
1 A natural weak factorization system on the
arrow category SSet→

1.1 Background and informal definition

Natural weak factorization systems were introduced by Grandis and Tholen in
[5]. Recall that the definition of a model category (see [2], [6]) involves (among
other things) two classes of maps, the cofibrations L and trivial fibrations R,
such that

� if i is a cofibration and p is a trivial fibration, every morphism (f, g) : i→ p
in C→ has a lift, and

� every morphism f factors as f = pi, where i is a cofibration and p is a
trivial fibration.

We say that the maps (L,R) is a weak factorization system. Actually, [6] re-
quires that the factorization is functorial, so that f = α(f)β(f), where α, β :
C→ → C→ are functors, and [2] points out that in most examples the factoriza-
tion can be chosen to be functorial.

A natural weak factorization system is, to begin with, a weak factorization
system together with a functorial factorization; however, in a natural weak
factorization system, being an L-map or an R-map is an algebraic structure
on the morphism rather than a mere property, and given i an L-map and p an
R-map, the two structures on i and p combine to determine a lifting function
which associates to each map (f, g) : i→ p in C→ a specific lift.

In more detail, a natural weak factorization system on a category C→ is a
functorial factorization (L,R), with both L,R : C→ → C→, such that R is a
monad and L is a comonad. For any functorial factorization system we can
define an L-map as a coalgebra for the endofunctor L, and an R-map as an
algebra for the endofunctor R; with these definitions, it follows that an L-map
has the left lifting property with respect to an R-map. When L is a comonad,
the comultiplication ensures that L(f) is an L-map, and dually when R is a
monad, the multiplication of R ensures that R(f) is an R-map for each f .
Thus, each natural weak factorization system determines a weak factorization
system into a class of maps together with a functorial factorization.

1.2 Definition

We adopt Garner’s definition of a natural weak factorization system in [4] which
strengthens the definition of Grandis and Tholen with an additional distribu-
tivity law.

In the following, letting dom, cod : C2 → C for a category C, κ : dom⇒ cod
will denote the canonical natural transformation.

Definition 1 (Natural weak factorization system). A natural weak factor-
ization system on C is given by

1



� a comonad, L = (L,Φ,Σ) on C2

� a monad R = (R,Λ,Π) on C2

� a distributive law ∆ : LR→ RL

satisfying the following equalities:

dom ◦L = dom cod ◦L = dom ◦R cod ◦R = cod; (1)

dom ◦Φ = 1dom cod ◦Φ = κdom domΛ = κΛ codΛ = 1cod (2)

domΣ = 1dom codΣ = dom∆ domΠ = cod∆ codΠ = 1cod (3)

This is equivalent (see [4], Def. 2) to the following, more concise definition.

Definition 2 (Reduced natural weak factorization system). A reduced nat-
ural weak factorization system on C is given by:

� A functorial factorization (E, λ, ρ) on C.

� Natural transformations σ : E ⇒ EL and π : ER⇒ E, where L : C2 → C2
is defined uniquely by the requirement that κL = λ, and R is determined
uniquely by the requirement that κR = ρ

such that σ · λ = λL, ρ · π = ρR, and for all morphisms f : X → Y in C,

ρLf ◦ σf = idEf πf ◦ λRf = idEf (4)

E(1X , ρf ) ◦ σf = idEf πf ◦ E(λf , 1Y ) = idEf (5)

E(1X , σf ) ◦ σf = σLf ◦ σf πf ◦ E(πf , 1Y ) = πf ◦ πRf (6)

and lastly
σf ◦ πf = πLf ◦ E(σf , πf ) ◦ σRf (7)

In what follows, we will give two ways of associating, to a category C equipped
with a monad (T, η, µ), an induced monad R on the slice category C/Y for any
object Y . We would like to think of the algebras of the monad R as carrying a
fiberwise T -algebra structure.

When the category C is taken to be SSet, the category of simplicial sets,
and T is taken to be the cone monad, both of these two constructions for a
monad R on SSet/Y give the same result. Just as the cone monad has for
its algebras the contractible spaces, the induced monad R on SSet/Y has for
its algebras those bundles p : X → Y those spaces which are fiber homotopy
equivalent to the terminal object idY in a strong way; i.e., there is a coherent
global contraction of each of the fibers. We will refer to R as the shrinkability
monad, to borrow a beautiful term due to Dold.

