomatizes the logic characterized by the class of all Kripke frames ([16, 15]). We write $\mathbf{K}_{\omega_1} \oplus BF_{\omega_1}$ for the logic axiomatized by LM_{ω_1} and additional axiom schema BF_{ω_1} (the formal definition of the symbol \oplus is given in Section 3).

Now, we consider to give a formal system for $\mathbf{K}_{\omega_1} \oplus BF_{\omega_1}$ which satisfies the subformula property. Obviously, when we have an additional axiom schema BF_{ω_1} , the cut-elimination algorithm in [4] does not work, and although KANEKO and NA-GASHIMA proposed a cut-free system for $\mathbf{K}_{\omega_1} \oplus BF_{\omega_1}$ in [6], their system does not satisfy the subformula property, because of the following inference rule for BF_{ω_1} :

$$\frac{\Gamma \to \Delta, \ \Box \theta \quad (\text{for all } \theta \in \Theta) \quad \Box \bigwedge \Theta, \ \Gamma \to \Delta}{\Gamma \to \Delta}$$

In Section 4, we propose a cut-free system TLM_{ω_1} for $\mathbf{K}_{\omega_1} \oplus \text{BF}_{\omega_1}$ which satisfies the subformula property. The system TLM_{ω_1} is a kind of Gentzen style sequent calculus, but a sequent of TLM_{ω_1} , which is called a *tree sequent*, is defined as a finite tree of sequents in a standard sense. In [7], KASHIMA and SHIMURA introduced a notion of *connection* into sequent systems, and proved the cut-elimination theorem for the logic $\mathbf{H}_* + \mathbf{D}$, the intermediate logic with the axiom $\mathbf{D} = \forall x (\varphi(x) \lor p) \supset \forall x \varphi(x) \lor p$. Although [7] did not deal with the tree sequents explicitly, the idea is essentially equivalent (see also [1]). However, to derive the formula BF_{ω_1} , we need more. A tree sequent of TLM_{ω_1} is a finite tree of sequents $\Gamma \to \Delta$, but Γ and Δ are *countable* sets of formulas, instead of finite sets. In Section 5, we prove the cut-elimination theorem for TLM_{ω_1} via Kripke completeness.

2 The syntax and semantics for infinitary propositional modal logic

The *language* of infinitary propositional modal logic consists of a countable set V of propositional variables, the symbols \bigwedge and \bigvee for infinite conjunction and disjunction, respectively, the symbol \supset for implication, the symbol \neg for negation, and the symbol \Box for necessity. The set of *formulas* of the infinitary propositional modal logic is the least set which satisfies the following conditions:

- 1. each propositional variable in V is a formula;
- 2. if Θ is a countable set of formulas, then $(\bigwedge \Theta)$ is a formula;
- 3. if Θ is a countable set of formulas, then $(\bigvee \Theta)$ is a formula;
- 4. if φ and ψ are formulas, then $(\varphi \supset \psi)$ is a formula;
- 5. if φ is a formula, then $(\neg \varphi)$ is a formula;
- 6. if φ is a formula, then $(\Box \varphi)$ is a formula.

We write $\varphi \wedge \psi$ for $(\bigwedge \{\varphi, \psi\})$ and $\varphi \vee \psi$ for $(\bigvee \{\varphi, \psi\})$. Also, we sometimes write

 \top for $\bigwedge \emptyset$ and \bot for $\bigvee \emptyset$. To satisfy the above closure conditions, we need recursive construction of formulas up to ω_1 as follows:

- 1. define the set Φ_0 of formulas by $\Phi_0 = V$;
- 2. for any $\alpha \in \omega_1$, define the set $\Phi_{\alpha+1}$ of formulas by

$$\Phi_{\alpha+1} = \Phi_{\alpha} \cup \{\bigwedge \Theta : \Theta \subset \Phi_{\alpha} \text{ and } |\Theta| \in \omega_1\} \cup \{\bigvee \Theta : \Theta \subset \Phi_{\alpha} \text{ and } |\Theta| \in \omega_1\} \cup \{\varphi \supset \psi : \varphi, \ \psi \in \Phi_{\alpha}\} \cup \{\neg \varphi : \varphi \in \Phi_{\alpha}\} \cup \{\Box \varphi : \varphi \in \Phi_{\alpha}\};$$

- 3. for any limit ordinal $\alpha \in \omega_1$, define the set Φ_α by $\Phi_\alpha = \bigcup_{\beta \in \alpha} \Phi_\beta$;
- 4. the set of all formulas of infinitary modal logic is $\bigcup_{\alpha \in \omega_1} \Phi_{\alpha}$.

A Kripke frame is a pair $\langle W, R \rangle$ such that W is a non-empty set and R is a binary relation on W. A Kripke model \mathcal{M} is a triple $\langle W, R, v \rangle$, where $\langle W, R \rangle$ is a Kripke frame and v is a function from V to $\mathcal{P}(W)$. For any formula φ , we say that φ is valid at $w \in W$ if one of the following holds, according to the construction of φ , and write $w \models \varphi$ if this holds:

- (1) $w \vDash p$ if $w \in v(p)$;
- (2) $w \models \bigwedge \Theta$ if every θ in Θ satisfies $w \models \theta$;
- (3) $w \models \bigvee \Theta$ if there exists θ in Θ such that $w \models \theta$;
- (4) $w \vDash \chi \supset \psi$ if $w \nvDash \chi$ or $w \vDash \psi$;
- (5) $w \vDash \neg \psi$ if $w \nvDash \psi$;
- (6) $w \models \Box \psi$ if, for any w' in W, w R w' implies $w' \models \psi$.

