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The dialectica monad and its cousins

Pieter J. W. Hofstra

Abstract. I give an expositional account of the dialectica construction and
some related constructions from the point of view of quantification in fibra-

tions. This allows for concise conceptual formulations of these constructions

and explains their universal properties. There are two main points I wish to
convey; the first is that the categorical dialectica construction decomposes into

two steps, following the quantifier pattern of the original translation; the sec-

ond is that the categorical embodiment of Skolemization takes the form of a
pseudo-distributive law between the pseudo-monads which freely add universal

and existential quantification.

1. Introduction

1.1. Background. The original purpose of Gödel’s famous dialectica inter-
pretation [11] was to reduce the problem of proving consistency of first-order arith-
metic to the consistency of a simply typed system of computable functionals (called
System T ). The key feature of the translation is that it turns formulae of arbitrary
quantifier complexity into formulae of the form ∃~f∀~x.α(~f, ~x), where α is quantifier-
free, by using the principle of Skolemization:

∀u∃x.α(u, x)
∃f∀u.α(u, fu) Sk

This principle is a form of choice: it allows us to replace a quantifier combination
of the form ∀∃ by one of the form ∃∀ by introducing a choice function f . Because
this choice function is a higher-type object, the resulting “Skolemized” formula is
no longer first order.

Over the years, several authors have tried to capture the dialectica interpreta-
tion in categorical terms. The development which is the main focus of this paper is
abstract in nature and aims at defining and analysing “dialectica-like” structures
without direct reference to arithmetic. The starting point of this line of research
is the PhD work of Valeria de Paiva [7], in which the so-called dialectica categories
were introduced. Let me briefly sketch the construction. One starts with a category
C with finite limits and builds a new category Dial(C), the objects of which have
the form (X,U, α) where α is a subobject of X ×U in C; such an object is thought
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of as the formula ∃x∀u.α(x, u). A morphism from (X,U, α) to (Y, V, β) consists of a
pair (f, f0), where f : X −→ Y and f0 : X ×V −→ U , subject to the condition1 that
α(x, f0(x, v)) ` β(fx, v). This definition of morphism, as explained in loc. cit., is
motivated by the way the dialectica interpretation acts on implicational formulae.

The main focus in the original work on the dialectica categories was on the
categorical structure of Dial(C): one can show that these always have a monoidal
structure, and that under additional assumptions on C they form a model of in-
tuitionistic linear logic. De Paiva [8] also considers a variant called the Girard
construction, and describes how the dialectica category Dial(C) can be presented
as the result of first applying the Girard construction to C, and then forming the
coKleisli category for a comonad on this category.

The original construction of the dialectica categories was formulated in terms
of the subobject logic of C. However, this can be generalized quite a bit: the case of
fibred preorders was explored in detail by Martin Hyland [13], and Bodil Biering’s
PhD thesis [5] investigates dialectica categories of the form Dial(p), where p is an
arbitrary cloven fibration.

These constructions raise various questions. What is the precise categorical
nature of the dialectica categories? Can they be described in more conceptual
terms, for example in terms of universal properties? And in what way does the
construction of these categories capture the essential ingredient of Gödel’s original
translation, namely the principle of Skolemization?

1.2. Goals of the paper. The main aim of this paper is to give an expo-
sition and interpretation of the dialectica construction from a modern categorical
perspective, which gives clear and precise answers to the above questions. The
dialectica interpretation has somewhat of a reputation of being complicated; how-
ever, by giving centre stage to the well-known concepts of monads, simple products
and -coproducts I hope that what emerges is a conceptually pleasing and accessible
picture.

The second goal of the paper is to provide explicit statements and reasonably
detailed proofs of facts which are perhaps folklore among some experts in the field
but which have, to the best of my knowledge, never been stated or worked out in
the literature. The first statement of this kind is that the dialectica construction
is really a two-step construction: Dial(p) (where p is a fibration) is obtained by
first applying the monad which freely adds simple universal quantification and then
applying the monad which freely adds simple existential quantification. The second
fact is that the dialectica construction (when performed on the level of general
fibrations and under the usual assumption that the base category is cartesian closed)
is itself monadic. The main observation in this general categorical setting is that
the principle of Skolemization takes the form of a (pseudo-)distributive law between
the abovementioned quantification monads.

The paper has been written with a readership familiar with basic category
theory in mind. In particular, I assume that the reader is comfortable with adjunc-
tions, monads, categories of algebras for a monad and distributive laws. A standard
reference to these topics is the textbook [3]. Since fibrations are omnipresent in the
paper I have included a background section on the basic theory of fibred categories,
including all the results we need for the rest of the work.

1I use logical notation here; this will be made precise in Section 2.3.
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At various places we shall be forced to deal with “up-to-isomorphism” versions
of monads and related concepts, i.e. with pseudo-monads, pseudo-algebras and
pseudo-distributive laws. Because this is not the right place to learn about this
material (and because those with an interest in the matter will likely already know
the basic theory) I have not included any review material of these concepts; a
concise treatment containing all definitions which are used in this paper can be
found in [6] (see also the references therein); we also mention [10], which is a survey
of the theory of pseudo-distributive laws.

I should stress however that intimate knowledge of these higher-categorical
notions is not necessary in order to follow the paper. First of all, I have made an
attempt to organize the material in such a way that it becomes clear why and where
certain coherence issues arise and why some of the structures under consideration
are not strict. The reader who is interested in the general picture but not in the 2-
categorical subtleties can simply pretend that the structure is strict and still follow
the main developments. Moreover, for most results I have tried to describe the
key ideas for the proof without going into too much distracting detail; and I have
delegated more complete proofs involving coherence issues and such to separate
sections which can be skipped without losing track of the main story.

I should also point out some things which I have not aimed for in this paper.
First of all, the main focus in several papers on the dialectica construction and its
variants was on the categorical structure of the dialectica categories and the way
in which they model linear logic. While this is clearly important and interesting,
it is not within the scope of the current exposition, which focuses solely on the
construction itself. Similarly, I will not address variants such as the Diller-Nahm
interpretation.

Second, I have not attempted to say much on the history of the subject, nor
to be complete in the references. Because of the expositional nature of this paper
there appear various results which are either standard, a variation on a standard
result, or and explicitation of a result which is implicit in the literature. Whilst
trying to avoid cluttering the exposition with too many literature references, I have
tried to give credit where that is due, and I hope that I will be forgiven for possible
omissions.

1.3. Overview. The paper is structured in the following manner. We begin
in Section 2 with a quick review of the theory of fibrations. Readers who are already
familiar with fibrations can safely skip this section.

Section 3 deals with notions of quantification in fibrations. We first explain in
some detail how quantification is handled on the fibrational level and introduce the
main kind of quantification we shall study in the rest of the paper, namely simple
(co)products. This is all standard material. Next, in Section 3.2, we consider con-
structions which freely add quantification to a fibration, starting with the easiest
such, namely the families construction. This allows us to reformulate these matters
in monadic terms and sets us up for a better understanding of subsequent matters.
After that (Section 3.3) we investigate one of the main constructions of interest,
namely adding simple existential quantification. Because this is one of the ingre-
dients for the dialectica construction we spell out the details of this construction,
and show that it naturally comes equipped with all the structure needed to make
it a pseudo-monad; a formal proof is given in the Appendix. The dual construction
for adding simple universal quantification is briefly described in Section 3.4; this



4 PIETER J. W. HOFSTRA

is the second main ingredient for the dialectica construction. Finally, Section 3.5
describes a variation giving rise to a decomposition of the constructions described
above into a linear part followed by a coKleisli construction.

Section 4 is the heart of the matter: it first introduces the dialectica categories,
and describes them in terms of the monads obtained in the previous section. Then
we introduce a (pseudo-)distributive law which explains why the dialectica con-
struction can be equipped with the structure of a pseudo-monad (Section 4.2), and
characterize the algebras for the dialectica monad. The proof of this central fact is
given in Section 4.3.

We end (Section 5) with a brief discussion of several aspects which could not
be included in this paper and with some suggestions for further exploration.

