1 A natural weak factorization system on the
arrow category SSet™

1.1 Background and informal definition

Natural weak factorization systems were introduced by Grandis and Tholen in
[5]. Recall that the definition of a model category (see [2], [6]) involves (among
other things) two classes of maps, the cofibrations L and trivial fibrations R,
such that

e if i is a cofibration and p is a trivial fibration, every morphism (f,g) : i — p
in C7 has a lift, and

e every morphism f factors as f = pi, where 7 is a cofibration and p is a
trivial fibration.

We say that the maps (L, R) is a weak factorization system. Actually, [6] re-
quires that the factorization is functorial, so that f = a(f)8(f), where o, :
C™ — C7 are functors, and |2 points out that in most examples the factoriza-
tion can be chosen to be functorial.

A natural weak factorization system is, to begin with, a weak factorization
system together with a functorial factorization; however, in a natural weak
factorization system, being an L-map or an R-map is an algebraic structure
on the morphism rather than a mere property, and given ¢ an L-map and p an
R-map, the two structures on ¢ and p combine to determine a lifting function
which associates to each map (f,g) : ¢ — p in C™ a specific lift.

In more detail, a natural weak factorization system on a category C™ is a
functorial factorization (L,R), with both L,R : C7 — C~, such that R is a
monad and L is a comonad. For any functorial factorization system we can
define an L-map as a coalgebra for the endofunctor L, and an R-map as an
algebra for the endofunctor R; with these definitions, it follows that an L-map
has the left lifting property with respect to an R-map. When L is a comonad,
the comultiplication ensures that L(f) is an L-map, and dually when R is a
monad, the multiplication of R ensures that R(f) is an R-map for each f.
Thus, each natural weak factorization system determines a weak factorization
system into a class of maps together with a functorial factorization.

1.2 Definition

We adopt Garner’s definition of a natural weak factorization system in |4] which
strengthens the definition of Grandis and Tholen with an additional distribu-
tivity law.

In the following, letting dom, cod : C? — C for a category C, x : dom = cod
will denote the canonical natural transformation.

Definition 1 (Natural weak factorization system). A natural weak factor-
ization system on C is given by



e a comonad, L = (L, ®,) on C?

e amonad R = (R, A,II) on C?

o a distributive law A: LR — RL
satisfying the following equalities:

domoL =dom codoL =domoR codoR = cod; (1)
domo® = 145,y codo® = x dom dom A = kA codA =1cq (2)
dom Y = 1gom codY = domA domIT=cod A codll=1ca (3)

This is equivalent (see [4], Def. 2) to the following, more concise definition.

Definition 2 (Reduced natural weak factorization system). A reduced nat-
ural weak factorization system on C is given by:

e A functorial factorization (E, X, p) on C.

e Natural transformations o : £ = FL and 7 : ER = E, where L : C? — C?
is defined uniquely by the requirement that kL = A, and R is determined
uniquely by the requirement that kR = p

such that 0 - A= AL, p-7m = pR, and for all morphisms f: X — Y in C,

pryooy =idgys Ty o Apy = idgy (4)
E(lx,pf)O(Tf:idEf ﬂ'fOE()\f,ly):idEf (5)
E(lx,0p)00f =0oLfooy mpoE(my,ly) = mp o TRy (6)

and lastly
opomy=mppoE(op,mp)oory (7)

In what follows, we will give two ways of associating, to a category C equipped
with a monad (7,7, 1), an induced monad R on the slice category C/Y for any
object Y. We would like to think of the algebras of the monad R as carrying a
fiberwise T-algebra structure.

When the category C is taken to be SSet, the category of simplicial sets,
and T is taken to be the cone monad, both of these two constructions for a
monad R on SSet/Y give the same result. Just as the cone monad has for
its algebras the contractible spaces, the induced monad R on SSet/Y has for
its algebras those bundles p : X — Y those spaces which are fiber homotopy
equivalent to the terminal object idy in a strong way; i.e., there is a coherent
global contraction of each of the fibers. We will refer to R as the shrinkability
monad, to borrow a beautiful term due to Dold.

In the category of simplicial sets specifically, we get something stronger. The
monad R has a complementary comonad L such that (L, R) forms a natural
weak factorization system. Of course the object part of L and the counit are
already determined by the monad R, so the nontrivial part of this claim is



the existence of a comultiplication making the copointed endofunctor L into a
comonad compatible with R and satisfying the distributivity law[7} If R-algebras
are “acyclic fibrations” then L-coalgebras are our “cofibrations.”

