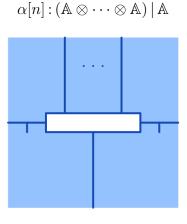
Let \mathcal{L} be a (virtual) triple category. The dimensions are transversal (T), vertical (V), and horizontal (H). We denote 0-cells as \mathbb{A} , T-cells as $f : \mathbb{A} \to \mathbb{B}$, V-cells as $P : \mathbb{A} | \mathbb{B}$, and H-cells as $\mathcal{R} : \mathbb{A} | \mathbb{B}$. We denote horizontal composition by $\mathcal{R} \otimes \mathcal{S}$, vertical composition by $P \circ Q$, and transversal composition by $f \cdot g$.

Our motivating example is $\operatorname{Span}\mathbb{C}\operatorname{at}$: dimension 0 is categories, T is functors, V is profunctors, and H is spans of categories.

Definition 1. A **multimonad** in \mathcal{L} is

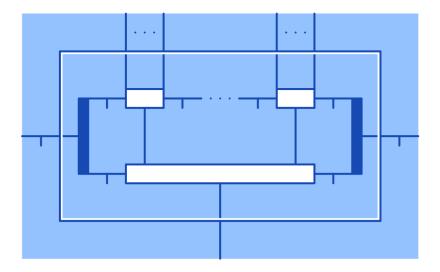
- a 0-cell $\underline{\mathbb{A}}$, called the **base**,

- an H-cell $\mathbb{A} : \underline{\mathbb{A}} \parallel \underline{\mathbb{A}}$, called the **unary hom**,
- for each $n : \mathbb{N}$ an HV-cell called the **n-ary hom**



- for each $i_1, \ldots, i_n : \mathbb{N}$ a 3-cell called **multicomposition**

$$(\alpha[i_1] \otimes \cdots \otimes \alpha[i_n]) \circ \alpha[n] \Rightarrow \alpha[\Sigma i_j]$$

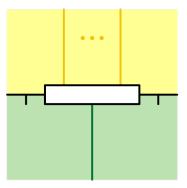


- so that multicomposition is associative and unital.

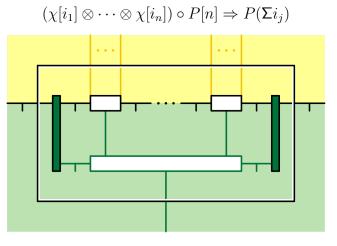
A multimonad in SpanCat is a virtual double category.

Definition 2. Let X, A be multimonads in \mathcal{L} . A vertical multimodule P : X | A is

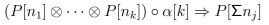
- a V-cell $\underline{P} : \underline{\mathbb{X}} \mid \underline{\mathbb{A}}$
- for each $n : \mathbb{N}$ an HV-cell $P[n] : \otimes_n \mathbb{X} | \mathbb{A}$

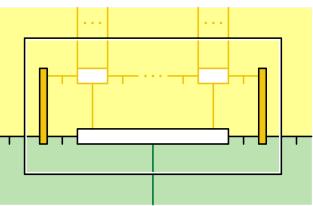


- for each $i_1, \ldots, i_n : \mathbb{N}$ a 3-cell



- for each $n_1, \ldots, n_k : \mathbb{N}$, a 3-cell





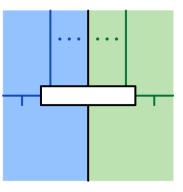
- so these actions are associative and unital.

A vertical multimodule (or "V-module") in ${\rm Span}\mathbb{C}{\rm at}$ is a vertical profunctor of virtual double categories.

Definition 3. Let \mathbb{A}, \mathbb{B} be multimonads in \mathcal{L} . A horizontal multimodule $\mathcal{R} : \mathbb{A} \parallel \mathbb{B}$ is

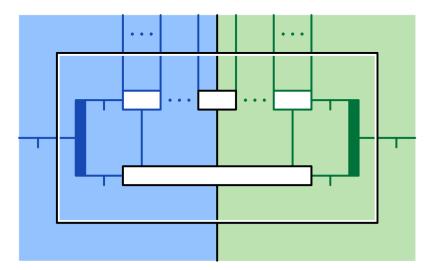
- an H-cell \mathcal{R} : $\mathbb{A} \parallel \mathbb{B}$

- for each $m,n:\mathbb{N}$ an HV-cell $\mathcal{R}[m,n]:(\mathbb{A}^m\otimes\mathcal{R}\otimes\mathbb{B}^n)\,|\,\mathcal{R}$



- for each $i_1,\ldots,i_m\!:\!\mathbb{N}$ and $j_1,\ldots,j_n\!:\!\mathbb{N}$ and $k,\ell\!:\!\mathbb{N}$ a 3-cell

 $((\alpha[i_1] \otimes \cdots \otimes \alpha[i_m]) \otimes \mathcal{R}[k, \ell] \otimes (\beta[j_1] \otimes \cdots \otimes \beta[j_n])) \circ \mathcal{R}[m, n] \Rightarrow \mathcal{R}[\Sigma i + k, \ell + \Sigma j]$



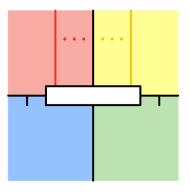
- so that this is associative and unital.

A horizontal multimodule (or "H-module") in ${\rm Span}\mathbb{C}{\rm at}$ is a horizontal profunctor of virtual double categories.