Let φ be a formula and $\mathcal{M} = \langle W, R, v \rangle$ be a Kripke model. We say that φ is valid in \mathcal{M} if $w \models \varphi$ for any $w \in W$. Let $F = \langle W, R \rangle$ be a Kripke frame. We say that φ is valid in F and write $F \models \varphi$ if, for any valuation v, φ is valid in the model $\langle W, R, v \rangle$. Let \mathbf{L} be a logic and C be a class of Kripke frames. A logic \mathbf{L} is said to be *complete* with respect to the class C of Kripke frames if, for any formula $\varphi, \varphi \in \mathbf{L}$ whenever $F \models \varphi$ for any $F \in C$. A logic \mathbf{L} is said to be *sound* with respect to the class C of Kripke frames if, for any formula $\varphi, \varphi \in \mathbf{L}$ implies $F \models \varphi$ for any $F \in C$. A logic \mathbf{L} is said to be *characterized* by the class C of Kripke frames if, $\varphi \in \mathbf{L}$ if and only if $F \models \varphi$ for any $F \in C$.

3 Some formal systems

First, we define the system LK_{ω_1} for the classical infinitary logic (see [4]). A sequent $\Gamma \to \Delta$ of LK_{ω_1} is a pair of finite sets Γ and Δ of formulas. The axiom schemata of LK_{ω_1} are $p \to p, \to \bigwedge \emptyset$, and $\bigvee \emptyset \to$. Below, we list the inference rules of LK_{ω_1} , where Γ, Δ denotes the set $\Gamma \cup \Delta$ of formulas and Γ, φ and φ, Γ denote $\Gamma, \{\varphi\}$:

set
$$\frac{\Gamma \to \Delta}{\Gamma' \to \Delta'} \text{ (set)} \quad (\Gamma \subset \Gamma' \text{ and } \Delta \subset \Delta');$$
$$\Gamma \to \Delta, \varphi \quad \varphi, \Lambda \to \Xi \quad ($$

 cut

$$\frac{1}{\Gamma, \Lambda \to \Delta, \varphi \quad \varphi, \Lambda \to \Xi}{\Gamma, \Lambda \to \Delta, \Xi} \text{ (cut);}$$

 $\begin{array}{l} \text{conjunction} \ \frac{\Gamma \to \Delta, \varphi \ (\text{for all } \varphi \in \Theta)}{\Gamma \to \Delta, \bigwedge \Theta} \ (\to \bigwedge), \quad \frac{\varphi, \Gamma \to \Delta \ (\text{for some } \varphi \in \Theta)}{\bigwedge \Theta, \Gamma \to \Delta} \ (\bigwedge \to); \\ \text{disjunction} \ \frac{\Gamma \to \Delta, \varphi \ (\text{for some } \varphi \in \Theta)}{\Gamma \to \Delta, \bigvee \Theta} \ (\to \bigvee), \quad \frac{\varphi, \Gamma \to \Delta \ (\text{for all } \varphi \in \Theta)}{\bigvee \Theta, \Gamma \to \Delta} \ (\bigvee \to); \end{array}$

 $\begin{array}{ll} \text{implication} & \frac{\varphi, \Gamma \to \Delta, \psi}{\Gamma \to \Delta, \varphi \supset \psi} \, (\to \supset), & \quad \frac{\Gamma \to \Delta, \varphi \quad \psi, \Lambda \to \Xi}{\varphi \supset \psi, \Gamma, \Lambda \to \Delta, \Xi} \, (\supset \to); \\ \text{negation} & \frac{\varphi, \Gamma \to \Delta}{\Gamma \to \Delta, \neg \varphi} \, (\to \neg), & \quad \frac{\Gamma \to \Delta, \varphi}{\neg \varphi, \Gamma \to \Delta} \, (\neg \to). \end{array}$

The system LK_{ω_1} axiomatizes the infinitary propositional classical logic characterized by the class of all complete Boolean algebras (see [12, 4]). The formal system LM_{ω_1} for infinitary modal logic consists of LK_{ω_1} and the derivation rule (nec).

Let LX be any Gentzen style sequent calculus. A sequent $\Gamma \to \Delta$ is said to be *derivable* in LX from a set S of sequents, and \mathcal{D} is called a *derivation* of $\Gamma \to \Delta$ from S, if one of the following conditions holds (see [4]):

1. $\Gamma \to \Delta$ is an axiom of LX or a member of S. $\mathcal{D} = (S, \Gamma \to \Delta, \emptyset);$

2. there exist a set $\{\Gamma_i \to \Delta_i : i \in I\}$ of sequents, a set $\{\mathcal{D}_i : i \in I\}$ of derivations, and an inference rule (R) in LX such that for any $i \in I$ the sequent $\Gamma_i \to \Delta_i$ is derivable from S and \mathcal{D}_i is a derivation of $\Gamma_i \to \Delta_i$ from S, and $\Gamma \to \Delta$ is derivable from $\{\Gamma_i \to \Delta_i : i \in I\}$ by (R), as follows:

$$\frac{\Gamma_i \to \Delta_i \quad (i \in I)}{\Gamma \to \Delta} (\mathbf{R}).$$

$$\mathcal{D} = ((\mathbf{R}), \, \Gamma \to \Delta, \, (\mathcal{D}_i)_{i \in I}).$$

A formula φ is said to be *derivable in* LX from a set Γ of formulas if the sequent $\rightarrow \varphi$ is derivable from the set $\{\rightarrow \psi : \psi \in \Gamma\}$ of sequents. If a formula φ is derivable from the empty set, φ is said to be *derivable*. Let $\mathcal{D} = ((\mathbb{R}), \Gamma \rightarrow \Delta, (\mathcal{D}_i)_{i \in I})$ be a derivation. Then, the rule (\mathbb{R}) is called the *last rule* of \mathcal{D} . The set of subderivations of \mathcal{D} consists of \mathcal{D} and all subderivations of \mathcal{D}_i for all $i \in I$. An inference rule is said to be *included* in \mathcal{D} if it is the last rule of some subderivations of \mathcal{D} . A derivation \mathcal{D} is said to be *cut-free* if \mathcal{D} does not include the cut-rule. A logic \mathbf{L} is said to be *axiomatized* by a formal system LX if \mathbf{L} is the set of all formulas which are derivable in LX. A formal system is said to be *complete* (resp. *sound*) with respect to the class C of Kripke frames if the logic axiomatized by the system is complete (resp. sound) with respect to C.