1.4. Acknowledgments. As often happens, the present paper is really the
consequence of the author trying to understand someone else’s work. In this case,
it was Bodil Biering’s PhD thesis [5] which led me to formulate matters in the way
presented here, and to explore various sidelines and related issues. I thank Phil
Scott and Michael Warren for their stimulating comments, remarks and questions;
I’ve benefited greatly from talking to various people, including Bodil Biering, Lars
Birkedal, Richard Garner, Claudio Hermida, Martin Hyland, Pino Rosolini and
Alex Simpson. To Valeria de Paiva I’m grateful for urging me to put my thoughts on
paper. Finally, I am greatly indebted to the anonymous referees whose thoughtful
and detailed reports have been very helpful in improving the focus and presentation
of the material.

2. Background

In this section I guide the reader through the basic theory of fibred categories.
I should stress that the aim here is not to provide a comprehensive account of
the theory, but to introduce just enough to keep this paper self-contained and to
give the reader sufficient insight into the material to be able to follow the rest of
the paper. A more thorough introductory text to the subject is [24]; for a lively
programmatic discussion, see [4]; finally, there is the textbook [16].

2.1. Basic theory and examples. Fibred category theory is a convenient
setting for modeling mathematical situations in which one collection of objects
depends on, or is indexed, or fibred over another. We begin by giving a concrete
and elementary definition, and then turn to some instructive examples. Along the
way we introduce notation and terminology.

Definition 2.1. Let p : E −→ B be a functor.
(i) A morphism v in E is vertical if p(v) = 1

(ii) For an object I in B, the fibre of p over I is the subcategory of E consisting
of those objects X for which pX = I and with vertical morphisms between
them. We denote this category by p−1(I), or by EI when p is understood.

If pX = I we say that X is an object over I. Similarly, if pv = f , we call v a
morphism over f .

Definition 2.2 (Cartesian morphism; fibration).
(i) Let m : X −→ Y be a morphism over pm = f . We say that m is cartesian

(over f) if for every other map n : Z −→ Y and every factorization p(n) = fg
there exists a unique morphism v over g for which mv = n. Diagrammatically:
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In this case, we call m a cartesian lifting of f
(ii) The functor p : E −→ B is a fibration if every map f : I −→ pY has a cartesian

lifting with codomain Y . We will usually refer to B as the base category and
to E as the total category of p.

A more abstract way of saying this is: p : E −→ B is a fibration precisely when
each induced functor p/Y : E/Y −→ B/pY has a right adjoint right inverse.

The following properties are readily verified from the definition and will fre-
quently be used:

Lemma 2.3. Let p : E −→ B be a fibration.

(i) The composite of two cartesian maps is again cartesian..
(ii) If two maps m,m′ are both cartesian over f , then there is a unique vertical

isomorphism v for which mv = m′.
(iii) Every morphism in E factors as a vertical map followed by a cartesian map

and this factorization is unique up to unique vertical isomorphism.
(iv) When two vertical maps v, v′ in E satisfy mv = mv′ for some cartesian map

m, then v = v′.
(v) Any map in E which is both vertical and cartesian is an isomorphism.

We now present a couple of standard instructive examples; examples pertaining
specifically to logic will be discussed below in Section 2.3.

Examples 2.4.

(1) For any pair B,C of categories consider the projection B × C −→ B. This
is a fibration; maps in B× C of the form (1, g) are vertical, while those of
the form (f, 1) are cartesian. Fibrations of this form are sometimes called
constant, because all fibres are isomorphic (to C).

(2) A fibration p is called discrete when the fibre categories are discrete cat-
egories, i.e. sets. For such p, the assignment I 7→ p−1(I) is the object
part of a presheaf on B. The Grothendieck construction (see Section 2.2
below) provides an inverse to this construction, so that discrete fibrations
are essentially the same thing as presheaves.
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(3) For any category B, let B−→ be the arrow category whose objects are maps
f : X −→ Y and whose morphisms are commutative squares

X
f
//

m

��

Y

n

��

X ′
f ′
// Y ′

The codomain functor cod : B−→ −→ B is a fibration (called the codomain
fibration on B) precisely when B has pullbacks; the cartesian maps are the
pullback squares. Later we shall consider subfibrations of the codomain
fibration.

The following elementary facts are easily verified.

Lemma 2.5.
(i) Fibrations are closed under composition, i.e. when p and q are fibrations, then

so is pq.
(ii) Fibrations are preserved by pullback, i.e. when

E′
F //

p′

��

E

p

��

B′
F
// B

is a pullback square in Cat and p is a fibration, then so is p′.

We end this section with a brief mention of opfibrations. A functor p : E −→ B
is an opfibration when pop : Eop −→ Bop is a fibration. Explicitly, this means that
every map f : pX −→ J in B has an opcartesian lifting f̃ : X −→ f!X, which is initial
in the sense that for any other map g : X −→ Y and any factorization p(g) = mf
there is a unique map f!X −→ Y over m making

Y

X ef //
g

33

f!X

∃!

==|
|

|
|

commute.

2.2. Cloven fibrations. Being a fibration is a property of a functor, as op-
posed to additional structure: cartesian liftings are required to exist, but a fibration
does not come equipped with a specific choice of cartesian liftings. The notion of
an indexed category, defined below, is structural, and may be regarded as giving a
presentation of a fibration by explicitly specifying cartesian liftings.

Definition 2.6. A B-indexed category is a pseudo-functor P : Bop −→ Cat.
Explicitly, this gives for each object I of B a category P (I), for each f : I −→ J a
functor P (f) : P (J) −→ P (I) (called a reindexing functor), together with coherence
isomorphisms P (f)P (g) ∼= P (gf) and P (1) ∼= 1, subject to coherence axioms.

Moreover, P is called strict if these coherence isomorphisms are identities (in
which case P can be regarded simply as a functor P : Bop −→ Cat).
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Any B-indexed category P gives rise to a fibration over B, as follows.

Construction 2.7 (Grothendieck construction). Let
∫
B
P be the category

with objects (I, x) where x ∈ Ob(P (I)). A morphism (I, x) −→ (J, j) is a pair (f,m)
where f : I −→ J and m : x −→ P (f)(y). It is easily seen that maps of the form
(f, 1) are cartesian, and that morphisms of the form (1,m) are vertical.

The projection πP :
∫
B
P −→ B is a fibration, and by construction it is endowed

with a natural choice of cartesian liftings: the lift of f : I −→ J = πP (J, x) may be
taken to be (f, 1) : (I, P (f)(x)) −→ (J, x). Such fibrations are called cloven (and
a choice of cartesian liftings is called a cleavage). If P is a strict functor, then
the cleavage is functorial, meaning that the chosen cartesian liftings compose and
that the chosen lifting of identities are again identities. Fibrations with a functorial
cleavage are called split.

In case a fibration is equipped with a cleavage, we will denote the chosen
cartesian lifting of f : I −→ pY by f : f∗Y −→ Y , and refer to f∗Y as the reindexing
of Y along f . Similarly, for a vertical morphism p : Y −→ Z, we denote by f∗p the
unique mediating map in

f∗Y
f
//

f∗p

��
�
�
� Y

p

��

f∗Z
f

// Z.

We shall be sloppy about one aspect concerning cleavages here: even though a
cleavage is additional structure on a fibration, we omit it from the notation, since
we shall not be dealing with fibrations equipped with different cleavages at the same
time.

For a detailed treatment of how the above construction can be extended to a
2-equivalence between indexed categories and cloven fibrations, see [24, 16].

We mention one construction which is easily understood in terms of indexed
categories and which we will use later in the paper, namely that of the opposite of
a fibration; it should not be confused with the opposite of a functor.

Definition 2.8 (Opposite of a fibration). For a given B-indexed category
P : Bop −→ Cat corresponding to a cloven fibration

∫
B
P = p, composition with the

involution (−)op : Cat −→ Cat, gives a new indexed category (−)op ◦P : Bop −→ Cat.
Now define the fibration pop =def

∫
B
(−)opP .

The fibre over I of pop is p−1(I)op, while its cartesian maps are the same as
those of p.

2.3. Logical aspects. We now turn to the logical perspective on fibred cate-
gories. We first discuss an important example.

