
In our paper, we defined a λ-ring to be a coalgebra for a comonad W :
CRing→ CRing defined by

W (R) = CRing(Λ, R)

where the plethory Λ = K(Schur) is descended from a 2-plethory Schur, or more
exactly kS which is the free 2-rig on one variable with its tautological 2-plethory
structure.

Our goal in these notes is to tie in this abstract conceptual description with
the (complicated) traditional description of λ-rings. We pretend we know noth-
ing about the ring structure of Λ, and develop the classical facts in due course.

1 Ideals in 2-rigs

The category kS is finitely complete and cocomplete. By Maschke’s theorem,
all short exact sequences split, and kS is a 2-Hilbert space with an orthonormal
basis given by irreps of symmetric groups.

Definition 1: Let R be a 2-rig with finite limits and finite colimits, with
the monoidal product distributing over both. An ideal of R is a full replete
subcategory I such that

1. If x ∈ R and y ∈ I, then x⊗ y ∈ I;

2. If 0 → A → B → C → 0 is a short exact sequence, then A,C ∈ I iff
B ∈ I. �

If all exact sequences in R split, then condition 2. is equivalent to I being closed
under finite coproducts and idempotent splittings.

Definition 2: If a 2-rig R has an ideal I, then R/I is the 2-rig whose objects
are those of R, and whose morphisms are equivalence classes [f ] of morphisms
f in R, where [f ] = [g] for f, g : A→ B means the image of f − g belongs to I.

It may be checked that R/I is indeed a 2-rig (in the sense of our paper). By
definition, the evident “quotient” map R→ R/I is eso (essentially surjective on
objects) and full.

Proposition 1: If R is a 2-rig which as an additive category is a 2-Hilbert
space, then the same is true of R/I for any ideal I of R.

Proof: We claim that if D is an indecomposable object of R, then the same is
true of [D] = D mod I. Indeed, [D] has no nontrivial idempotents since the
map k = R(D,D)→ R/I([D], [D]) is onto, by fullness of R → R/I. �

If A is an object of R, then (A) denotes the smallest ideal containing A. In
the beginning, we will be particularly interested in R = kS/(Λn+1) where Λn+1

is the sign representation of Sn+1.
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Finally, let φ : R → S be a 2-rig map, and factorize φ by a full eso functor
R → R followed by a faithful functor R → S. We define kerφ to be the ideal
of R consisting of objects A such that φ(A) ∼= 0. It is straightforward to check
that R is canonically equivalent to R/ kerφ.

2 Symmetric and exterior power operations

Let (R, η : R→ CRing(Λ, R)) be a W -coalgebra. The composition

R CRing(Λ, R) R
η ev[Sn]

defines an operation σn : R→ R. These operations collate into a single map

σ : R→
∏
n≥0

R · tn = R[[t]]

where tn is regarded as a formal placeholder to indicates the degree of a homo-
geneous element in a N-graded ring. This map takes r ∈ R to

∑
n≥0 σ

n(r)tn.
For 2-rigs R, the σn-operations on K(R) lift to Schur functors Sn : R → R.

For example, letR[N]+ be the 2-rig of N-graded Schur objects (here the subscript
+ indicates unsigned symmetry). Provided that the grade 0 component of an
object A is trivial, it is possible to construct the free commutative monoid
exp(A), because in that case

exp(A) =
∑
n≥0

A⊗n/Sn

will be finitary in every grade. Because the coproduct of commutative monoids
is given by tensor product on the underlying objects, and because the free
construction preserves coproducts, we deduce in such cases an isomorphism
(exponential law)

exp(A⊕B) ∼= exp(A)⊗ exp(B).

In particular, for A (and likewise B) concentrated in grade 1, the grade n
component of exp(A) is the symmetric power Sn(A), and we deduce

Sn(A⊕B) ∼= (exp(A)⊗ exp(B))n =
∑

j+k=n

Sj(A)⊗ Sk(B).

This Schur functor isomorphism, which is pseudonatural in R, may be formal-
ized as an isomorphism

Sn(x⊕ y) ∼=
∑

j+k=n

Sj(x)⊗ Sk(y)

in the free 2-rig kS[x, y] on two generators. Descending to the Grothendieck
group, we therefore have an identity in the ring Λ[x, y] ∼= Λ[x]⊗ Λ[y]:
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σn(x+ y) =
∑

j+k=n

σj(x) · σk(y).

This is an instance of the coaddition law on the biring Λ in explicit form.
Let us restate this in terms of what it means for λ-rings R. For an element
r ∈ R, let dre : Λ[x] → R denotes the unique λ-ring map that sends x to r.
Then a sum r + s in R is obtained as the composite

1 Λ[x] Λ[x]⊗ Λ[y] R⊗R Rx α dre⊗dse m

and σn(r + s) is obtained as the composite

1 Λ[x] Λ[x]⊗ Λ[y] R⊗R R.
[Sn] α dre⊗dse m

It then follows from the coaddition identity above that

σn(r + s) =
∑

j+k=n

σj(r)σk(s).