The least infinitary modal logic \mathbf{K}_{ω_1} is the logic which is axiomatized by LM_{ω_1} . Let (R) be any additional axiom schema or inference rule. We write $\mathrm{LM}_{\omega_1} \oplus (\mathrm{R})$ for the system which consists of LM_{ω_1} and (R), and write $\mathbf{K}_{\omega_1} \oplus (\mathrm{R})$ for the logic axiomatized by $\mathrm{LM}_{\omega_1} \oplus (\mathrm{R})$. For any formula φ , we write $\mathrm{LM}_{\omega_1} \oplus \varphi$ for the system which consists of LM_{ω_1} and axiom schema $\to \varphi$, and write $\mathbf{K}_{\omega_1} \oplus \varphi$ for the logic axiomatized by $\mathrm{LM}_{\omega_1} \oplus \varphi$.

In [4], FEFERMAN proved the cut-elimination theorem for LK_{ω_1} . Since the cutelimination algorithm in [4] also works for LM_{ω_1} , the cut-elimination theorem for LM_{ω_1} is obtained immediately:

Theorem 3.1. If a formula φ is derivable in LM_{ω_1} , there exists a derivation of φ in LM_{ω_1} which does not include the rule (cut).

Now, we introduce a pair of new inference rules for modal operator (see [9, 10]):

$$\frac{\Box\Gamma \to \varphi}{\Box\Gamma \to \Box\varphi} (\to \Box), \qquad \frac{\varphi, \Gamma \to \Delta}{\Box\varphi, \Gamma \to \Delta} (\Box \to).$$

It is easy to see that the following relations hold:

- 1. $LM_{\omega_1} \oplus (\rightarrow \Box) = LM_{\omega_1} \oplus (\Box p \supset \Box \Box p);$
- 2. $LM_{\omega_1} \oplus (\Box \rightarrow) = LM_{\omega_1} \oplus (\Box p \supset p);$
- 3. $LM_{\omega_1} \oplus (\rightarrow \Box) \oplus (\Box \rightarrow) = LM_{\omega_1} \oplus (\Box p \supset \Box \Box p) \oplus (\Box p \supset p).$

Then, for each of the above systems, the cut-elimination theorem is obtained by the cut-elimination algorithm in [4], immediately.

Let BF_{ω_1} be the formula $\bigwedge_{i \in \omega} \Box p_i \supset \Box \bigwedge_{i \in \omega} p_i$ of infinitary modal logic. It is easy to see that BF_{ω_1} is valid in any Kripke model. Now, from the cut-elimination theorems, it follows that BF_{ω_1} is not derivable in any of the above systems. Hence, we have

Theorem 3.2. The following logics are Kripke incomplete:

 $\mathbf{K}_{\omega_1}, \quad \mathbf{K}_{\omega_1} \oplus (\Box p \supset \Box \Box p), \quad \mathbf{K}_{\omega_1} \oplus (\Box p \supset p), \quad \mathbf{K}_{\omega_1} \oplus (\Box p \supset \Box \Box p) \oplus (\Box p \supset p).$

On the other hand, the logic $\mathbf{K}_{\omega_1} \oplus \mathrm{BF}_{\omega_1}$ is characterized by the class of all Kripke frames (see [16, 15], also [11, 3]), and the logics $\mathbf{K}_{\omega_1} \oplus \mathrm{BF}_{\omega_1} \oplus (\Box_p \supset \Box \Box_p)$, $\mathbf{K}_{\omega_1} \oplus \mathrm{BF}_{\omega_1} \oplus (\Box_p \supset p)$, and $\mathbf{K}_{\omega_1} \oplus \mathrm{BF}_{\omega_1} \oplus (\Box_p \supset p) \oplus (\Box_p \supset p)$ are characterized by the class of transitive, reflexive, and transitive and reflexive Kripke frames, respectively (see [16, 15]).

4 The system TLM_{ω_1}

In this section, we introduce the system $\operatorname{TLM}_{\omega_1}$ for the logic $\mathbf{K}_{\omega_1} \oplus \operatorname{BF}_{\omega_1}$. A sequent of $\operatorname{TLM}_{\omega_1}$, which is called a *tree sequent*, is a finite tree of sequents in a standard sense (see Figure 1). However, for each sequent $\Gamma \to \Delta$ in a node of a tree sequent, Γ and Δ are countable sets of formulas. We assume that each node N of a tree sequent has an address (ξ, n) , where ξ is the address of the immediate predecessor N' of N and n denotes that N is the nth immediate successor of N'. The address of the root is 0.

Figure 1. A tree sequent

For each i, Γ_i and Δ_i are countable sets of formulas

We write $\xi : \Gamma \to \Delta$ for the node of a tree sequent whose address is ξ and attached sequent is $\Gamma \to \Delta$. We sometimes identify an address ξ with the node $\xi : \Gamma \to \Delta$ at ξ , and the set of all addresses of a tree sequent T with T itself. In this manner, for any n nodes ξ_1, \ldots, ξ_n in $T, T \setminus \{\xi_1, \ldots, \xi_n\}$ denotes the graph obtained from T by removing n nodes at ξ_1, \ldots, ξ_n , and

 $T \setminus \{\xi_1, \dots, \xi_n\} \cup \{\xi_1 : \Gamma_1 \to \Delta_1\} \cup \dots \cup \{\xi_n : \Gamma_n \to \Delta_n\}$

denotes the tree sequent which is obtained from T by replacing the nodes at ξ_1, \ldots, ξ_n with $\xi_1 : \Gamma_1 \to \Delta_1, \ldots, \xi_n : \Gamma_n \to \Delta_n$, respectively. For any tree sequent T and a node ξ of T, we write $\downarrow \xi$ for the subtree of T which consists of ξ and all descendants of ξ . 15213870, 2001, 3

vdoi/10.1002/1521-3870(200108)47:3<327::AID-MALQ327>3.0.CO;2-P by University Of Ottawa Library,

Wiley Online I

Library on [01/08/2024].