An interesting problem for further research would be to extend one or both of
the analyses below with further hypotheses so that the complementary comonad
L can be constructed, as it can be in SSet. Again, one already has a copointed
endofunctor L, so the problem is to construct a comultiplication for L satisfying
the laws described above. We have been unable to identify reasonably general
and well-studied categorical hypotheses which would allow us to construct a
comultiplication for L. Nevertheless, it seems likely that this can be done,
based on the apparently simple logical form of the expression that defines the
comultiplication.

1.3 A monad on a slice category arising from a monad in
the underlying category

Let C be a category with Cartesian products, and (7', i, 7) a monad on C. Recall
that T is said to be strong with respect to the Cartesian product if there is given
a natural transformation ax y : T(X) xY — T(X xY) such that the following

diagrams commute:
l \ (8)

TAx1 2% T(Ax1)

QA BxC

TAx (BxC(C) T(Ax (Bx())

| | (9)

A, BXC

(TA x B) x C™ 225 T(A x B) x C 25 T((A x B) x C)
Ax B
y& (10)
TA x B 225 T(A x B)

ara.B T(oa,B)

TTAx B — T(TAx B) —=3'TT(A x B)

yw 2 (11)

TA x B aab T(A x B)

These diagrams are taken from Definition 6.3.3., [1],
It will be sometimes be convenient to write [8]in this equivalent form:

T(ra)oaas=mpa:TAx1—TA (12)

Strong monads were introduced by Kock in [§], [9], [7]. They have been used
by Moggi ([10], [11]) to develop semantics of sequenced computations.



Fix a category C with finite limits, and let (T, 1, 7) be a strong monad on C.
Fix Y an object in C. In this section we will construct a monad (R, u®,n%)
onC/Y.

Lemma 1. The following diagram commutes:

T(X)XY*>TX><Y
\ l (7x) (13)

Proof. Let !y denote the unique morphism Y — 1. Apply naturality of « to
(idx,'!y) and use[§ with 4 := X. O

For f: X =Y, we write E(f) for dom R(f).

In what follows, for f : X — Y, grf denotes the graph of f, the map
(idy, f): X = X x Y.

We first define R on objects. We define E(f) by the following pullback

square:

BE(f) —— T(X)
J{ - ngrf (14)

TX xY 225 T(X xY)

and R(f) is defined to be the second component of the left map of the
composition

R(f):=E(f) = TX xY 25 Y (15)

Iff: X —->Y f:X — Y are two objects in C/Y, and g : X — X' a

morphism in C/Y, it is clear how to use the universal property of the pullback

E(f") to construct amap R(g) : E(f) — E(f’), and immediate that it commutes

with the maps R(f) and R(f’). We omit routine verification of the identity and
composition laws for R.

Lemma 2. Let t(f) : E(f) = T(X) be the top map in[14 and s(f) : E(f) —
T(X) x Y the left map in[14} Then t(f) = mrx o s(f), or equivalently s(f) =
(t(f), R(f))-

Proof. By Lemma mrx =T (mx)oax,y, so

T(mx)o ax,y © s(f)
(mx) o T(gr(f)) o t(f)
(mx ogr(f)) o t(f)

f)

mrx o s(f)

T
T

t(



We will use the notation ¢(f) for the canonical map F(f) — T(X) again in
what follows.

We describe the unit 7753 : f = R(f). To construct a map X — E(f), by
the universal property of the pullback it is necessary to give maps ag : X —
TX,a1: X =Y, as: X - TX, subject to the requirement that

axy o (ag,a1) =T(gr f)oas (16)

We will take ag = a2 = nx and a1 = f.
Let us verify that the necessary coherence condition [16]is satisfied:

T(grf)onx =nxxyogrf
= OéX7y o (’I]X X ldy) OgI‘f

=axy o (nx,[f)

as desired.

It is clear by the choice of a1 := f that nf} is a morphism in the slice category
C/Y.

Let us turn to the multiplication p'.

In the following, T'(f)*a1y : E(f) — T(X) denotes the leg of the pullback
cone defining E(f) over T(f) in

To give a map FE(R(f)) — E(f), it suffices to give maps by : ERf — TX
and by : ERf — TX x Y with

axxy oby =T(gr f)oby (17)
. We will take by to be

t(Rf) T@(f)

= ERf —L T(Ef) —5 T?°X B TX (18)

and we will take by = (by, R2(f)).
Let us prove that the necessary coherence condition [17]is satisfied.