Example 2.9 (Subobject fibration). For a set J , we may consider P(J),
the powerset of J ; since P(J) is partially ordered by inclusion, we may regard it
as a posetal category. When f : I −→ J is a function, we get an induced order-
preserving function f∗ : P(J) −→ P(I), sending U ⊆ J to f∗U = {i ∈ I|f(i) ∈ J}.
This defines a functor

P : Setop −→ Cat

and hence a fibration denoted SubSet −→ Set called the subobject fibration.
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Remark 2.10. The above example can be generalized to any category B in
which pullbacks of monomorphisms exist: for any object J define SubB(J) to be
the partial order of subobjects (equivalence classes of monics) of J , and define
reindexing to be given by pulling back subobjects. Then we obtain a subobject
fibration SubB −→ B. (In the case B = Set we used the fact that P(I) ∼= Sub(I) to
pick canonical representatives of subobjects.)

Let us think in logical terms about the subobject fibration SubSet −→ Set. An
object A in the fibre over I is a subset of I, and hence can be regarded as a predicate
on I. Similarly, the inclusion relation on subsets may be thought of as entailments
between such predicates. Finally, for a function f : J −→ I and a predicate A on I,
we may regard the predicate f∗A = {j ∈ J : f(j) ∈ A} as the result of making the
substitution [f(j)/i] in A(i).

We generalize this as follows: given a fibration p : E −→ B, we think of the base
category B as a category of types, or contexts. When I is such a type, then the fibre
category EI is thought of as a category of predicates with free variables of type I.
To stress this viewpoint, we sometimes write α(i) for such an object.

Furthermore, morphisms α(i) −→ β(i) in the fibre EI are thought of as proofs
that α implies β. We denote such a proof by φ(i) : α(i) −→ β(i). Because we may
have more than one proof of such an implication, the fibre category is generally not
a pre-order.

What about cartesian maps? Well, morphisms in B are thought of as terms, or
as context morphisms; more specifically, a morphism f : I −→ J may be regarded as
a term of type J with free variables from I (in context I). When α(j) is a predicate
over J , then the reindexing of α(j) along f is the predicate α(fi) over I obtained
by substituting the term f for j in α(j); the cartesian lifting f of f then relates
α(j) to its substitution instance α(fi).

α(fi)
f
// α(j) E

p

��

I
f

// J B

It is important to keep in mind that this logical notation for fibrations sup-
presses coherence data. For example, given a predicate α(j, x) in two variables and
maps f : I −→ J and g : Y −→ X, we could first form α(fi, x) and then α(fi, gy),
or the other way around. The notation suggests that the two resulting predicates
are identical, whereas in general we only have a vertical isomorphism between the
two.

Another class of examples which is relevant to the theme of this paper arises by
considering fibrations built from the syntax of a theory T (at least regular). Good
concrete examples to keep in mind are Heyting Arithmetic or Gödel’s system T.

From such a theory we first build a base category whose objects are the variable
contexts of the theory; the morphisms in the base are the (equivalence classes of)
provably functional relations of the theory.

Next, we build a fibration over this base by taking the objects in the fibre over
a type T to be the formulae of T with free variable from T . Reindexing is given
by substitution. Such a fibration is usually referred to as the syntactic fibration
associated to the theory T; see [16] for more information.
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Remark 2.11. This paper is mainly about quantification in fibrations; how-
ever, it seems strange to discuss the logical perspective and not say a word about
the interpretation of the propositional connectives. In a nutshell: in order for a
fibration to interpret a certain propositional connective, the fibres need to have
appropriate categorical structure and this structure needs to be preserved by rein-
dexing. For example, to interpret conjunction the fibres should have cartesian
products, and reindexing should preserve these products. Note that in a posetal
fibration this just means that the fibres have binary meets preserved by reindexing.
Similarly, disjunction is interpreted using fibrewise coproducts, implication using
fibred exponentials, and so on.

2.4. 2-categorical aspects. We now describe how fibrations, as well as fi-
brations over a fixed base B naturally form a 2-category. We will not worry about
size issues, although typically we will have in mind that the base is small. After
that, we expore some properties of this 2-category which will be used in the rest of
the paper, in particular in connection to coherence matters.

We first define the 2-category CFib of cloven fibrations over arbitrary base as
follows. The objects of CFib are cloven fibrations p : E −→ B. For objects p : E −→ B
and q : D −→ B′, a 1-cell is a commutative square

(2.1) D
F0 //

q

��

E

p

��

B′
F
// B

in which F0 is a fibred functor, in the sense that it sends q-cartesian maps to p-
cartesian maps. It is not required that F0 preserves the cleavage on the nose.

Finally, given two such 1-cells (F, F0) and (G,G0) from q to p, a 2-cell from
(F, F0) to (G,G0) is a pair of natural transformations φ : F −→ G,φ0 : F0 −→ G0,
where φ0 lies over φ, in the sense that for each X in D, the component (φ0)X is
sent by p to φqX .

There is a forgetful 2-functor CFib −→ Cat which sends p : E −→ B to the base B.
When we take the fibre of this forgetful functor at a base category B, we obtain the
2-category CFib(B) of cloven fibrations over B, fibred functors and vertical natural
transformations.

Definition 2.12 (Fibred functor, fibred natural transformation). Let
p : E −→ B and q : D −→ B be functors.

(i) A functor F : E −→ D over B is called a fibred functor2 if it preserves cartesian
maps.

(ii) A natural transformation φ : F ⇒ F ′ between two functors over B is called
vertical when all of its components are vertical maps, i.e. when q(φX) = 1
for each object X of E.

To summarize: CFib(B) is the 2-category with
• 0-Cells: cloven fibrations p : E −→ B
• 1-Cells: fibred functors
• 2-Cells: vertical natural transformations.

2Some authors call this a cartesian functor, but we will not follow this.
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Remark 2.13. The forgetful 2-functor CFib(B) −→ Cat/B is in fact 2-monadic:
the free (split) fibration on a functor p : E −→ B is the projection B/p −→ B;
moreover, “fibration structure” (i.e. a cleavage) on a functor p : E −→ B is precisely a
pseudo-algebra structure for this 2-monad (strict algebras correspond to splittings).
See [23] for a detailed treatment of this approach to fibrations.

The following elementary fact will often be used:

Lemma 2.14. Let F be a functor over B from p : E −→ B to q : D −→ B,
where p, q are cloven. Then F is a fibred functor if and only if each of the unique
mediating maps

F (f∗α)

##GGGGGGGGG

��
�
�
�

f∗(Fα) // Fα

is an isomorphism.

This encourages us to extend the logical notation for fibrations to include func-
tors. For example, we write Fα(i, x) for the image under the fibred functor F of
the predicate α(i, x); then the expression Fα(fj, x) is ambiguous, but by the above
lemma the two possible interpretations are coherently isomorphic.

Similarly, for a fibred transformation τ : F ⇒ G, we note that the square

F (f∗α)
τf∗α

//

∼=
��

G(f∗α)

∼=
��

f∗(Fα)
f∗τα

// f∗(Gα)

commutes.

3. Quantification in Fibrations

In this section we first explain various notions of quantification in more detail;
then we turn to the process of freely adding existential quantification to a given
fibration, showing that this process is monadic in a suitable 2-categorical sense. We
do the same for universal quantification, which is then a relatively easy dualization.
Finally, we discuss the linear variants of these free constructions.

From now on all fibrations are equipped with a cleavage.

3.1. Sums and products. The starting point for the interpretation of the
quantifiers in the fibrational setting is the observation that the quantifiers ∀,∃ may
be characterized in terms of adjointness relations. Let me explain this: consider a
predicate α(x, y) over X × Y . Existentially quantifying over the variable y results
in the predicate ∃y.α(x, y), which now only has free variable x and hence must
live in the fibre over X. Thus, this form of quantification should be an operation
∃Y : p−1(X × Y ) −→ p−1(X). The main observation, due to Lawvere, is now that
this operation is left adjoint to the reindexing functor p−1(X) −→ p−1(X×Y ) (this
functor is also referred to as a weakening functor; it introduces a dummy variable).
Similarly, universal quantification can be expressed in terms of right adjoints to
reindexing functors.
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Suppose then that B is a category with (chosen) pullbacks. For an arbitrary
map f : I −→ J in B, we may ask whether the functor f∗ : p−1(J) −→ p−1(I) has a
left adjoint. If it does, we think of this adjoint as giving existential quantification
along f and denote it by ∃f : p−1(I) −→ p−1(J).