This may be expressed more compactly as the equation

σ(r + s) = σ(r) · σ(s)

which follows from simple algebra:

σ(r + s) =
∑
n≥0 σ

n(r + s)tn

=
∑
n≥0

(∑
j+k=n σ

j(r)σk(s)
)
tn

=
(∑

j≥0 σ
j(r)tj

)
·
(∑

k≥0 σ
k(s)tk

)
= σ(r) · σ(s).

An essentially identical story may be told for the exterior power operations
in place of the symmetric power operations. Again let (R, η : R→ CRing(Λ, R))
be a W -coalgebra. The composition

R CRing(Λ, R) R
η ev[Λn]

defines an operation λn : R→ R. These operations collate into a single map

λ : R→
∏
n≥0

R · tn = R[[t]]

This map takes r ∈ R to
∑
n≥0 λ

n(r)tn.
Continuing the analogous story, let R be a 2-rig and let R[N]− be the 2-rig

of N-graded Schur objects, but this time with signed symmetry). It follows from
Joyal’s rule of signs that for a graded object A concentrated in grade 1, we have

exp(A)n = Λn(A).
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Then, from the exponential law, follows another Schur isomorphism

Λn(A⊕B) ∼=
∑

j+k=n

Λj(A)⊗ Λk(B).

This allows us us to deduce another instance of coaddition: in Λ[x, y] we have
the formal equation

λn(x+ y) =
∑

j+k=n

λj(x) · λk(y)

which allows us to deduce that in any λ-ring R we have

λn(r + s) =
∑

j+k=n

λj(r) · λk(s)

or more compactly, λ(r + s) = λ(r) · λ(s) as formal power series in R[[t]].
Observe that we could have derived the identities involving σn by working in

R[N]−, just by considering objects A,B (or generators x, y) as N-graded objects
concentrated in grade 2 instead of grade 1.

Here is one more formal identity, one that interlocks the operations σj , λk.
Again, letting x be the generator of kS, put σt(x) =

∑
n≥0 σ

n(x)tn and λt(x) =∑
n≥0 λ

n(x)tn, as expressions in Λ[[t]].

Theorem 1: We have σt(x) · λ−t(x) = 1.

Proof: Let us abbreviate kS[N]− to G (for graded Schur objects, with the
signed symmetry), and let DG be the category of differential N-graded Schur
objects, again with the signed symmetry. Thus DG consists of chain complexes
of Schur objects. The forgetful functor U : DG → G is a 2-rig map, and so is
the homology functor H : DG→ G.

Consider the chain complex Mx = (x
1x→ x→ 0→ 0→ . . .) with copies of x

in degrees 0, 1. Since Mx is exact, H(Mx) = 0 is a trivial graded object. U(Mx)
may be written as x0⊕x1 where xi denotes a graded object supported on grade
i with a copy of x there. Since the 2-rig maps H,U commute with symmetric
powers, we have

H(Sn(Mx)) ∼= Sn(H(Mx)) ∼= Sn(0)

which vanishes for n > 0, and for n = 0 is just k concentrated in degree 0. On
the other hand,

U(Sn(Mx)) ∼= Sn(U(Mx)) ∼= Sn(x1 ⊕ x2) ∼=
∑

j+k=n

Sj(x0)⊗ Sk(x1)

where the underlying Schur object of Sj(x0) in grade 0 is Sj(x), and the un-
derlying Schur object of Sk(x1) in grade k is Λk(x), again by Joyal’s rule of
signs.
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By the categorified Euler formula, we have an equality in the Grothendieck
group Λ,

[H0(Sn(Mx))]−[H1(Sn(Mx))]+[H2(Sn(Mx))]−. . . = [Sn(Mx)0]−[Sn(Mx)1]+[Sn(Mx)2]−. . . ,

where we saw the left side is 0 for n > 0, and 1 if n = 0. On the right-hand
side, we have

[Sn(x)⊗ Λ0(x)]− [Sn−1(x)⊗ Λ1(x)] + [Sn−2(x)⊗ Λ2(x)]− . . . .

Putting this together in the form of power series with Λ-coefficients, this yields

1 + 0t+ 0t2 + . . . =

∑
j≥0

σj(x)tj

 ·
∑
k≥0

(−1)kλk(x)tk


which is summarized by the equation σt(x) · λ−t(x) = 1. �

Bear in mind that we have not yet used any of the theory of symmetric group
representations: Young symmetrizers, Specht modules, the theory of symmetric
functions, etc., or at least nothing beyond Maschke’s theorem. In particular,
we are pretending that we are unaware of (or at best have heard gossip of)
the identification of Λ with a polynomial ring Z[c1, c2, . . .] that would enable
an identification between W (R) and 1 + tR[[t]] that is implicit in the standard
accounts. That will come later in our account. And yet our conceptual methods
show for example that for a λ-ring R, the standard map

λ : R→ 1 + tR[[t]] r 7→
∑
n≥0

λn(r)tn

indeed takes sums to products of formal power series.