See the

l'erm

and Condition

by the applicable Creative

15213870, 2001, 3, Downloadd from https://onlinetibrary.wiley.com/doi/10.1002/1521-3870Q20010847.3<237:: AID-MALQ327-3.0C0:2-P by University Of Otawa Library. Wiley Online Library on [01/08/2024]. See the Terms and Conditions (https://onlineLibrary.wiley.com/doi/10.1002/1521-3870Q20010847.3<237:: AID-MALQ327-3.0C0:2-P by University Of Otawa Library. Wiley Online Library on [01/08/2024]. See the Terms and Conditions (https://onlineLibrary.wiley.com/doi/10.1002/1521-3870Q20010847.3<237:: AID-MALQ327-3.0C0:2-P by University Of Otawa Library. Wiley Online Library on [01/08/2024]. See the Terms and Conditions (https://onlineLibrary.wiley.com/doi/10.1002/1521-3870Q20010847.3</td>

-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

An axiom of TLM_{ω_1} is a tree sequent which includes one of the sequent of the shape $\varphi \to \varphi, \to \bigwedge \emptyset$, and $\bigvee \emptyset \to$ in some nodes. The inference rules of TLM_{ω_1} are the following:

negation

$$\frac{T \setminus \{\eta\} \cup \{\eta : \varphi, \Gamma \to \Delta\}}{T \setminus \{\eta\} \cup \{\eta : \Gamma \to \Delta, \neg\varphi\}} (\to \neg)_+, \\ \frac{T \setminus \{\eta\} \cup \{\eta : \Gamma \to \Delta, \varphi\}}{T \setminus \{\eta\} \cup \{\eta : \neg\varphi, \Gamma \to \Delta\}} (\neg \to)_+;$$

necessitation 1

$$\frac{T \setminus \{\eta, (\eta, n)\} \cup \{\eta : \Gamma \to \Delta\} \cup \{(\eta, n) :\to \varphi\}}{T \setminus \{\eta, (\eta, n)\} \cup \{\eta : \Gamma \to \Delta, \Box \varphi\}} (\to \Box)_+,$$

where $(\eta, n) :\to \varphi$ is a leaf of the upper tree sequent (see Figure 4);

Figure 4. $(\rightarrow \Box)_+$

The rule $(\rightarrow \Box)_+$ can be applied to a node η of a tree sequent only when η has an immediate successor of the shape $(\eta, n) :\rightarrow \varphi$ which is a leaf of the tree. The node $(\eta, n) :\rightarrow \varphi$ will disappear after the application of the rule $(\rightarrow \Box)_+$

necessitation 2

$$\frac{T \setminus \{\eta, (\eta, 0), \dots, (\eta, n)\} \cup \{\eta : \Gamma \to \Delta\} \cup \bigcup_{k=0}^{n} \{(\eta, k) : \varphi, \Gamma_k \to \Delta_k\}}{T \setminus \{\eta, (\eta, 0), \dots, (\eta, n)\} \cup \{\eta : \Box \varphi, \Gamma \to \Delta\} \cup \bigcup_{k=0}^{n} \{(\eta, k) : \Gamma_k \to \Delta_k\}} (\Box \to)_+,$$

where $\{(\eta, 0), \ldots, (\eta, n)\}$ is the set of all immediate successors of η , and any immediate successor of η has the formula φ in the left hand side (see Figure 5).

A formula $\Box \varphi$ can be introduced to the left hand side of a node $\eta : \Gamma \to \Delta$ of a tree sequent by the rule $(\Box \to)_+$ only when all of the immediate successors $(\eta, 0), \ldots, (\eta, n)$ of η have the formula φ in their left hand sides

A formula φ of infinitary propositional modal logic is said to be *derivable in* TLM_{ω_1} if the tree sequent $\rightarrow \varphi$, which consists only of the root, is derivable in TLM_{ω_1}.

15213870, 2001, 3, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/1521-3570/200108/17.3-277: AID-MALQ372-30.CO; 2-P by University Of Otawa Library, Wiley Online Library on [01/08/2024], See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/1521-3570/200108/17.3-277: AID-MALQ372-30.CO; 2-P by University Of Otawa Library, Wiley Online Library on [01/08/2024], See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/1521-3570/200108/17.3-277: AID-MALQ372-30.CO; 2-P by University Of Otawa Library, Wiley Online Library on [01/08/2024], See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/1521-3570/200108/17.3-277: AID-MALQ372-30.CO; 2-P by University Of Otawa Library, Wiley Online Library on [01/08/2024], See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/1521-3570/200108/17.3-277: AID-MALQ372-30.CO; 2-P by University Of Otawa Library, Wiley Online Library on [01/08/2024], See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/1521-3570/200108/17.3-277: AID-MALQ372-30.CO; 2-P by University Of Otawa Library on [01/08/2024], See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/1521-3570/200108/17.3-277: AID-MALQ372-30.CO; 2-P by University Of Otawa Library on [01/08/2024], See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/1521-3570/200108/17.3-277; AID-MALQ372-30.CO; 2-P by University Of Otawa Library on [01/08/2024], See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/1521-3570/200108/17.3-277; AID-MALQ372-30.CO; 2-P by University Of Otawa Library on [01/08/2024], See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/1521-3570/200108/17.3-277; AID-MALQ372-30.CO; 2-P by University Of Otawa Library on [01/08/2024], See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002/1521-370.CO; 2-P by University Of Otawa Library on [01/08/2024], See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.100

15213870, 2001, 3, Do

om/doi/10.1002/1521-3870(200108)47.3<327:: AID-MALQ327>3.0.CO; 2-P by University Of Ottawa Library, Wiley Online Library on [01/08/2024].

on Wiley Online J

governed by the applicable Creative Commons

Theorem 4.1. The formula BF_{ω_1} is derivable in TLM_{ω_1} .