T(gr f) o by
=T(grf)opux oT(t(f
=pxxy oT?(grf)oT

)) o t(Rf)

(t(f)) o t(RS)
= puxxy o T(axy) o T((t(f), R(f))) o t(Rf)
= pxxy o T(axy) o T(t(f) x 1y) o T(gr(Rf)) o t(Rf)
= pxxy o T(axy) o T(t(f) x 1y) o agysy o (L(Rf), R*f)
=pxxy oT(axy)oarxy o (T(tf) x 1y)o (H(Rf), R*f)
=axy o (ux x ly) o (T(tf) x 1y) o (t(Rf), R*f)
= ax.y o (b, R2f)



Therefore we have constructed families of maps n}%X = E(f), u? : E(R(f)) —
E(f). It is immediate by construction that the maps nff and u? are morphisms
in the slice category C/Y, so these are maps nf : f = R(f), ,u}?' : R3(f) — R(f).

Let us now turn to verifying the naturality of n and pu'* as well as the unit
and associativity laws for a monad.

Proposition 1. Let f: X =Y, g: Z =Y. Let h,k: g — R(f) be morphisms
in the slice category C/Y . To show h = k it is sufficient to show that t(f)oh =

t(f)ok.

Proof. This is immediate by the properties of the pullback, because we have
assumed that h, k are morphisms in the slice category, and Lemma O

For naturality of n’t, let (X, f) and (X', f') be objects in C/Y and let g :
(X, f) = (X', f) be a morphism in the slice category. To prove that R(g)onﬁ =
nfiog, it is sufficient to show that t(f")oR(g)onf = t(f')onfiog. t(f)onf = nx:
by definition, and nx: o g = T'(g) o nx. Similarly, ¢(f') o R(g) = T(g) o t(f) by
definition of R(g) and t(f)on? = nx by definition of n}%. Thus t(f’)OR(g)on? =
T(g)onx =t(f")o nﬁ o g, as desired.

For naturality of pf, again introduce (X, f),(X’,f"), and g : (X, f) —
(X', f') in C/Y. Tt is sufficient to show that ¢(f")oul, o R*(g) = t(f')o R(g)ou.
Thus:

t(f") o pff o R?(g)

= pxr o T(tf") o t(Rf') o R*(g)
— i 0 T(tf") o T(Rg) o t(RS)
= pux oT?go T(tf) o t(Rf)
=T(g)opx oT(tf)ot(Rf)
=T(g) o t(f) o pf

=t(f") o R(g) o uf

as desired.
Let us verify the left unit law pfng ;) = Lrg. By [L|it suffices to check that

t(f)=1t(f)o le% ° nﬁm- Therefore:

t(f) o puf ongrc)

= px o T(tf) o t(Rf) onr(y)
= px o T(tf) o np(y)

= px onr(x) o t(f)

=t(f)

as desired.



Now we verify the right unit law ,u?(R(n?) = 1gy. By[l|it suffices to check
that t(f) = t(f) o uf o R(nf"). Therefore:

t(f) o i o R(nf)
= px o T(tf) o t(Rf) o R(n})
= ux o T(tf) o T(ng) o t(f)
= px oT(nx)ot(f)
=t(f)

as desired.

Last, we will verify the associativity of multiplication. By [1] it suffices to
check that t(f) o ,u? o R(u?) =t(f)o /LJI? o ,uﬁf. Therefore:

1) o ulf o R(uE)
= px o T(t(f)) o t(R[) o R(uf)
— jix o T(H(f)) o T(uff o H(R2F)
— jix o T(ux o T(tf) o t(RS)) o t(R2S)
= px o prx o T(T(tf) o t(Rf)) o t(R*f)
— jix o T(tf) o py o T(H(RF)) o H(R2f)
— jix o T(tf) o t(R) o il
—H(f) ol o uly
as desired.
This completes the verification of the monad properties.
As we mentioned earlier, a natural problem is to identify sufficient hypothe-
ses on the monad T which would allow us to construct a comultiplication on
the copointed endofunctor f — 77}5' on the coslice category X \ C. To construct

the comultiplication, a plausible choice of cone to construct the desired map
E(f) = E(nf) is given by

Bf —— 1(x)

J{(t(f),lEf) |7tertan (19)
T(X) x BEf 2228 (X x Ef)

but it is not clear what hypotheses can be chosen on 7' to force this diagram
to commute. For example, the cone monad C' : SSet — SSet is a polynomial
monad with Cartesian unit and counit, and it has a right adjoint P, the path
space comonad; the underlying polynomial diagram for C is of a certain dis-
tinguished form 1 — I — 1. All polynomial functors preserve all connected
limits.



1.4 Another monad in a slice category resulting from a
monad in the underlying category

In the previous section we worked in the level of generality of an arbitrary strong
monad in a category with finite limits. However, as there is limited information
and structure to work with in this context, it seems harder to make progress.
Furthermore, pulling back along a strength is an unusual operation. In this
section we will carry out an analogous construction but in the context of a
polynomial monad.

