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Skew monoidal categories

@ A skew monoidal category (Szlachanyi’'12) is a category C together
with an object I, a functor ® : C x C — C and nat. transfs. 4, p, a with
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Normality conditions, examples

@ A skew monoidal category is
e left-normal if A is invertible,
e right-normal if p is invertible,
e associative-normal if « is invertible.
@ A monoidal category is a skew monoidal category satisfying all 3
normality conditions.

@ Skew monoidal categories, possibly with different degree of
normality, appear in the study of relative monads (Altenkirch et
al’15) and quantum categories (Street & Lack’12).

@ (Altenkirch et al.’15) Given categories J and C and functor J : J — C.
The functor category [J, C] has a skew monoidal structure:

l=J, F® G=Lan,F-G



Our contributions

@ In previous work (MFPS’18), we presented a sequent calculus for
skew monoidal categories.

@ The sequent calculus is a presentation of the free skew monoidal
category on a set of generating objects.

@ It enjoys cut elimination and admits a focused subsystem of
canonical derivations.

@ In this work, we develop sequent calculi for partially normal skew
monoidal categories.

@ We prove cut elimination and we show that the calculi admit
focusing.

@ The result is a family of sequent calculi between those of skew
monoidal categories and (fully normal) monoidal categories.

@ These define 8 weakenings of the (I, ®) fragment of intuitionistic
non-commutative linear logic.



The sequent calculus of skew monoidal categories
(MFPS’18)



Skew monoidal sequent calculus

@ Formulae over a set At of atoms: A,B::= X |I|A®B
@ Sequents are triples S| — C where

e S (stoup) is an optional formula,
o [ (context) is a list of formulae,
e Cis asingle formula.

@ Derivations are constructed with these inference rules:
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@ IL, ®L only apply to the formula of the stoup, if it is not empty.
®R sends the stoup formula, if present, to the 1st premise.



What makes this work: unitors

@ A derivation corresponding to the unitor A:
ax
pass
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@ There is no derivation corresponding to 17"
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@ A derivation corresponding to the unitor p:
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@ There is no derivation corresponding to p~":
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What makes this work: associator

@ A derivation corresponding to the associator «:

ax
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Equivalence of derivations

(n-conversions)
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Results

@ Theorem: Two forms of cut are admissible:

SITr—A A|A—C -|FT—A S|AgpA A —C
scut ccut
S|rA—C S| Ao, A1 — C

@ Theorem: The sequent calculus, with derivations quotiented by the
equivalence relation =, is a presentation of the free skew monoidal
category on At.

@ Theorem: We have an equivalent focused sequent calculus, in
which derivations are canonical representative of =-equiv. classes.
There is a bijection between

@ derivations of S | ' — C in the focused sequent calculus
e derivations of S| — C in the sequent calculus (up to =)



The sequent calculus of partially normal skew
monoidal categories
(ACT’20)



Left-normal sequent calculus

@ Skew monoidal sequent calculus with an extra rule:
-] —A A|A—B

R
AL SAsB 0%
+ some generating equations in =.
@ A derivation corresponding to A~
T iR A=A Z;
Al —IQA 2

@ The rule pass is invertible up to =:
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@ This implies that the left-normal sequent calculus admits an
equivalent stoup-free presentation.



Right-normal sequent calculus

@ Skew monoidal sequent calculus with 2 extra rules:

S|y, —C Ic S|l J,J .1 —C
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+ many generating equations in =.
@ J and J’ stand for closed formulae, i.e. made of | and ® only.
@ A derivation corresponding to p~ '
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@ The rule ®C° is needed, since it is important to allow deletion in the
context of any closed formula, not just I.
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Associative-normal sequent calculus

@ Skew monoidal sequent calculus with an extra rule:
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+ many generating equations in =.
@ A derivation corresponding to o~
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Results

@ Theorem: For all these sequent calculi, cut is admissible. Moreover,
each calculus admits focusing (inspired by Chauduri & Pfenning’05
in the right-normal case and in assoc.-normal case).

@ Theorem: Each partially normal sequent calculus, with derivations
quotiented by its equivalence relation =, is a presentation of the free
partially normal (with the same degree of partiality) skew monoidal
category on At.



Formalization, future work

@ Full formalization in the Agda proof assistant:
https://github.com/niccoloveltri/skewmoncats-normal

@ We plan to extend our story to:
o Skew closed categories (Street’13):
Al A—oA ip:loA—A Lagc:B-oC—(A—-B)—(A—-C)
e Skew monoidal closed categories (® and —o)

@ Skew closed prounital categories (no |, but maps may have no source)
e Braided/Symmetric skew monoidal categories (Bourke & Lack’20)

A®B)eC— (AeC)eB  BALTC
sag:(A®B)®C— (A®C)® SIF.ABA C &


https://github.com/niccoloveltri/skewmoncats-normal

Extra: Free skew monoidal category as deductive system

@ The free skew monoidal category over a set At can be viewed as a
deductive system (following Lambek’s tradition).
We call it the categorical calculus.

@ Objects are formulae over At: A,B::=X|I|A®B

@ Maps are equivalence classes of derivations of sequents A = C
where both A, C are single formulae.

@ Derivations are constructed with these inference rules:

id A—B B:>Ccomp
A=—A A—C

A—C B—D

A®B—C®D ®

@
I®A:>A/1 A:>A®Ip (A®B)®C—=A®(B®C)



Extra: Free skew monoidal category ctd.

@ Equivalence of derivations is the congruence = induced by the
equations

(category laws) idof=f f=foid (fog)oh=fo(goh)

(® functorial) id®id = id (hof)®@(kog)=h®kof®g
doid®@f=foA
(4, p, @ nat. trans.) pof=f®idop

ao(feg)®@h=fe(ge®h)oa

dop=id id=id®Adoaop®id
(m1-m5) doa=A®id aop=id®p
aoa=id®aocaoca®id



Extra: Skew seq. calc. vs. free skew mon. cat.

@ Define

[-(=1 [A(=A
A{AL A LAD = ((A ®A1)®A2)...)®An

@ Soundness: Forall f: S| — C, we can define
sound(f) : [S¢ ('] = C.
@ Completeness: Forall f : [S¢ ('] = C, we can define
cmplt(f) : S| — C.
(The scut rule interprets composition in the categorical calculus.)
@ Also equational soundness and completeness.
@ There is a bijection between

e derivations of [S{ ('] = C in the categorical calculus (up to =).
@ derivations of S | ' — C in the focused sequent calculus
e derivations of S | — C in the sequent calculus (up to =)