Proof. Since a sequent in a node of a tree sequent is a pair of countable sets of formulas, the following proof figure is a well-defined derivation of BF_{ω_1} :

$$\frac{\{0: \{\Box p_j\}_{j \neq i} \rightarrow\} \cup \{(0,1): p_i \rightarrow p_i\}}{\{0: \{\Box p_i\}_{i \in \omega} \rightarrow\} \cup \{(0,1): \rightarrow p_i\}} (\Box \rightarrow)_+ \\
\frac{\{0: \{\Box p_i\}_{i \in \omega} \rightarrow\} \cup \{(0,1): \rightarrow p_i\}}{\{0: \bigwedge_{i \in \omega} \Box p_i \rightarrow\} \cup \{(0,1): \rightarrow \bigwedge_{i \in \omega} p_i\}} (\land \rightarrow) \\
\frac{\{0: \bigwedge_{i \in \omega} \Box p_i \rightarrow\} \cup \{(0,1): \rightarrow \bigwedge_{i \in \omega} p_i\}}{\{0: \bigwedge_{i \in \omega} \Box p_i \rightarrow \Box \bigwedge_{i \in \omega} p_i\}} (\rightarrow \Box)_+ \\
\frac{\{0: \bigwedge_{i \in \omega} \Box p_i \rightarrow \Box \bigwedge_{i \in \omega} p_i\}}{\{0: \rightarrow \bigwedge_{i \in \omega} \Box p_i \supset \Box \bigwedge_{i \in \omega} p_i\}} (\rightarrow \supset)_+ \\
\qquad\Box$$

5 The cut-elimination theorem for TLM_{ω_1}

The embedding * from the set of all tree sequents of TLM_{ω_1} to the set of all formulas is defined inductively as follows:

1. If $T = \{0 : \Gamma \to \Delta\}$, then $T^* := \bigwedge \Gamma \supset \bigvee \Delta$;

2. if $0: \Gamma \to \Delta$ is the root of T and A is the set of all immediate successors of the root, then $T^* := \bigwedge \Gamma \supset \bigvee \Delta \lor \bigvee_{\xi \in A} \Box(\downarrow \xi)^*$.

Theorem 5.1. If a formula φ is derivable in TLM_{ω_1} , then it is valid in any Kripke model.

Proof. Suppose a tree sequent T has a derivation \mathcal{D} in TLM_{ω_1} . Then, easy induction on \mathcal{D} shows that T^* is valid in any Kripke model.

Now, we prove that the cut-free fragment of TLM_{ω_1} is complete with respect to the class of Kripke frames. First, we show the following lemma.

Lemma 5.1. Let T be a tree sequent of TLM_{ω_1} and $\eta: \Gamma \to \Delta$ be a node of T. Suppose T has no cut-free derivation. Then the following statements 1-5 hold:

1. If $\bigwedge \Theta \in \Gamma$, then the tree sequent $T \setminus \{\eta\} \cup \{\eta : \Theta, \Gamma \to \Delta\}$ has no cut-free derivation (Figure 6). If $\bigwedge \Theta \in \Delta$, then there exists a formula $\theta \in \Theta$ such that the tree sequent $T \setminus \{\eta\} \cup \{\eta : \Gamma \to \Delta, \theta\}$ has no cut-free derivation.

Figure 6. Lemma 5.1, conjunction The tree sequent T' is obtained from T by adding the set Θ of formulas to the left hand side of η

2. If $\bigvee \Theta \in \Gamma$, then there exists a formula $\theta \in \Theta$ such that the tree sequent $T \setminus \{\eta\} \cup \{\eta : \theta, \Gamma \to \Delta\}$ has no cut-free derivation. If $\bigvee \Theta \in \Delta$, then the tree sequent $T \setminus \{\eta\} \cup \{\eta : \Gamma \to \Delta, \Theta\}$ has no cut-free derivation.

3. If $\varphi \supset \psi \in \Gamma$, then one of the tree sequents $T \setminus \{\eta\} \cup \{\eta : \Gamma \to \Delta, \varphi\}$ and $T \setminus \{\eta\} \cup \{\eta : \psi, \Gamma \to \Delta\}$ has no cut-free derivation. If $\varphi \supset \psi \in \Delta$, then the tree sequent $T \setminus \{\eta\} \cup \{\eta : \varphi, \Gamma \to \Delta, \psi\}$ has no cut-free derivation.

4. If $\neg \varphi \in \Gamma$, then the tree sequent $T \setminus \{\eta\} \cup \{\eta : \Gamma \to \Delta, \varphi\}$ has no cut-free derivation. If $\neg \varphi \in \Delta$, then the tree sequent $T \setminus \{\eta\} \cup \{\eta : \varphi, \Gamma \to \Delta\}$ has no cut-free derivation.

5. If $\Box \varphi \in \Gamma$ and $(\eta, i) : \Gamma_{(\eta, i)} \to \Delta_{(\eta, i)}$ (i = 0, ..., n) is the list of all immediate successors of η in T, then the tree sequent

 $T \setminus \{(\eta, 0), \dots, (\eta, n)\} \cup \bigcup_{i=0,\dots,n} \{(\eta, i) : \varphi, \Gamma_{(\eta, i)} \to \Delta_{(\eta, i)}\}$

has no cut-free derivation (Figure 7). If $\Box \varphi \in \Delta$ and $(\eta, i) : \Gamma_{(\eta, i)} \to \Delta_{(\eta, i)}$ for i = 0, ..., n is the list of all immediate successors of η in T, then the tree sequent $T \cup \{(\eta, n+1) :\to \varphi\}$ has no cut-free derivation (Figure 8).

Figure 7. Lemma 5.1, necessitation left

The tree sequent T' is obtained from T by adding the formula φ to the left hand sides of the immediate successors (η, i) (i = 0, ..., n)

Figure 8. Lemma 5.1, necessitation right The tree sequent T' is obtained from T by adding the new node $(\eta, n + 1) : \rightarrow \varphi$

Proof. Straightforward from the definitions of inference rules of TLM_{ω_1} . \Box

Theorem 5.2. If a formula φ of infinitary propositional modal logic is valid in any Kripke model, then there exists a derivation of φ in TLM_{ω_1} which does not include $(\text{cut})_+$. Proof. We show that if φ has no cut-free derivation, then there exists a Kripke model which refutes φ . Let $(\varphi_i)_{i \in \omega}$ be an enumeration of all subformulas of φ and $(\psi_i)_{i \in \omega}$ be the sequence $\varphi_0, \varphi_0, \varphi_1, \varphi_0, \varphi_1, \varphi_2 \dots$, in which each φ_i occurs infinitary many times. Now, we define a sequence $(T_i)_{i \in \omega}$ of tree sequents such that each T_i has no cut-free derivation. Let $T_0 := \{0 :\to \varphi\}$. Suppose T_k is defined. For each address η in T_k , let $\{\eta : \Gamma_\eta \to \Delta_\eta\}$ be the node of T_k at η . We define T_{k+1} according as the construction of ψ_k . By Lemma 5.1, the construction of T_{k+1} is well-defined.