In the category of simplicial sets specifically, we get something stronger. The
monad R has a complementary comonad L such that (L,R) forms a natural
weak factorization system. Of course the object part of L and the counit are
already determined by the monad R, so the nontrivial part of this claim is
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the existence of a comultiplication making the copointed endofunctor L into a
comonad compatible withR and satisfying the distributivity law 7. IfR-algebras
are “acyclic fibrations” then L-coalgebras are our “cofibrations.”

An interesting problem for further research would be to extend one or both of
the analyses below with further hypotheses so that the complementary comonad
L can be constructed, as it can be in SSet. Again, one already has a copointed
endofunctor L, so the problem is to construct a comultiplication for L satisfying
the laws described above. We have been unable to identify reasonably general
and well-studied categorical hypotheses which would allow us to construct a
comultiplication for L. Nevertheless, it seems likely that this can be done,
based on the apparently simple logical form of the expression that defines the
comultiplication.

1.3 A monad on a slice category arising from a monad in
the underlying category

Let C be a category with Cartesian products, and (T, µ, η) a monad on C. Recall
that T is said to be strong with respect to the Cartesian product if there is given
a natural transformation αX,Y : T (X)×Y → T (X×Y ) such that the following
diagrams commute:

TA

TA× 1 T (A× 1)

∼=
∼=

αA,1

(8)

TA× (B × C) T (A× (B × C))

(TA×B)× C T (A×B)× C T ((A×B)× C)

αA,B×C

∼= ∼=
αA,B×C αA×B,C

(9)

A×B

TA×B T (A×B)

ηA×B
ηA×B

αA,B

(10)

TTA×B T (TA×B) TT (A×B)

TA×B T (A×B)

αTA,B

µ×B

T (αA,B)

µ

αA,B

(11)

These diagrams are taken from Definition 6.3.3., [1],
It will be sometimes be convenient to write 8 in this equivalent form:

T (πA) ◦ αA,1 = πTA : TA× 1→ TA (12)

Strong monads were introduced by Kock in [8], [9], [7]. They have been used
by Moggi ([10], [11]) to develop semantics of sequenced computations.
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Fix a category C with finite limits, and let (T, µ, η) be a strong monad on C.
Fix Y an object in C. In this section we will construct a monad (R,µR, ηR)

on C/Y .

Lemma 1. The following diagram commutes:

T (X)× Y T (X × Y )

TX

αX,Y

πTX T (πX) (13)

Proof. Let !Y denote the unique morphism Y → 1. Apply naturality of α to
(idX , !Y ) and use 8 with A := X.

For f : X → Y , we write E(f) for domR(f).
In what follows, for f : X → Y , gr f denotes the graph of f , the map

(idX , f) : X → X × Y .
We first define R on objects. We define E(f) by the following pullback

square:

E(f) T (X)

TX × Y T (X × Y )

T gr f

αX,Y

(14)

and R(f) is defined to be the second component of the left map of 14, the
composition

R(f) := E(f)→ TX × Y
πY−−→ Y (15)

If f : X → Y, f ′ : X → Y are two objects in C/Y , and g : X → X ′ a
morphism in C/Y , it is clear how to use the universal property of the pullback
E(f ′) to construct a map R(g) : E(f)→ E(f ′), and immediate that it commutes
with the maps R(f) and R(f ′). We omit routine verification of the identity and
composition laws for R.

Lemma 2. Let t(f) : E(f) → T (X) be the top map in 14 and s(f) : E(f) →
T (X) × Y the left map in 14. Then t(f) = πTX ◦ s(f), or equivalently s(f) =
(t(f), R(f)).

Proof. By Lemma 1, πTX = T (πX) ◦ αX,Y , so

πTX ◦ s(f) = T (πX) ◦ αX,Y ◦ s(f)
= T (πX) ◦ T (gr(f)) ◦ t(f)
= T (πX ◦ gr(f)) ◦ t(f)
= t(f)
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We will use the notation t(f) for the canonical map E(f)→ T (X) again in
what follows.