However, merely asking that p has left adjoints to reindexing functors is not
sufficient: we have to make sure that these left adjoints behave well with respect
to substitution. To this end, consider a pullback square in B:

(3.1) I
f
//

h

��

J

g

��

V
k
// W

Given a predicate on J , we may now either first make the substitution [f(i)/j]
and then quantify along h, or we first quantify along g and then substitute [k(v)/w].
We want those two to agree. Formally, there is a canonical comparison map

κ : ∃hf∗ −→ k∗∃g
obtained as follows: first take the unit 1 −→ g∗∃g, and apply to it the functor f∗ to
get a map f∗ −→ f∗g∗∃g. Then use the canonical isomorphism h∗k∗ ∼= f∗g∗ to get
a map f∗ −→ h∗k∗∃g. Finally, transpose this along the adjunction ∃h a h∗ to get
the desired ∃hf∗ −→ k∗∃g. We say that p satisfies the Beck-Chevalley Condition
(for the given pullback square) when this mediating map is an isomorphism.

Definition 3.1. We say that a fibration p over a category B with pullbacks has
existential quantification when all reindexing functors have left adjoints satisfying
the Beck-Chevalley Condition (BCC). Dually, p has universal quantification, when
reindexing functors have right adjoints satisfying the BCC.

For fibrations with existential quantification, observe that for f : I −→ J in B
and α ∈ p−1(I), there is a canonical map

f̃ : α −→ ∃f (α)

obtained by precomposing the unit α −→ f∗∃f (α) with the cartesian map f :
f∗∃f (α) −→ ∃f (α). This map is opcartesian over f , a fact which we will exploit
later.

We have already seen examples of fibrations with existential quantification: the
archetypical such is the codomain fibration B−→ −→ B. Given a map f : I −→ J
in B, the left adjoint to the pullback functor f∗ : B/J −→ B/I is usually denoted
by Σf , and acts by composition with f . (Moreover, the codomain fibration has
universal quantification whenever the base category is locally cartesian closed, see
e.g. [16]).

For a different example, consider a complete Heyting algebra (frame, locale) Ω,
and consider the assignment I 7→ ΩI = Set[I,Ω]. Reindexing is given by precom-
position. The reindexing functors f∗ : ΩJ −→ ΩI have both adjoints, given by (for
α : I −→ Ω)

∃f (α)(j) =
∨

f(i)=j

α(i) ∀f (α)(j) =
∧

f(i)=j

α(j)

Now that we understand this general form of quantification, it is easy to con-
sider more restricted versions by only asking for adjoints to certain reindexing
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functors. We will be mostly concerned with reindexing along projections. This is
usually referred to as simple quantification. Explicitly:

Definition 3.2. A fibration p over a category B with finite products has simple
existential quantification, or simple coproducts, when all weakening functors have
left adjoints satisfying the Beck-Chevalley Condition (BCC) for pullback squares
of the form

I ×X

f×X
��

πI // I

f

��

J ×X πJ
// J.

Dually, p has simple universal quantification, or simple products, when weakening
functors have right adjoints satisfying the BCC.

Remark 3.3. The idea of selecting a particular class of maps to quantify along
(i.e. by specifying a subcategory of B−→ which is pullback-stable) allows us to define
quite general notions of quantification; this has been made more precise via notions
such as CT-structure and comprehension categories, see [16].

What does it mean for a fibred functor to preserve coproducts? Consider two
fibrations with coproducts and a fibred functor F between them. Given a morphism
f : I −→ J in the base and a predicate α over I, we have a unique vertical comparison
map induced by opcartesianness of f̃ .

F (∃fα)

Fα

F ef 77nnnnnnnnnnnnn ef // ∃f (Fα)

ψf,α

OO�
�
�

Definition 3.4. A fibred functor F preserves coproducts when each of the
comparison morphisms ψf,α is an isomorphism.

Of course, we have a similar definition for preservation of products, and it is
now also clear what is meant by a fibred functor preserving simple (co)products.
We introduce the following 2-categories: CFib∀(B) is the 2-category with

• 0-Cells: Cloven fibrations over B with (chosen) simple products
• 1-Cells: Simple product-preserving fibred functors
• 2-Cells: Fibred natural transformations

and similarly CFib∃(B) has

• 0-Cells: Cloven fibrations over B with (chosen) simple coproducts
• 1-Cells: Simple coproduct-preserving fibred functors
• 2-Cells: Fibred natural transformations

We will extend the logical notation for fibrations to include the quantifiers,
writing ∃x.α(i, x) for the result of applying ∃X to α(i, x). Then an expression
such as ∃x.α(fj, x) is again ambiguous, but the BCC guarantees that both possible
interpretations are coherently isomorphic.
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3.2. The families construction. We now turn to the question of how to
freely add existential quantification to a given fibration. The answer is easiest for
adding all coproducts; we first briefly review this, as it makes the subsequent con-
structions clear and gives us the opportunity to point out some structural features.

First recall that cod : B−→ −→ B (for B with pullbacks) is a fibration with
existential quantification along all maps. In fact, it is the free such on the terminal
fibration 1 : B −→ B on B: given any fibration with coproducts E

p−−→ B and any
fibred functor F from the terminal to p, there is an induced fibred functor from the
codomain fibration to p which sends an arrow f : I −→ J to ∃f (FI).

We now exploit this by defining, for general p, a new fibration Fam(p) as follows:

Fam(E)

��
Fam(p)

  

// E

p

��

B−→

cod

��

dom // B

B

Here, the square is a pullback. Thus, we label the objects and arrows of the free
structure on the terminal by objects of E; explicitly Fam(E) is the category with

• Objects: pairs (I
f−−→ J, α) where α ∈ p−1(I)

• Arrows: an arrow from (I
f−−→ J, α) to (H

g−−→ K,β) consists of a triple
(p, q, φ), where gp = qf is a commutative square in B and φ : α −→ β is a
map in E over p.

One may think of an object (f : I −→ J, α) as the predicate ∃fα; alternatively,
one regards it as an I-indexed family of objects of E, whence the name of the
construction.

Using the universal property of the pullback, this construction is easily seen
to be 2-functorial. Moreover, one can construct a unit and a multiplication map.
Explicitly, the unit is given by

ηp : E −→ Fam(E); α ∈ p−1(I) 7→ (I 1−−→ I, α)

and the multiplication is

µp : Fam2(E) −→ Fam(E); (I
f−−→ J, (J

g−−→ K,α)) 7→ (I
gf−−→ K,α).

The monad laws are just the composition laws in B.

Theorem 3.5. The construction p 7→ Fam(p) extends to a strict 2-monad
on CFib(B), which has the KZ property. The 2-category of pseudo-algebras is 2-
equivalent to the 2-category of cloven fibrations with chosen coproducts and coproduct-
preserving fibred functors.

Remark 3.6. Let me first comment on the KZ-property: a pseudo-monad is
said to be Kock-Zöberlein (see [20, 19, 21]) when pseudo-algebra structures on p are
left adjoint to the unit at p. (To show that a monad has this property, it suffices
to test it for free algebras). This has useful consequences: first, when p admits a
pseudo-algebra structure it is essentially unique. Second, any morphism between
algebras is automatically a lax algebra morphism in a unique way, and is a pseudo
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algebra map whenever the unique mediating 2-cell is an isomorphism. And third,
any 2-cell between lax algebra morphisms is automatically an algebra 2-cell. The
dual notion is called a co-KZ monad, and is characterized by algebra structure maps
being right adjoint to the unit.