1. $\psi_k = p$: define $T_{k+1} := T_k$;

2. $\psi_k = \bigwedge \Theta$: for each η in T_k , if $\bigwedge \Theta \in \Gamma_\eta$, then add Θ to Γ_η , and if $\bigwedge \Theta \in \Delta_\eta$, then add a formula $\theta \in \Theta$ chosen in Lemma 5.1 to Δ_η ;

3. $\psi_k = \bigvee \Theta$: dual to the previous case;

4. $\psi_k = \chi \supset \psi$: for each η in T_k , if $\chi \supset \psi \in \Gamma_\eta$, then add χ to Δ_η or ψ to Γ_η so that T_{k+1} does not have any cut-free derivation, and if $\chi \supset \psi \in \Delta_\eta$, then add χ to Γ_η and ψ to Δ_η ;

5. $\psi_k = \neg \psi$: for each η in T_k , if $\neg \psi \in \Gamma_\eta$, then add ψ to Δ_η , and if $\neg \psi \in \Delta_\eta$, then add ψ to Γ_η ;

6. $\psi_k = \Box \psi$: for each η in T_k , if $\Box \psi \in \Gamma_\eta$, then add ψ to the left hand sides of all immediate successors $(\eta, 0), \ldots, (\eta, n)$ of η , and if $\Box \psi \in \Delta_\eta$, then add a new node $(\eta, n+1) : \rightarrow \psi$ under η .

Now, we define the Kripke frame $\langle W, R \rangle$ as the limit of the sequence $(T_i)_{i \in \omega}$. For each $i \in \omega$, suppose the node of T_i at an address η is denoted by $\eta : \Gamma^i_\eta \to \Delta^i_\eta$. For each η , define the sets $\lim \Gamma_\eta$ and $\lim \Delta_\eta$ by $\lim \Gamma_\eta = \bigcup_{i \in \omega} \Gamma^i_\eta$, $\lim \Delta_\eta = \bigcup_{i \in \omega} \Delta^i_\eta$. We write $\lim \eta$ for the pair $(\lim \Gamma_\eta, \lim \Delta_\eta)$. Then, define W as the collection of all $\lim \eta$, and define the relation R on W by $\lim \eta R \lim \zeta$ iff ζ is an immediate successor of η . We define a valuation v by $v(p) = \{\lim \eta : p \in \lim \Gamma_\eta\}$ for each propositional variable p. Now, a simple induction shows that for any $i \in \omega$ and any address η , if $\varphi_i \in \lim \Gamma_\eta$, then $\lim \eta \models \varphi_i$, and if $\varphi_i \in \lim \Delta_\eta$, then $\lim \eta \nvDash \varphi_i$. Since φ is a member of $(\varphi_i)_{i \in \omega}$ and $\varphi \in \lim \Delta_0$, we complete the proof. \Box

From Theorem 5.1 and Theorem 5.2, the following theorems hold immediately.

Theorem 5.3. A formula φ has a cut-free derivation in TLM_{ω_1} if and only if $F \vDash \varphi$ for every Kripke frame F.

Theorem 5.4. If a formula φ is derivable in TLM_{ω_1} , then there exists a derivation of φ in TLM_{ω_1} which does not include $(\text{cut})_+$.

Since any rule in TLM_{ω_1} but $(cut)_+$ satisfies the subformula property, the system TLM_{ω_1} minus $(cut)_+$ is a formal system for $\mathbf{K}_{\omega_1} \oplus BF_{\omega_1}$ with the subformula property.

Now, consider the systems which are obtained from TLM_{ω_1} by replacing $(\Box \rightarrow)_+$ with one of the rules listed below. Then, by the same argument, it follows that each of these systems is cut-free and axiomatizes the logic which is characterized by the class of reflexive, transitive, and reflexive and transitive frames, respectively:

 $\Box p \supset p$:

 $\frac{T \setminus \{\eta, (\eta, 0), \dots, (\eta, n)\} \cup \{\eta : \varphi, \Gamma \to \Delta\} \cup \bigcup_{k=0}^{n} \{(\eta, k) : \varphi, \Gamma_k \to \Delta_k\}}{T \setminus \{\eta, (\eta, 0), \dots, (\eta, n)\} \cup \{\eta : \Box \varphi, \Gamma \to \Delta\} \cup \bigcup_{k=0}^{n} \{(\eta, k) : \Gamma_k \to \Delta_k\}} (\Box \to)_{\mathrm{T}},$ where $\{(\eta, 0), \dots, (\eta, n)\}$ is the set of all immediate successors of η ;

$$\begin{array}{l} \Box p \supset \Box \Box p; \\ \hline T \setminus \downarrow \eta \cup \{\eta : \Gamma \to \Delta\} \cup \bigcup_{\xi \in \downarrow \eta, \, \xi \neq \eta} \{\xi : \varphi, \Gamma_{\xi} \to \Delta_{\xi}\} \\ \hline T \setminus \downarrow \eta \cup \{\eta : \Box \varphi, \Gamma \to \Delta\} \cup \bigcup_{\xi \in \downarrow \eta, \, \xi \neq \eta} \{\xi : \Gamma_{\xi} \to \Delta_{\xi}\} \ (\Box \to)_{4}; \\ \Box p \supset p \oplus \Box p \supset \Box \Box p; \\ \hline T \setminus \downarrow \eta \cup \bigcup_{\xi \in \downarrow \eta} \{\xi : \varphi, \, \Gamma_{\xi} \to \Delta_{\xi}\} \\ \hline T \setminus \downarrow \eta \cup \{\eta : \Box \varphi, \, \Gamma_{\eta} \to \Delta_{\eta}\} \cup \bigcup_{\xi \in \downarrow \eta, \, \xi \neq \eta} \{\xi : \Gamma_{\xi} \to \Delta_{\xi}\} \ (\Box \to)_{S4}. \end{array}$$

6 Infinitary intuitionistic logic

In this section, we give a formal system for infinitary intuitionistic logic which satisfies the subformula property.