We describe the unit ηRf : f → R(f). To construct a map X → E(f), by
the universal property of the pullback it is necessary to give maps a0 : X →
TX, a1 : X → Y, a2 : X → TX, subject to the requirement that

αX,Y ◦ (a0, a1) = T (gr f) ◦ a2 (16)

We will take a0 = a2 = ηX and a1 = f .
Let us verify that the necessary coherence condition 16 is satisfied:

T (gr f) ◦ ηX = ηX×Y ◦ gr f
= αX,Y ◦ (ηX × idY ) ◦ gr f
= αX,Y ◦ (ηX , f)

as desired.
It is clear by the choice of a1 := f that ηRf is a morphism in the slice category

C/Y .
Let us turn to the multiplication µR.
In the following, T (f)∗α1,Y : E(f) → T (X) denotes the leg of the pullback

cone defining E(f) over T (f) in 14.
To give a map E(R(f)) → E(f), it suffices to give maps b0 : ERf → TX

and b1 : ERf → TX × Y with

αX×Y ◦ b1 = T (gr f) ◦ b0 (17)

. We will take b0 to be

b0 := ERf
t(Rf)−−−→ T (Ef)

T (t(f))−−−−−→ T 2X
µ−→ TX (18)

and we will take b1 = (b0, R
2(f)).

Let us prove that the necessary coherence condition 17 is satisfied.

T (gr f) ◦ b0
= T (gr f) ◦ µX ◦ T (t(f)) ◦ t(Rf)

= µX×Y ◦ T 2(gr f) ◦ T (t(f)) ◦ t(Rf)

= µX×Y ◦ T (αX,Y ) ◦ T ((t(f), R(f))) ◦ t(Rf)

= µX×Y ◦ T (αX,Y ) ◦ T (t(f)× 1Y ) ◦ T (gr(Rf)) ◦ t(Rf)

= µX×Y ◦ T (αX,Y ) ◦ T (t(f)× 1Y ) ◦ αEf,Y ◦ (t(Rf), R2f)

= µX×Y ◦ T (αX,Y ) ◦ αTX,Y ◦ (T (tf)× 1Y ) ◦ (t(Rf), R2f)

= αX,Y ◦ (µX × 1Y ) ◦ (T (tf)× 1Y ) ◦ (t(Rf), R2f)

= αX,Y ◦ (b0, R2f)
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Therefore we have constructed families of maps ηRf X → E(f), µR
f : E(R(f))→

E(f). It is immediate by construction that the maps ηRf and µR
f are morphisms

in the slice category C/Y , so these are maps ηRf : f → R(f), µR
f : R2(f)→ R(f).

Let us now turn to verifying the naturality of ηR and µR as well as the unit
and associativity laws for a monad.

Proposition 1. Let f : X → Y, g : Z → Y . Let h, k : g → R(f) be morphisms
in the slice category C/Y . To show h = k it is sufficient to show that t(f) ◦ h =
t(f) ◦ k.

Proof. This is immediate by the properties of the pullback, because we have
assumed that h, k are morphisms in the slice category, and Lemma 2.

For naturality of ηR, let (X, f) and (X ′, f ′) be objects in C/Y and let g :
(X, f)→ (X ′, f ′) be a morphism in the slice category. To prove that R(g)◦ηRf =

ηRf ′◦g, it is sufficient to show that t(f ′)◦R(g)◦ηRf = t(f ′)◦ηRf ′◦g. t(f ′)◦ηRf ′ = ηX′

by definition, and ηX′ ◦ g = T (g) ◦ ηX . Similarly, t(f ′) ◦ R(g) = T (g) ◦ t(f) by
definition of R(g) and t(f)◦ηRf = ηX by definition of ηRf . Thus t(f

′)◦R(g)◦ηRf =

T (g) ◦ ηX = t(f ′) ◦ ηRf ′ ◦ g, as desired.
For naturality of µR, again introduce (X, f), (X ′, f ′), and g : (X, f) →

(X ′, f ′) in C/Y . It is sufficient to show that t(f ′)◦µR
f ′ ◦R2(g) = t(f ′)◦R(g)◦µR

f .
Thus:

t(f ′) ◦ µR
f ′ ◦R2(g)

= µX′ ◦ T (tf ′) ◦ t(Rf ′) ◦R2(g)

= µX′ ◦ T (tf ′) ◦ T (Rg) ◦ t(Rf)

= µX′ ◦ T 2g ◦ T (tf) ◦ t(Rf)

= T (g) ◦ µX ◦ T (tf) ◦ t(Rf)