Now let me sketch why a pseudo-algebra structure on p amounts to having
chosen coproducts in p. A pseudo-algebra structure on p is, by the KZ property, a
(fibred!) left adjoint to the unit ηp : p −→ Fam(p). Given such left adjoint K we
thus have adjunctions for each fibre

EI
ηI

⊥ 11 Fam(E)I
KI

ss

where the counit is an isomorphism, and hence ηI is fully faithful. It is straightfor-
ward to verify that the fact that K is a fibred functor translates into the BCC for
the local adjunctions KI a ηI , in the sense that given a map f : I −→ J the canoni-
cal natural transformation KIf

∗ −→ f∗KJ is an isomorphism (this map depends on
the adjunction morphisms). We now define existential quantification ∃f : EI −→ EJ
in p along f to be the composite

EI
ηI−−→ Fam(E)I

∃f−−→ Fam(E)J
KJ−−−→ EJ ; α 7→ K(I

f−−→ J, α).

The adjointness ∃f a f∗ for p is now immediate from the following sequence of
bijections:

KJ∃fηIα −→ β

∃fηIα −→ ηJβ
by KI a ηI

ηIα −→ f∗ηJβ
by ∃f a f∗ for Fam(p)

ηIα −→ ηIf
∗β

η is fibred

α −→ f∗β
ηI is fully faithful

The BCC for the KI easily implies that for the ∃f . Note that the adjunction
morphisms for K a η determine the adjunction morphisms of ∃f a f∗.

Conversely, when we have left adjoints to reindexing functors then we can use
the same definition

KI : Fam(E)I −→ EI ; (J
f−−→ I, α) 7→ ∃f (α)

to locally construct a left adjoint to the unit. The BCC now guarantees that these
fit together to form a global adjoint K a η. Details are straightforward.

3.3. The simple fibration, or adding simple coproducts. Next, we in-
vestigate adding simple coproducts to a fibration. We follow the pattern from the
previous section. First of all, the codomain fibration gets replaced by a smaller
fibration called the simple fibration over B. This is defined as follows:

Construction 3.7. The category Sum(B) has:

Objects: pairs (I,X), where I and X are objects of B.

Morphisms: a map from (I,X) to (J, Y ) is a pair (f, f0, ), where
• f : I −→ J is a morphism in B
• f0 : I ×X −→ Y is a morphism in B.
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Identities: the identity on (I,X) is the map (1I , πX).

Composition: given (f, f0) : (I,X) −→ (J, Y ) and (g, g0) : (J, Y ) −→ (K,Z), the
composite of these maps is defined to be the pair (h, h0) where

h = gf ; h0 = g0〈fπI , f0〉; h0(i, x) = g0(fi, f0(i, x)).

This category is fibred over B via the first projection. The fibre over I is also
referred to as the simple slice over I. There will be no notational distinction made
between Sum(B) regarded as a fibration and as category.

We now extend this construction in the canonical way to general fibrations:
given E

p−−→ B, consider

Sum(E)

��

Sum(p)

  

// E

p

��

Sum(B)

��

×
// B

B

where the square is a pullback. The total category Sum(E) may be described
explicitly as follows:

Construction 3.8. Let p : E −→ B be a fibration. The category Sum(E) has:

Objects: triples (I,X, α), where I and X are objects of the base B, and where
α ∈ p−1(I ×X) is an object in the fibre over I ×X.

Morphisms: a map from (I,X, α) to (J, Y, β) is a triple (f, F, φ), where
• f : I −→ J is a morphism in B
• f0 : I ×X −→ Y is a morphism in B
• φ = φ(i, y) : α(i, x) −→ β(f(i), f0(i, x)) is a morphism in the fibre over
I ×X.

The rest of the structure is straightforward, and it is readily verified that p 7→
Sum(p) is 2-functorial.

Theorem 3.9. The 2-functor p 7→ Sum(p) can be endowed in a canonical way
with the structure of a pseudo-monad on CFib(B), which is a strict 2-monad when
the product structure on B is strict. This pseudo-monad is KZ, and its 2-category
of pseudo-algebras is 2-equivalent to the 2-category CFib∃.

Note first that in case products are strict in B, it is easy to see that we get a
2-monad: for then the collection of first projections is closed under composition, so
all of the 2-monad structure is obtained by simply restricting that of the families
monad.

Formally, to specify a pseudo-monad structure on Sum means to give the fol-
lowing data:

• a pseudo-natural transformation (η, η) : 1 −→ Sum

• a pseudo-natural transformation (µ, µ) : Sum2 −→ Sum
• invertible modifications λ : µ ◦ Sumη −→ 1, ρ : µ ◦ ηSum −→ 1 and θ :
µ ◦ µSum −→ µ ◦Sumµ.
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Moreover, this data is supposed to satisfy certain coherence conditions. Here I will
simply give a direct description of this structure; in the Appendix the coherence
will be discussed in some detail.

First, the unit for Sum. At a fibration p, this is the map which acts as follows
on an object α and a morphism φ : α −→ β in EI :

ηp : E −→ Sum(E); α 7→ (I, 1, α′); φ 7→ (1I , !, φ′)

where α′ is the result of reindexing α along the unit isomorphism I × 1 −→ I, and
φ′ is the unique vertical map making

α′
πI //

φ′

��

α

φ

��

β′
πI
// β

commute.
We see right away why we get a complication which was not present in the case

of Fam (and which also doesn’t show up when products are strict): in order to get
a well-defined object of Sum(E), we need to move to an isomorphic fibre.

As a consequence, the unit is no longer strictly natural, but only pseudo-natural:
given F : p −→ q, consider the square

(3.2) E

F

��

ηp
//

⇓ηF

Sum(E)

Sum(F )

��

D ηq

// Sum(D)

The mediating vertical natural transformation ηF arises from the fact that F pre-
serves reindexing up to unique vertical isomorphism: thus the component of ηF at
α over I is the unique vertical isomorphism making

F (α′)
FπI

""FFFFFFFFF

��
�
�
�

(Fα)′
πI
// Fα.

commute (where πI : I × 1 −→ I).
The ηF are the components of a natural transformation

CFib(p, q)

⇓η

Sum // CFib(Sum(p),Sum(q))

��

CFib(p, q) // CFib(p,Sum(q))

making (η, η) a well-defined pseudo-natural transformation 1 −→ Sum.
A similar story can be told for the multiplication. A typical object of Sum2(E)

has the form (I,X, (I ×X,U, α)), with α ∈ E(I×X)×U . We may write (I,X,U, α)
for such an object. The multiplication map µp acts as follows:

µ(I,X,U, α) = (I,X × U,α′),
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where α′ is now the reindexing of α along the associativity isomorphism. As for
the unit, we can construct a family of natural transformations µ making (µ, µ) a
pseudo-natural transformation Sum2 −→ Sum.

The modifications λ, ρ, θ up to which the monad laws hold, are now easily seen
to be the canonical isomorphisms

λ : (I, 1×X,α′) −→ (I,X, α)

ρ : (I,X × 1, α′) −→ (I,X, α)

θ : (I,X × (U × V ), α′) −→ (I, (X × U)× V, α).

(In each of these, α′ refers to the reindexing of α along the appropriate coherence
isomorphism.)

3.4. Adding products. We now dualize the above results. First we give an
explicit description:

Construction 3.10. Let p : E −→ B be a cloven fibration. Construct a category
Prod(E) as follows:

Objects: triples (I,X, α), where I and X are objects of the base B, and where
α ∈ p−1(I ×X) is an object in the fibre over I ×X.

Morphisms: a map from (I,X, α) to (J, Y, β) is a triple (f, f0, φ), where
• f : I −→ J is a morphism in B
• f0 : I × Y −→ X is a morphism in B
• φ = φ(i, y) : α(i, f0(i, y)) −→ β(f(i), y) is a morphism in the fibre over
I × Y .

The identity map on (I,X, α) is (1I , πX , 1α). The composition of (f, f0, φ) :
(I,X, α) −→ (J, Y, β) and (g, g0, ψ) : (J, Y, β) −→ (K,Z, γ) is given by (h, h0, χ)
where

h = gf : I −→ K, h0(i, z) = f0(i, g0(fi, z)) : I × Z −→ X

and where χ(i, z) is the composite

α(i, h0(i, z)) = α(i, f0(i, g0(fi, z)))
φ(i, g0(fi, z))−−−−−−−−−→ β(fi, g0(fi, z))

ψ(fi, z)−−−−−−→ γ(gfi, z).