Let D be the formula $\forall x (\varphi(x) \lor q) \supset \forall x \varphi(x) \lor q$ of predicate logic which is known as the axiom of constant domain. Let D_{ω_1} be the infinitary translation of D, that is, the formula $\bigwedge_{i \in \omega} (p_i \lor q) \supset \bigwedge_{i \in \omega} p_i \lor q$ of infinitary logic. It is known that the axiom D_{ω_1} is necessary to axiomatize the infinitary intuitionistic logic characterized by the class of all Kripke frames ([8], see also [5, 13]). We write $\mathbf{H}_{\omega_1} + D_{\omega_1}$ for the infinitary intuitionistic logic characterized by the class of all Kripke frames.

The language we consider in this section consists of a countable set of propositional variables, the symbols \bigwedge and \bigvee for countable conjunction and disjunction, respectively, and \supset for implication. The set of formulas is defined in the same way as in Section 2, but $\neg \varphi$ is defined as an abbreviation of $\varphi \supset \bot$. The system TLJ_{ω_1} is a tree type sequent calculus for infinitary intuitionistic logic. A tree sequent of TLJ_{ω_1} is a finite tree of sequents of the shape $\Gamma \rightarrow \Delta$, where Γ and Δ are countable sets of formulas. Note that the cardinality of the right hand side of a sequent of a node is also countable. The axiom and inference rules for \bigwedge and \bigvee of TLJ_{ω_1} are same as for TLM_{ω_1} . Inference rules for implication are the following:

$$\frac{T \setminus \{\eta, (\eta, k)\} \cup \{\eta : \Gamma \to \Delta\} \cup \{(\eta, k) : \varphi \to \psi\}}{T \setminus \{\eta, (\eta, k)\} \cup \{\eta : \Gamma \to \Delta, \varphi \supset \psi\}} (\to \supset)_{\mathrm{I}}, \\ \frac{T \setminus \{\eta\} \cup \{\eta : \Gamma \to \Delta, \varphi\} \quad T \setminus \{\eta\} \cup \{\eta : \psi, \Gamma \to \Delta\}}{T \setminus \{\eta\} \cup \{\eta : \varphi \supset \psi, \Gamma \to \Delta\}} (\supset \to)_{\mathrm{I}}.$$

Here, in $(\rightarrow \supset)_{I}$, the node $(\eta, k) : \varphi \rightarrow \psi$ is a leaf of the upper sequent and disappears after the application of the rule $(\rightarrow \supset)_{I}$. On the other hand, $(\supset \rightarrow)_{I}$ is the same as $(\supset \rightarrow)_{+}$ in TLM_{ω_1}. The structural rules of TLJ_{ω_1} are (set)_I, (cut)_I, and (M)_I, where (set)_I and (cut)_I are the same as (set)₊ and (cut)₊ in TLM_{ω_1}, respectively, and (M)_I is the following rule:

$$\frac{T \setminus \{\eta, (\eta, k)\} \cup \{\eta : \Gamma \to \Delta\} \cup \{(\eta, k) : \Theta, \Lambda \to \Sigma\}}{T \setminus \{\eta, (\eta, k)\} \cup \{\eta : \Theta, \Gamma \to \Delta\} \cup \{(\eta, k) : \Lambda \to \Sigma\}} (M)_{I}.$$

It is easy to see that the formula D_{ω_1} is derivable in TLJ_{ω_1} .

We define the embedding * from the set of tree sequents of TLJ_{ω_1} to the set of formulas of infinitary logic. Let T be any tree sequent of TLJ_{ω_1} . Then the formula T^* is defined inductively as follows:

1. If $T = \{0 : \Gamma \to \Delta\}$, then $T^* := \bigwedge \Gamma \supset \bigvee \Delta$;

2. if $0: \Gamma \to \Delta$ is the root of T and A is the set of all immediate successors of the root 0, then $T^* := \bigwedge \Gamma \supset (\bigvee \Delta \lor \bigvee_{\xi \in A} (\downarrow \xi)^*).$

15213870, 2001, 3, Downloa

from https://onlinelibarg.viley.com/doi/10.1002/1521-3870(200108)47:3<327::AID-MALQ327>3.0.CO;2-P by University Of Otuwa Library, Wiley Online Library on [01/08/2024]. See the Terms

and Conditions (https://onlinelibrary

and-conditions) on Wiley Online Library

fo

f use; OA

articles are governed by the applicable Creative Commons License

It is easy to check that if a tree sequent T is derivable in TLJ_{ω_1} , then T^* is valid in every Kripke model. Hence, we have the following

Theorem 6.1. If a formula φ is derivable in TLJ_{ω_1} , then φ is valid in every Kripke frame.

By the definitions of the derivation rules for Boolean connectives and $(M)_{I}$, the following lemma holds immediately.

Lemma 6.1. Let T be a tree sequent of $\operatorname{TLJ}_{\omega_1}$ which has no cut-free derivation. For any address η in T, suppose that the node at η is denoted by $\eta: \Gamma_{\eta} \to \Delta_{\eta}$. Then the following holds for any node $\eta: \Gamma_{\eta} \to \Delta_{\eta}$ in T:

1. If $p \in \Gamma_{\eta}$, then the tree sequent $T \setminus \downarrow \eta \cup \bigcup_{\xi \in \downarrow \eta} \{\xi : p, \Gamma_{\xi} \to \Delta_{\xi}\}$ has no cut-free derivation (Figure 9).

2. If $\bigwedge \Theta \in \Gamma_{\eta}$, then the tree sequent $T \setminus \downarrow \eta \cup \bigcup_{\xi \in \downarrow \eta} \{\xi : \Theta, \Gamma_{\xi} \to \Delta_{\xi}\}$ has no cut-free derivation. If $\bigwedge \Theta \in \Delta_{\eta}$, then there exists a formula $\theta \in \Theta$ such that the tree sequent $T \setminus \{\eta\} \cup \{\eta : \Gamma_{\eta} \to \Delta_{\eta}, \theta\}$ has no cut-free derivation.