Let C be a locally closed Cartesian category, with terminal object 1.

In this section, let (T',n, u) be a monad C — C with Cartesian multiplication
and unit natural transformations, preserving connected limits, and such that
7x is a monic morphism for all X.

We will borrow notation from [3|, where for any map f: A — B, Ay is the
pullback functor C/B — C/A, ¥; : C/A — C/B is the postcomposition functor
g — fog,and Il is a right adjoint to Ay.

We further assume T has the following property: for any f: X — Y, T(f)
has the universal property of II,, (f), that is, for any object (Z,p: Z — TY)
in C/TY, there is a bijection

Home,y (Af(p), f) = Homery (p, T(f)) (20)

natural in (Z,p).

This very strong requirement determines the functor 7" in terms of a small
amount of data. If Y is chosen to be the terminal object, then we see that for
any object X, T'(X) can be defined as domII,, ('x), where !x is the unique map
X — 1. It follows that T is, up to isomorphism, the polynomial functor induced
by the diagram

1«15 701)—>1 (21)

Note that because 1 was assumed to be a Cartesian natural transformation,
the below pullback diagram indicates that A, II,,, — id¢/y is an isomorphism.

X X, T7x
lf lT(f) (22)
y Ty

Although our requirements on T' seem quite strong, any choice of object I in C
and any e : 1 — I gives rise to a polynomial diagram

l«-1—->1—1 (23)

and the resulting polynomial functor 7" will be equipped with a Cartesian unit
natural transformation 7y : Y — TY; moreover if T is any polynomial endo-
functor so defined, then for any f : X — Y, Tf has the universal property of
II,, (f). (Proof omitted to cut down on verbosity.) Therefore, given any object
I and any morphism e : 1 — I, one has the polynomial endofunctor T' defined



by [23] and a Cartesian unit transformation, componentwise monic. Because II,
is a right adjoint, it preserves the terminal object, so II.(idy) is an isomorphism
T(1) 2 I, and we can identify them. All that remains is to give a Cartesian
multiplication such that the associativity and unit laws are satisfied.

Let Y be an arbitrary object in C and let R: C/Y — C/Y be the polynomial
functor arising from the diagram

Yev WOy ™y (24)

We will prove that R inherits a monad structure from 7'

Proposition 2. If f : A — B is monic, then the counit of the adjunction
Ay A1ly is an isomorphism.

Proof. 1t is easy to see that if f is monic, the unit of the adjunction Xy 4 A,
is an isomorphism. Since AyX; 4 AyIly, Af¥y is naturally isomorphic to the
identity iff A Il is. O

Definition 3 (Unit for R). There is a natural transformation n* : id¢/y — R.

Proof. Let f : X — Y. We will construct a map nf* : f — Yy 1,e)f. The
counit of the ¥ ) - A ) adjunction evaluated at Il(; o)(f) determines a
map X1 e)Ac1,e)Il1,e)(f) = H(1e)f. Because (1,e) is monic, by the previous
proposition Ay ¢)Tl(1,¢)(f) = f and this simplifies to a map X1 ¢)(f) — 1 e)-
Applying X, to both sides and recognizing that 7y o (1,€) = 1y, this gives
the desired natural transformation nﬁ 2= Y e f O

The following lemma indicates that we can see R as a fibered version of T,
as at least for the case of trivial bundles it acts on the fibers in the expected
way.

Lemma 3. Let X be arbitrary, and let my : Y x X =Y. Then R(wy) = 7y :
Y xT(X) =Y, and nf =1y xnx.

Proof. Apply Beck-Chevalley to the pullback square

9y T

Y
N »
1

% I
to see that I1(; ¢y (my) = (1,6)A1, (X) =1y xT(!x) : Y xT(X) = Y x T(1).
Then compose with the projection 7y . O

Definition 4. There is a natural transformation u? : R> — R.

Proof. First we need to recharacterize R? in a more convenient form. By defini-
tion, R? = Yy I1,6)Xmy 11 ¢). However, we can restructure this using the dis-
tributivity law of IT over ¥ (see 3], pg. 9) to write this as ¥y 31, 71 ) Hiy s, i e)-



We can rewrite this as ¥, X1y x4, i1y xn; I(1,¢), Where we have changed T'(!x)
with pq, because obviously the compositions are the same as 1 is terminal. Thus
we have to give a natural transformation

Yy Bty xpy Uiy sen e = Xry i e (26)
Now it suffices to give a natural transformation
Sty xun My s = Leyyxr & Ary xn Uiy <, (27)
because we can whisker with II; . and X, , so we take the transpose
Iy s = Aiy s Aty spr iy xg (28)

But pp oy =1 and so we can just take the identity. O
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