Definition 3: For a ring R, the lowering operator D is the derivation

D = t
d

dt
: R[[t]]→ R[[t]]

that takes a sequence of coefficients (an)n≥0 of a power series to the sequence
(nan)n≥0.

When we apply the lowering operator to the equation λ−t · σt = 1 in Λ[[t]],
we obtain

−tλ′−t · σt + tλ−t · σ′t = 0

and so we obtain

tλ−tσ
′
t = tλ′−tσt. (1)
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Either side of this equation defines a power series we will denote by ψt. Because
λ−t and σt are reciprocals, the following is the exact same equation:

t
σ′t
σt

= t
λ′−t
λ−t

. (2)

Equation (2) may be more recognizable to the experts than equation (1); partic-
ularly the expression on the right is one way of defining the power series ψt whose
coefficients are Adams operations. The presence of logarithmic derivatives is of
course suggestive as well. However, it seems to us that the expression

tλ′−tσt

is simpler and more direct, and results in fewer formal manipulations in what
we do.

Proposition 2: For formal variables x, y ∈ Λ[x, y], we have ψt(x+y) = ψt(x)+
ψt(y).

Proof: We have

D[σt(x+ y)] · λ−t(x+ y) = D[σt(x)σt(y)] · λ−t(x)λ−t(y)
= [Dσt(x) · σt(y) +Dσt(y) · σt(x)] · λ−t(x)λ−t(y)
= Dσt(x)λ−t(x) +Dσt(y)λ−t(y)
= ψt(x) + ψt(y)

which completes the proof. �

3 Line objects

In the doctrine of symmetric monoidal categories, a line object (or invertible
object) is an object L together with an object L∗ and an isomorphism ε :
L ⊗ L∗ ∼= 1, where 1 denotes the monoidal unit. Line objects are closed under
the monoidal product.

As is well-known, we can arrange for an isomorphism η : 1 ∼= L∗ ⊗L so that
η and ε are the unit and counit of a monoidal dual pair L a L∗.

A line object L is even if the symmetry σ : L⊗ L→ L⊗ L equals 1L⊗L. It
is odd if σ equals −1L⊗L.

In the literature, an even line object is called a 1-dimensional object. Odd
line objects typically get short shrift if they are mentioned at all. There is no
really compelling reason this should be so, since the following propositions show
that there is a duality between even and odd line objects.

Proposition 3: If L is an even line object in a 2-rig R, then in the 2-rig of
super R-objects R[Z2], the object (C0, C1) = (L, 0) is an even line object, and
the object (0, L) is an odd line object. If L is odd, then (L, 0) is odd and (0, L)
is even.
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Proposition 4: If L is an even line object in a 2-rig, then Sn(L) ∼= L⊗n for all
n ≥ 0, and Λn(L) = 0 for all n > 1. If L is an odd line object, then Λn(L) ∼= L⊗n

for all n ≥ 0, and Sn(L) = 0 for all n > 1.

Another way of stating Proposition 4 is that if L is even in R, then in the
λ-ring K(R) we have

σt([L]) =
∑
n≥0

[L⊗n]tn, λt([L]) = 1 + [L]t.

If L is odd, we have

λt([L]) =
∑
n≥0

[L⊗n]tn, σt([L]) = 1 + [L]t.

For the moment let us focus on even line objects L, letting duality take care of
the rest. We have

λ′t(L) = [L], λ′−t(L) = [L]

so that

ψt([L]) = tλ′−t(L)σt(L) = t[L] ·
∑
n≥0

[L⊗n]tn =
∑
n≥1

[L⊗n]tn

Proposition 5: If in a 2-rig R every object can be expressed as a coproduct of
even line objects, then the Adams operations ψn : K(R) → K(R), defined by
the power series ψt(r) =

∑
n≥1 ψ

n(r)tn, are commuting ring homomorphisms.

Proof: Proposition 2 shows that the operations ψn preserve addition. If we
write

A = L1 ⊕ . . .⊕ Lm, B = L′1 ⊕ . . .⊕ L′n
as coproducts of even line objects, then A ⊗ B =

∑
i,j Li ⊗ L′j is also a sum

of even line objects. Notice also that ψn([L]) = [L⊗n] is multiplicative on even
line objects. This implies full multiplicativity by a routine argument:

ψn([A⊗B]) = ψn(
∑
i,j [Li ⊗ L′j ])

=
∑
i,j ψ

n([Li ⊗ L′j)
=

∑
i,j ψ

n([Li]) · ψn([L′j ])

= (
∑
i ψ

n([Li])) ·
(∑

j ψ
n([L′j ])

)
= ψn(

∑
i[Li]) · ψn(

∑
j [L
′
j ])

= ψn([A]) · ψn([B]).

Similarly, one proves ψmψn = ψnψm by observing that this equation holds on
even line objects: ψmψn([L]) = [L⊗(mn)] = ψnψm([L]). �
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