3. If $\bigvee \Theta \in \Gamma_{\eta}$, then there exists a formula $\theta \in \Theta$ such that the tree sequent $T \setminus \downarrow \eta \cup \bigcup_{\xi \in \downarrow \eta} \{\xi : \theta, \Gamma_{\xi} \to \Delta_{\xi}\}$ has no cut-free derivation. If $\bigvee \Theta \in \Delta_{\eta}$, then the tree sequent $T \setminus \{\eta\} \cup \{\eta : \Gamma_{\eta} \to \Delta_{\eta}, \Theta\}$ has no cut-free derivation.

4. If $\varphi \supset \psi \in \Gamma_{\eta}$, then one of the two tree sequents $T \setminus \{\eta\} \cup \{\eta : \Gamma_{\eta} \to \Delta_{\eta}, \varphi\}$, $T \setminus \downarrow \eta \cup \bigcup_{\xi \in \downarrow \eta} \{\xi : \psi, \Gamma_{\xi} \to \Delta_{\xi}\}$ has no cut-free derivation. If $\varphi \supset \psi \in \Delta_{\eta}$, then the tree sequent $T \cup \{(\eta, n+1) : \varphi \to \psi\}$ has no cut-free derivation, where $(\eta, n+1)$ is a new node.

Figure 9. Lemma 6.1, propositional variable

The tree sequent T' is obtained from T by adding the propositional variable p to the left hand sides of the members of $\downarrow \eta$

Now, in the same way as in Section 5, we can show that the cut-free fragment of $\text{TL}J_{\omega_1}$ is complete with respect to the class of Kripke frames. In this case, we refer Lemma 6.1 for the construction of the counter model, instead of Lemma 5.1. Then, the cut-elimination theorem for $\text{TL}J_{\omega_1}$ holds immediately.

Theorem 6.2. A formula φ has a cut-free derivation in TLJ_{ω_1} if and only if $F \vDash \varphi$ for any Kripke frame F.

Theorem 6.3. If a formula φ is derivable in TLJ_{ω_1} , then there exists a derivation of φ in TLJ_{ω_1} which does not include $(\text{cut})_{\text{I}}$.

References

- AVRON, A., The method of hypersequents in the proof theory of propositional nonclassical logics. In: Logic: From Foundations to Applications, European Logic Colloquium (W. HODGES, M. HYLAND, C. STEINHORN, and J. TRUSS, eds.), Oxford 1996, pp. 1 – 32.
- [2] BUSS, S. R., An introduction to proof theory. In: Handbook of proof theory (S. R. BUSS, ed.), Elsevier, Amsterdam et al. 1998, pp. 1 – 78.
- [3] FATTOROSI-BARNABA, M., and S. GRASSOTTI, An infinitary graded modal logic (Graded modalities VI). Math. Logic Quarterly 41 (1995), 547 – 563.
- [4] FEFERMAN, S., Lectures on proof theory. In: Proceedings of the Summer School in Logic (M. H. LÖB, ed.), Lecture Notes in Mathematics 70, Springer-Verlag, Berlin-Heidelberg 1967, pp. 1 – 107.
- [5] GÖRNEMANN, S., A logic stronger than intuitionism. J. Symbolic Logic 36 (1971), 249 – 261.
- [6] KANEKO, M., and T. NAGASHIMA, Game logic and its applications II. Studia Logica 58 (1997), 273 – 303.
- [7] KASHIMA, R., and T. Shimura, Cut-elimination theorem for the logic of constant domains. Math. Logic Quarterly 40 (1994), 153 – 172.
- [8] NADEL, M. E., $\mathcal{L}_{\omega_1\omega}$ and admissible fragments. In: Model-Theoretic Logic (J. BAR-WISE, and S. FEFERMAN, eds.), Springer-Verlag, Berlin-Heidelberg-New York 1985, pp. 271 316.
- [9] OHNISHI, M., and K. MATSUMOTO, Gentzen method in modal calculi. Osaka J. Math. 9 (1957), 113 – 130.
- [10] OHNISHI, M., and K. MATSUMOTO, Gentzen method in modal calculi II. Osaka J. Math. 11 (1959), 115 – 120.
- [11] RADEV, S., Infinitary propositional normal modal logic. Studia Logica 46 (1987), 291 – 309.
- [12] RASIOWA, H., and R. SIKORSKI, The Mathematics of Metamathematics. PWN-Polish Scientific Publishers, Warszawa 1963.
- [13] RAUSZER, C., and B. SABALSKI, Remarks on distributive pseudo-Boolean algebra. Bull. Acad. Polon. Sci., Serie Math., Astr., Phys. 23 (1975), 123 – 129.
- [14] SCHWICHTENBERG, H., Proof theory: Some applications of cut-elimination. In: Handbook of Mathematical Logic (J. BARWISE, ed.), North-Holland Publ. Comp., Amsterdam-New York-Oxford 1977, pp. 867 – 895.
- [15] TANAKA, Y., Kripke completeness of infinitary predicate multi-modal logics. Notre Dame J. Formal Logic (to appear).
- [16] TANAKA, Y., and H. ONO, The Rasiowa-Sikorski Lemma and Kripke completeness of predicate and infinitary modal logics. In: Advances in Modal Logic '98, Vol. 2 (M. ZAKHARYASCHEW, K. SEGERBERG, M. DE RIJK, and H. WANSING, eds.), CSLI Publications, Stanford 2000, pp. 419 – 437.

(Received: August 1, 1999; Revised: July 28, 2000)

15213870, 2001, 3, Dov

/onlinelibrary.wiley

com/doi/10.1002/1521-3870(200108)47:3<327:: AID-MALQ327>3.0.CO; 2-P by University Of Ottawa Library, Wiley Online Library on [01/08/2024]. See the 7

Terms

and Conditions (https:/

//onlinelibrary.wiley.com/terms

and-conditions) on Wiley Unline 1

fo

are governed by the applicable Creative