= T (g) ◦ t(f) ◦ µR
f

= t(f ′) ◦R(g) ◦ µR
f

as desired.
Let us verify the left unit law µR

f η
R
R(f) = 1Rf . By 1 it suffices to check that

t(f) = t(f) ◦ µR
f ◦ ηRR(f). Therefore:

t(f) ◦ µR
f ◦ ηR(f)

= µX ◦ T (tf) ◦ t(Rf) ◦ ηR(f)

= µX ◦ T (tf) ◦ ηE(f)

= µX ◦ ηT (X) ◦ t(f)
= t(f)

as desired.
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Now we verify the right unit law µR
f (R(ηRf ) = 1Rf . By 1 it suffices to check

that t(f) = t(f) ◦ µR
f ◦R(ηRf ). Therefore:

t(f) ◦ µR
f ◦R(ηRf )

= µX ◦ T (tf) ◦ t(Rf) ◦R(ηRf )

= µX ◦ T (tf) ◦ T (ηRX) ◦ t(f)
= µX ◦ T (ηX) ◦ t(f)
= t(f)

as desired.
Last, we will verify the associativity of multiplication. By 1 it suffices to

check that t(f) ◦ µR
f ◦R(µR

f ) = t(f) ◦ µR
f ◦ µR

Rf . Therefore:

t(f) ◦ µR
f ◦R(µR

f )

= µX ◦ T (t(f)) ◦ t(Rf) ◦R(µR
f )

= µX ◦ T (t(f)) ◦ T (µR
f ◦ t(R2f)

= µX ◦ T (µX ◦ T (tf) ◦ t(Rf)) ◦ t(R2f)

= µX ◦ µTX ◦ T (T (tf) ◦ t(Rf)) ◦ t(R2f)

= µX ◦ T (tf) ◦ µEf ◦ T (t(Rf)) ◦ t(R2f)

= µX ◦ T (tf) ◦ t(Rf) ◦ µR
Rf

= t(f) ◦ µR
f ◦ µR

Rf

as desired.
This completes the verification of the monad properties.
As we mentioned earlier, a natural problem is to identify sufficient hypothe-

ses on the monad T which would allow us to construct a comultiplication on
the copointed endofunctor f 7→ ηRf on the coslice category X \ C. To construct
the comultiplication, a plausible choice of cone to construct the desired map
E(f)→ E(ηRf ) is given by

Ef T (X)

T (X)× Ef T (X × Ef)

t(f)

(t(f),1Ef ) T (gr(ηR
f ))

αX,Ef

(19)

but it is not clear what hypotheses can be chosen on T to force this diagram
to commute. For example, the cone monad C : SSet → SSet is a polynomial
monad with Cartesian unit and counit, and it has a right adjoint P , the path
space comonad; the underlying polynomial diagram for C is of a certain dis-
tinguished form 1 → I → 1. All polynomial functors preserve all connected
limits.
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1.4 Another monad in a slice category resulting from a
monad in the underlying category

In the previous section we worked in the level of generality of an arbitrary strong
monad in a category with finite limits. However, as there is limited information
and structure to work with in this context, it seems harder to make progress.
Furthermore, pulling back along a strength is an unusual operation. In this
section we will carry out an analogous construction but in the context of a
polynomial monad.

Let C be a locally closed Cartesian category, with terminal object 1.
In this section, let (T, η, µ) be a monad C → C with Cartesian multiplication

and unit natural transformations, preserving connected limits, and such that
ηX is a monic morphism for all X.

We will borrow notation from [3], where for any map f : A→ B, ∆f is the
pullback functor C/B → C/A, Σf : C/A→ C/B is the postcomposition functor
g 7→ f ◦ g, and Πf is a right adjoint to ∆f .

We further assume T has the following property: for any f : X → Y , T (f)
has the universal property of ΠηY

(f), that is, for any object (Z, p : Z → TY )
in C/TY , there is a bijection

HomC/Y (∆f (p), f) ∼= HomC/TY (p, T (f)) (20)

natural in (Z, p).
This very strong requirement determines the functor T in terms of a small

amount of data. If Y is chosen to be the terminal object, then we see that for
any object X, T (X) can be defined as domΠη1

(!X), where !X is the unique map
X → 1. It follows that T is, up to isomorphism, the polynomial functor induced
by the diagram

1← 1
η1−→ T (1)→ 1 (21)

Note that because η was assumed to be a Cartesian natural transformation,
the below pullback diagram indicates that ∆ηY

ΠηY
→ idC/Y is an isomorphism.