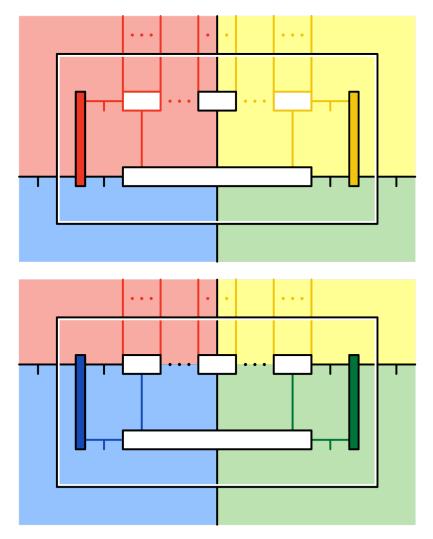
Definition 4. Let $\mathbb{X}, \mathbb{Y}, \mathbb{A}, \mathbb{B}$ be multimonads in \mathcal{L} . Let $P : \mathbb{X} \mid \mathbb{A}$ and $Q : \mathbb{Y} \mid \mathbb{B}$ be V-modules. Let $\mathcal{R} : \mathbb{X} \parallel \mathbb{Y}$ and $\mathcal{S} : \mathbb{A} \parallel \mathbb{B}$ be H-modules.

A **double multimodule** $i : \mathcal{R} \mid \mathcal{S}$ over P, Q is

- for each $m, n : \mathbb{N}$ an HV-cell $i[m, n] : (\mathbb{X}^m \otimes \mathcal{R} \otimes \mathbb{Y}^n) | \mathcal{S}$ over $\underline{P}, \underline{Q}$

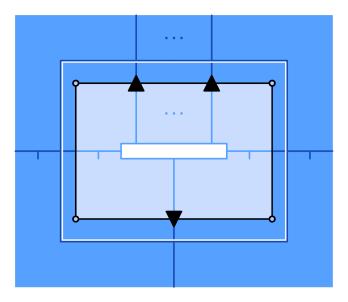


- with multicomposition that is associative and unital.

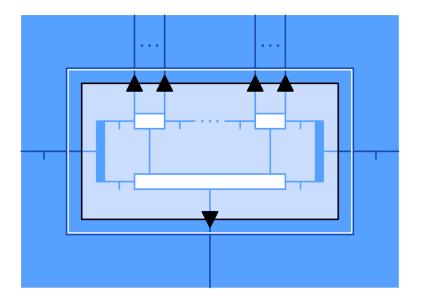


A double multimodule in SpanCat is a **double profunctor** of virtual double categories.

Definition 5. Multifunctor

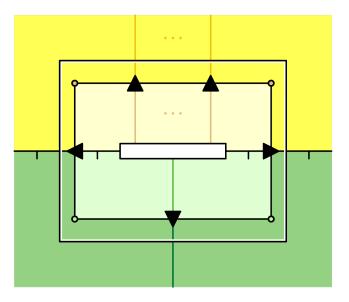


such that

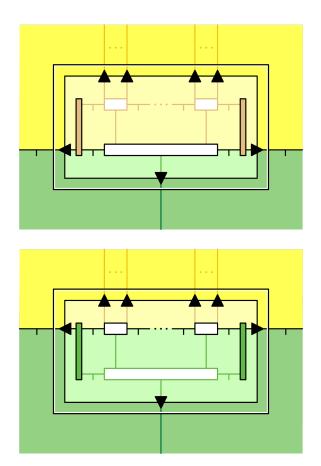


A multifunctor in $\operatorname{Span} \mathbb{C}\mathrm{at}$ is a virtual double functor.

Definition 6. V-multitransform

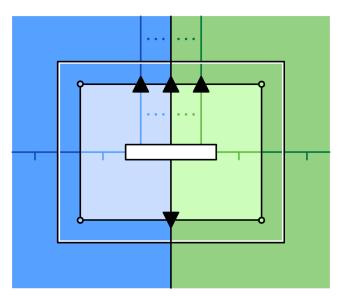


such that

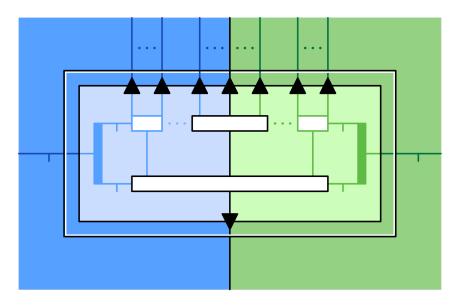


A V-multitransform in $\operatorname{Span}\mathbb{C}\mathrm{at}$ is a vertical transformation of virtual double functors.

Definition 7. H-multitransform

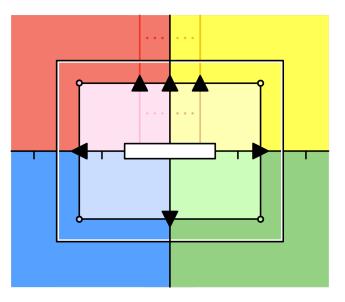


such that

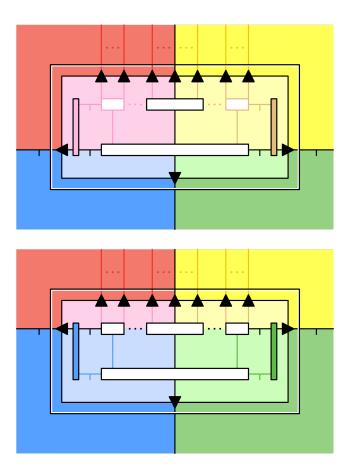


An H-multitransform in $\operatorname{Span}\mathbb{C}\mathrm{at}$ is a horizontal transformation of virtual double functors.

Definition 8. Double multitransform



such that



A double multitransform in $\operatorname{Span}\mathbb{C}\mathrm{at}$ is a double transformation of virt-dbl-profs.