Proposition 3.11. There is an isomorphism of fibrations

Prod(p) ∼= Sum(pop)op.

This isomorphism is natural in p.

Here one has to recall that pop stands for the fibrewise opposite of p as described
in Definition 2.8.

Proof. The first statement of the theorem is easily checked by hand: both

categories have the same objects. In the fibre over I, a map (I,X, α)
(1, f0, φ)−−−−−−→

(I, Y, β) of Sum(pop) has f0 : I ×X −→ Y and φ : β(i, f0(i, x)) −→ α(i, x). But this
is precisely a map (I, Y, β) −→ (I,X, α) in Sum(p).

The second statement is left as a straightforward exercise. �

As a consequence, Prod is also a pseudo-monad on CFib(B). (This may of
course also be verified directly along the same lines as for Sum.) We state:
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Theorem 3.12. The assignment p 7→ Prod(p) can be endowed in a canonical
way with the structure of a pseudo-monad on CFib(B), which is a strict 2-monad
when the product structure on B is strict. This pseudo-monad is co-KZ, and its
2-category of pseudo-algebras is 2-equivalent to the 2-category CFib∀.

Because of this result, we are justified to think of an object (I,X, α) of Prod(p)
as the predicate ∀x.α(i, x) .

3.5. Variations. In this section we make a brief excursion to the linear ap-
proximations of the monads described above.

Let us first look at the linear variant of the monad Sum. Explicitly, it is
constructed as follows:

Construction 3.13. Let p : E −→ B be a cloven fibration. Construct a category
SumL(p) as follows:

Objects: triples (I,X, α), where I and X are objects of the base B, and where
α ∈ p−1(I ×X) is an object in the fibre over I ×X.

Morphisms: a map from (I,X, α) to (J, Y, β) is a triple (f, f0, φ), where
• f : I −→ J is a morphism in B
• f0 : X −→ Y is a morphism in B
• φ = φ(i, y) : α(u, x) −→ β(f(i), f0(x)) is a morphism in the fibre over
I × Y .

It is easy to see that this construction is the result of restricting the simple slice
over B to the category with the same objects, but only those maps (I,X) −→ (J, Y )
for which the second factor f0 : I × X −→ Y is independent of X, i.e. factors as
f ′0πX for some f ′0 : X −→ Y .

We have the expected result:

Theorem 3.14. The assignment p 7→ SumL(p) carries the structure of a
pseudomonad on CFib(B). When products in B are strict, then SumL is a strict
2-monad.

All structure is inherited from Sum, and we have an inclusion of pseudo-monads
SumL −→ Sum. However, it should be noted that SumL does not have the KZ-
property.

For the following result which further describes how SumL relates to Sum,
recall that a fibration p has equality when it has left adjoints to contraction functors
δ∗ : p−1(U × U) −→ p−1(U) subject to the Beck-Chevalley condition.

Theorem 3.15. Assume that p has equality. Then there is a comonad !p on
SumL(p) such that the coKleisli object for this comonad is Sum(p).

Proof. First note that if p has equality, then so does SumL(p): this is given
by (I × I,X, α) 7→ (I,X,∃∆×X(α)).

For the comonad on SumL(p), we define !p(I,X, α) = (I, I × X, α̂), where
α̂(i, i′, x) = α(i, x)∧ (i = i′). Equivalently, α̂ = ∃∆×X(α). It is now easily seen that
a map !p(I,X, α) −→ (J, Y, β) in SumL(p) is precisely a map (I,X, α) −→ (J, Y, β)
in Sum(p). �

What are the (pseudo-)algebras for SumL? These are the fibrations equipped
with a notion of quantification (again denoted ∃) satisfying the following inference
rule:
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α(i, x) −→ β(fi, f0x)
∃x.α(i, x) −→ ∃y.β(fi, y)

There is a sense in which this structure may be thought of as linear quantifi-
cation; see the comments in the last section.

We now turn to the dual results:

Construction 3.16. The category ProdL(p) has

Objects: triples (I,X, α), where I and X are objects of the base B, and where
α ∈ p−1(I ×X) is an object in the fibre over I ×X.

Morphisms: a map from (I,X, α) to (J, Y, β) is a triple (f, F, φ), where
• f : I −→ J is a morphism in B
• f0 : Y −→ X is a morphism in B
• φ = φ(i, y) : α(i, f0(y)) −→ β(f(i), y) is a morphism in the fibre over I×Y .

Again, this category is fibred over the base B via the first projection. Because
all the structure on Prod restricts to ProdL (or using the isomorphism ProdL(p) ∼=
(SumL(pop))op), the following is immediate:

Theorem 3.17. The assignment p 7→ ProdL(p) carries the structure of a
pseudo-monad on the category CFib(B) of fibrations over B.

Under the assumption that the base category B is cartesian closed, the inclusion
ProdL(p) −→ Prod(p) is part of a coKleisli adjunction for a comonad ! on Prod(p).
This comonad is defined by

!p(I,X, α) = (I,XI , α̃); α̃(i, F ) = α(i, F i),

where α̃ is the obvious reindexing of α.
This indeed makes !p into a fibred functor; moreover, it is indeed a comonad:

the counit
!p(I,X, α) = (I,XI , α̃) −→ (I,X, α)

is induced by X −→ XI , the transpose of the projection. The comultiplication

!p(I,X, α) = (I,XI , α̃) −→ (I, (XI)I , ˜̃α) =!p!p(I,X, α)

is induced by Xπ1 : XI −→ XI×I ∼= (XI)I .
Finally, a map

!p(I,X, α) = (I,XI , α̃)
(f, f0, φ)−−−−−−→ (J, Y, β)

in ProdL(p) amounts to f : I −→ J, f0 : Y −→ XI , φ : α̃(i, f0y) −→ β(fi, y); by
taking the transpose of F this corresponds to a morphism

(I,X, α)
(f, f̂0, φ)−−−−−−→ (J, Y, β)

in Prod(p), showing that the latter is indeed the coKleisli category for !p.
This gives:

Theorem 3.18. For each cloven fibration p over a cartesian closed base cate-
gory, there is a coKleisli adjunction

Prod(p) ⊥

!p
..
ProdL(p)mm
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Monad Pattern Inference Rule Structure

SumL

I

��

X

��

J Y

α(i, x) −→ β(fi, f0x)
∃xα(i, x) −→ ∃yβ(fi, y)

Linear simple coproducts

Sum

I

�� ��
@@@@@@@@ X

��

J Y

α(i, x) −→ β(fi, f0ix)
∃xα(i, x) −→ ∃yβ(fi, y)

Simple coproducts

ProdL

I

��

X

J Y

OO
α(i, f0y) −→ β(fi, y)
∀xα(i, x) −→ ∀yβ(fi, y)

Linear simple products

Prod

I

��

X

J

??~~~~~~~
Y

OO
α(i, f0iy) −→ β(fi, y)
∀xα(i, x) −→ ∀yβ(fi, y)

Simple products

Table 1. Quantification monads

Again, the algebras for the monad ProdL may be roughly described as cloven
fibrations equipped with a form of linear simple products; in logical terms, these
obey the inference rule

α(i, f0x) −→ β(fi, x)
∀x.α(i, x) −→ ∀y.β(fi, y)

The reason for calling this a linear quantifier is that while the ordinary universal
quantifier behaves as a generalized conjunction, this linear quantifier behaves more
like a tensor product, since one does not necessarily have projections (i.e. the
instantiation rule ∀x.α(x) ` α(a) is generally not valid).

We summarize the four constructions in Table 3.5.

4. The Dialectica Monad

In this section we consider the dialectica construction and analyse it in terms
of the monads considered earlier. We begin by showing directly that the dialectica
construction may be decomposed into two steps, following the ∃∀ quantifier pattern
suggested by the original interpretation. We then indicate another decomposition
via a linear approximation followed by an exponential comonad. After that we
come to the main issue, namely the observation that the dialectica construction is
itself a (pseudo-)monad, provided the base category is cartesian closed; to this end,
we show that the type-theoretic axiom of choice (i.e. Skolemization) in fact takes
the form of a pseudo-distributive law of Prod over Sum, thus making the composite
into pseudo-monad. This explains the categorical content of Skolemization and the
universal property of the dialectica construction.