X TX

Y TY

f

ηX

T (f)

ηY

(22)

Although our requirements on T seem quite strong, any choice of object I in C
and any e : 1→ I gives rise to a polynomial diagram

1← 1→ I → 1 (23)

and the resulting polynomial functor T will be equipped with a Cartesian unit
natural transformation ηY : Y → TY ; moreover if T is any polynomial endo-
functor so defined, then for any f : X → Y , Tf has the universal property of
ΠηY

(f). (Proof omitted to cut down on verbosity.) Therefore, given any object
I and any morphism e : 1 → I, one has the polynomial endofunctor T defined
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by 23 and a Cartesian unit transformation, componentwise monic. Because Πe

is a right adjoint, it preserves the terminal object, so Πe(id1) is an isomorphism
T (1) ∼= I, and we can identify them. All that remains is to give a Cartesian
multiplication such that the associativity and unit laws are satisfied.

Let Y be an arbitrary object in C and let R : C/Y → C/Y be the polynomial
functor arising from the diagram

Y ← Y
(1Y ,e)−−−−→ Y × I

πY−−→ Y (24)

We will prove that R inherits a monad structure from T .

Proposition 2. If f : A → B is monic, then the counit of the adjunction
∆f ⊣ Πf is an isomorphism.

Proof. It is easy to see that if f is monic, the unit of the adjunction Σf ⊣ ∆f

is an isomorphism. Since ∆fΣf ⊣ ∆fΠf , ∆fΣf is naturally isomorphic to the
identity iff ∆fΠf is.

Definition 3 (Unit for R). There is a natural transformation ηR : idC/Y → R.

Proof. Let f : X → Y . We will construct a map ηR : f → ΣπY
Π(1,e)f . The

counit of the Σ(1,e) ⊣ ∆(1,e) adjunction evaluated at Π(1,e)(f) determines a
map Σ(1,e)∆(1,e)Π(1,e)(f) → Π(1,e)f . Because (1, e) is monic, by the previous
proposition ∆(1,e)Π(1,e)(f) ∼= f and this simplifies to a map Σ(1,e)(f)→ Π(1,e).
Applying ΣΠY

to both sides and recognizing that πY ◦ (1, e) = 1Y , this gives
the desired natural transformation ηRf : f → ΣπY

Π(1,e)f .

The following lemma indicates that we can see R as a fibered version of T ,
as at least for the case of trivial bundles it acts on the fibers in the expected
way.

Lemma 3. Let X be arbitrary, and let πY : Y ×X → Y . Then R(πY ) = πY :
Y × T (X)→ Y , and ηRπY

= 1Y × ηX .

Proof. Apply Beck-Chevalley to the pullback square

Y Y × I

1 I

(1 e)

πI

e

(25)

to see that Π(1,e)(πY ) = Π(1,e)∆!Y (X) = 1Y × T (!X) : Y × T (X) → Y × T (1).
Then compose with the projection πY .

Definition 4. There is a natural transformation µR : R2 → R.

Proof. First we need to recharacterize R2 in a more convenient form. By defini-
tion, R2 = ΣπY

Π(1,e)ΣπY
Π(1,e). However, we can restructure this using the dis-

tributivity law of Π over Σ (see [3], pg. 9) to write this as ΣπY
Σ1Y ×T (!X)Π1Y ×ηI

Π(1,e).
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We can rewrite this as ΣπY
Σ1Y ×µ1Π1Y ×ηI

Π(1,e), where we have changed T (!X)
with µ1, because obviously the compositions are the same as 1 is terminal. Thus
we have to give a natural transformation

ΣπY
Σ1Y ×µ1Π1Y ×ηI

Π1,e → ΣπY
Π1,e (26)

Now it suffices to give a natural transformation

Σ1Y ×µ1
Π1Y ×ηI

→ 1C/Y×I
∼= ∆1Y ×ηI

Π1Y ×ηI
(27)

because we can whisker with Π1,e and ΣπY
, so we take the transpose

Π1Y ×ηI
→ ∆1Y ×µ1

∆1Y ×ηI
Π1Y ×ηI

(28)

But µ1 ◦ ηI = 1 and so we can just take the identity.
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