4.1. The dialectica construction. We now introduce the main construction
of interest.
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Construction 4.1 (Dialectica construction). Let p : E −→ B be a fibration.
Define a category Dial(p) as follows:

Objects: quadruples (I,X,U, α), where I,X and U are objects of the base B,
and where α ∈ p−1(I ×X × U) is an object in the fibre over I ×X × U .

Morphisms: a map from (I,X,U, α) to (J, Y, V, β) is a quadruple (f, f0, f1, φ),
where

• f : I −→ J is a morphism in B
• f0 : I ×X −→ Y is a morphism in B
• f1 : I ×X × V −→ U is a morphism in B
• φ = φ(i, x, v) : α(i, x, f1(i, x, v)) −→ β(f(i), f0(i, x), v) is a morphism in

the fibre over I ×X × V .

This is again fibred over B via the first projection. Note that the fibre over
1 is, up to equivalence, just the the total category of Prod(p); in the original
presentation [7] it was the latter category (for the special case where p was the
subobject fibration) which was studied. This category can thus be viewed as a
category of dialectica propositions.

As a first step towards understanding the structure of the fibration Dial(p), we
observe that the construction can be decomposed into two steps:

Lemma 4.2. There is an isomorphism of fibrations, natural in p:

Dial(p) ∼= SumProd(p).

Proof. This is an easy direct verification; an object of SumProd(p) has the
form (I,X, (I × X,U, α)), and we may identify this with (I,X,U, α) as usual. A
morphism (I,X,U, α) −→ (J, Y, V, β) has the form (f, f0, F ), where f : I −→ J ,
f0 : I ×X −→ Y and

F : (I ×X,U, α) −→ 〈fπI , f0〉∗(J × Y, V, β)

in Prod(p). Thus, F consists of maps f1 : I × X × V −→ U and φ(i, x, v) :
α(i, x, f1(i, x, v)) −→ β(fi, f0(i, x), v), and hence the tuple (f, f0, f1, φ) constitutes
a map in Dial(p). Further details are straightforward and left to the reader. �

Concretely this says that Dial(p) arises from p by first adding universal quan-
tification, and then existential quantification. Thus we are justified in thinking
of an object (I,X,U, α) as ∃x∀u.α(i, x, u), and this makes clear how this abstract
categorical construction is related to Gödel’s original interpretation.

4.2. Skolemization as a distributive law. As already mentioned in the
introduction, Skolemization is a syntactic translation which is based on the idea
of replacing a quantifier combination of the form ∀x : X.∃u : U.α(x, u) by one of
the form ∃f : UX .∀x : X.α(x, fx). Since the existential quantifier ranges over a
function type, this construction is only available in the presence of function types.
Skolemization is the key ingredient in Gödel’s dialectica interpretation, because it
tells us how to replace a sequence of alternating quantifiers by a sequence of the
form ∃~f∀~x.

First, recall from the previous section that the monad Prod admits a decom-
position into a linear component followed by a coKleisli construction. The same
idea works for Dial: we consider an auxiliary fibration Diali(p) by taking the same
objects as Dial(p), but only those morphisms for which the third coordinate does
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not depend on the second (but it may depend on the first). Thus schematically the
morphisms have the form

•

�� ��
111111 •

��

•

•

=={{{{{{{{
• •

OO

and we may think of objects (I,X,U, α) of Diali(p) as predicates[
∃x
∀u

]
α(i, x, u),

where the branching quantifier indicates that u and x are independent.
How does this help? Well, if we have an expression with two such quantifiers,

the quantifier independence allows us to contract it as follows:[
∃x
∀u

] [
∃y
∀v

]
α(i, x, u, y, v) 7→

[
∃xy
∀uv

]
α(i, x, u, y, v).

This operation may be recast in terms of fibrations as a fibred functor

Dial2i (p) −→ Diali(p); (I,X,U, Y, V, α) 7→ (I,X × Y,U × V, α)

(the reader can easily verify that this assignment works on the level of morphisms
precisely because of the independence conditions) which is the component at p of
a multiplication on Diali. One can now work out that Diali can be equipped with
the structure of a pseudo-monad.

Now back to the general case of Dial(p). Here, we cannot use this formula for
the multiplication directly. Instead, we need to first break the quantifier dependence
by using the axiom of choice.

Lemma 4.3. Let B be a cartesian closed category. Then the inclusion of
fibrations Ip : Diali(p) −→ Dial(p) has a fibred right adjoint.

Proof. This is a straightforward calculation along the same lines as for ProdL.
Explicitly, the right adjoint Rp sends an object (I,X,U, α) to (I,X,UX , α̌), where
α̌(i, x, f) = α(i, x, fx). Then we have a bijective correspondence of maps in
Diali(p) from (J, Y, V, β) to (I,X,UX , α̌) and maps in Dial(p) from (J, Y, V, β)
to (I,X,U, α). Details are left to the reader. �

We may also prove (although we shall not need this) that Dial(p) is in fact the
Kleisli category for the induced monad !p on Diali(p). Finally, we note that the
condition that B is cartesian closed is not only sufficient but is also necessary for
this result. (Just take p to be the identity fibration on B.)

Consider now the following map λp : ProdSum(p) −→ SumProd(p):

(I,X,U, α) 7→ (I, UX , X, α̂), α̂(i, f, x) = α(i, x, fx).

Thus λp is the composite of the right adjoint Rp and the twist map.

Theorem 4.4. When B is cartesian closed, the maps λp are the components
of a pseudo-natural transformation

λ : ProdSum −→ SumProd

which underlies a pseudo-distributive law of Prod over Sum.
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Proof. A direct verification is long and tedious, but straightforward (the many
coherence conditions pose no real difficulty, as the coherence morphisms are all
defined using uniqueness properties). In Section 4.3 we give a more conceptual
proof using the fact that pseudo-distributive laws of Prod over Sum correspond to
liftings of Sum to the category of algebras for Prod. �

Remark 4.5. Even when Sum and Prod happen to be strict, this pseudo-
distributive law will not be strict, unless (i) the cartesian closed structure on B is
strict and (ii) the fibrations involved are split. The reason is that the coherence iso-
morphisms involved in the distributive law arise as comparison morphisms between
various ways of reindexing along structure maps for the cartesian closed structure
on the base.

The immediate consequence of Theorem 4.4 is of course that the composite
Dial can also be equipped with the structure of a pseudo-monad, and that the
multiplication is given by

Dial2(p) −→ Dial(p); (I,X,U, Y, V, α) 7→ (I,X × Y U , U × V, α̂)

where of course α̂(i, x, f, u, v) = α(i, x, u, fx, v).

Theorem 4.6. When B is cartesian closed, the dialectica construction is (the
underlying 2-functor of) a pseudo-monad on CFib. The pseudo-algebras for this
monad are the cloven fibrations which have (chosen) simple products and simple
coproducts satisfying the distributivity condition

(4.1) ∀u∃x.α(i, u, x) ∼= ∃f∀u.α(i, fu, u).

Indeed, when p : E −→ B is a (pseudo-)algebra for Dial, then the following
diagram must commute up to natural isomorphism:

ProdSum(E)

Prod(∃)
��

λ // SumProd(E)

Sum(∀)
��

Prod(E)
∀

// E Sum(E)
∃

oo

Chasing this diagram both ways around for an object (I,X,U, α) gives ∀u∃x.α(i, u, x)
on the one hand, and ∃f∀x.α(i, fx, x) on the other.

We remark in passing that there is a dual result, which comes for free now:
there is also a pseudo-distributive law

κ : SumProd −→ ProdSum

making the composite ProdSum into a pseudo-monad whose algebras are fibrations
with (chosen) simple products and coproducts satisfying the distributivity condition

(4.2) ∃x∀u.α(i, x, u) ∼= ∀f∃x.α(i, fx, x).

4.3. Proof of main result. We now give a proof that Dial carries a pseudo-
monad structure by verifying that Prod distributes over Sum (throughout, we of
course assume that B is cartesian closed). As is well-known (see e.g. [6]), to give a
distributive law of Prod over Sum is equivalent to giving a lifting of Sum to the
2-category of pseudo-algebras for Prod. In our case, the fact that the monad Sum
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has the KZ property implies that such a lifting is essentially unique. It has been
shown3 that to give this lifting it suffices to prove the following three lemmata:

Lemma 4.7. When a fibration p : E −→ B has (chosen) simple products, then
so does Sum(p).

Lemma 4.8. When p has (chosen) simple products, then the unit η : p −→
Sum(p) preserves them.

Lemma 4.9. When p has (chosen) simple products and H : p −→ Sum(q)
preserves them, then so does the extension H+ : Sum(p) −→ Sum(q).

In the proofs of these lemmas, we shall suppress some coherence data arising
from the reindexing of the fibrations involved and the fibred functors between them
in order to keep things readable.

Proof of Lemma 4.7. Assume p has chosen simple products, i.e. right ad-
joints ∀I,X to weakening functors π∗I : EI −→ EI×X subject to the BCC. We need
to show that Sum(p) has the same structure. Let

∀I,X : Sum(E)I×X −→ Sum(E)I

be defined by
(I ×X,U, α(i, x, u)) 7→ (I, UX ,∀x.α(i, x, fx))

where f is of type UX and where we write ∀x instead of the more cumbersome
∀I,X .

This mapping is right adjoint to weakening: a morphism

(I, V, β(i, v)) −→ (I, UX ,∀x.α(i, x, fx))

consists of

f : I × V −→ UX and φ(i, v) : β(i, v) −→ ∀x.α(i, x, f(i, v)(x)).

Such data is in 1-1 correspondence with maps

f̂ : (I ×X)× V −→ U and φ̂(i, x, v) : β(i, v) −→ α(i, x, f̂(i, x, v))

i.e. with morphisms π∗(I,X, β(i, v)) = (I ×X,V, β(i, v)) −→ (I ×X,U, α(i, x, u)).
For the BCC, consider a morphism h : I −→ J , and an object (I×X,U, α(i, x, u))

over I, and consider the diagram

J × UX

h×UX

��

J × UX ×X v //

h×UX×X
��

πoo J ×X × U

(h×X)×U
��

I × UX I × UX ×X w
//

π
oo I ×X × U

Here, the left hand square is a pullback, and v, w are the obvious maps built from
the evaluation and pairing, so the right hand square commutes.

Using the coherence for reindexing we get a canonical isomorphism

(h× UX ×X)∗v∗α −→ w∗(h×X × U)∗α

3I am grateful to the referee for pointing me to this result, of which the preorder enriched
version can be found in [15].
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Applying ∀X to this isomorphism and precomposing with the canonical isomor-
phism from the BCC for p gives

(h× UX)∗∀Xv∗α −→ ∀Xw∗(h×X × U)∗α.

It is now readily verified that this map is the third component of the canonical map

h∗∀X(I ×X,U, α) −→ ∀X(h×X)∗(I ×X,U, α)

so that the BCC holds for the product in Sum(p) as we have defined it. �

Proof of Lemma 4.8. Consider α ∈ EI×X . One the one hand we have

η∀Xα = (I, 1, π∗I∀Xα)

and on the other hand we have

∀Xη(α) = ∀X(I ×X, 1, π∗I×Xα) = (I, 1X ,∀Xv∗π∗I×Xα)

where v : I × 1X ×X −→ I ×X × 1 is again the canonical map. These two objects
are canonically isomorphic, since we may use the BCC for p for the pullback in the
diagram below.

I × 1X

∼=
��

I × 1X ×X v //

∼=
��

πoo I ×X

I I ×X
=

88qqqqqqqqqqq
π

oo

�

Proof of Lemma 4.9. We are given a product-preserving map H : p −→
Sum(q); we will write, for α ∈ EI ,

H(α) = (I,H0[α], H1[α])

First, to say that H is a fibred functor means that for a map f : J −→ I there are
canonical isomorphisms

I ×H0[f∗α] ∼= I ×H0[α]
H1[f∗α] ∼= (f × 1)∗H1[α]

To say that H preserves simple products means that there are canonical isomor-
phisms

I ×H0[∀x.α] ∼= I ×H0[α]X

H1[∀x.α] ∼= ∀x.Ĥ1[α]

where Ĥ1[α] is the result of reindexing H1[α] along I×H0[α]X×X −→ I×X×H0[α].
Next, the extension H† is defined as µqSum(H). Explicitly,

H†(I,X, α) = (I,X ×H0[α], H1[α])

where we suppress the reindexing along the associativity isomorphism. To show
that H† preserves products, we consider an object (I×X,U, α), and compute both
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∀XH†(I ×X,U, α) and H†∀X(I ×X,U, α). We have

H†∀X(I ×X,U, α) = H†(I, UX ,∀x.α̂) by def. of ∀ in Sum

= (I, UX ×H0[∀x.α̂], H1[∀x.α̂]) by def. of H†

∼= (I, UX ×H0[α̂]X ,∀x.Ĥ1[α̂]) H preserves ∀
∼= (I, (U ×H0[α])X ,∀x.Ĥ1[α])
= ∀X(I ×X,U ×H0[α], H1[α]) by def. of ∀ in Sum

= ∀XH†(I ×X,U, α) by def. of H†

The isomorphisms in the middle arise as follows: for the first one, we use the fact
that H preserves reindexing and simple products. For the second, it seems as if
we’ve lost a hat in the process, but consider the diagram

I × (U ×H0[α])X

∼=
��

I × (U ×H0[α])X ×Xoo v //

∼=
��

I ×X × U ×H0[α]

I × UX ×H0[α̂]X I × UX ×H0[α̂]X ×Xoo

v′
// I × UX ×X ×H0[α̂]

w

OO

The object H1[α] lives over the top right corner; reindexing along w and then along
v′ gives H1[α̂] (because H commutes with reindexing) and then Ĥ1[α̂]. When we
reindex the latter along the canonical isomorphism in the middle, we get something
isomorphic to Ĥ1[α]. Finally, an application of the BCC for the left hand square
gives the desired isomorphism. �

5. Concluding thoughts

We end with a few loose ends, and some possible avenues for further research.

The Chu construction. There is a cousin of the dialectica construction which
we haven’t mentioned yet, namely the Chu construction (see e.g. [2]); this construc-
tion has been compared to the dialectica interpretation in [9] because of certain
formal similarities. One can define, for an arbitrary fibration p, a category Chu(p),
by taking the subcategory of SumL(p) on the same objects, but only on those mor-
phisms (f, f0, φ) for which the third component is an isomorphism. At present, I’m
not sure whether this is a fruitful course of action: for one thing, it is not clear
whether it gives a nice universal property of the Chu construction along the same
lines as for the other constructions. I should point out that a completely different
approach to finding a universal property of the Chu construction is given in a paper
by Dusko Pavlovic [22].

The case of locally cartesian closed categories. In this paper we have
considered the simple (in the sense of simply typed) version of the dialectica con-
struction, mainly because of the fact that this is how the construction appears in
the literature. However, in [14] a dependently typed version is suggested. In this
case, one works over a locally cartesian closed base category, in which case one can
use the families monad and its dual.
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Linear quantifiers. We have been brief about the monads for “linear” quan-
tification and in particular about their algebras. This is partly because it requires a
bit more work to describe these structures in detail, and also because at this point
it is not fully clear what role they should play. One thing which is worth mentioning
is that there is a connection with independence-friendly and branching quantifiers;
the linear quantifiers introduced here may be viewed as an instance of these. An
example of a fibration which has this structure arises from work by Abramsky and
Väänänen on the Hodges semantics for independence-friendly logic [1]. However, at
present there is no general categorical treatment of branching quantifiers available,
and this will be left for future work.

Bicompletion of a fibration. The dialectica construction combines the mon-
ads for simple products and coproducts by means of a distributive law between
them. However, there are other ways of combining monads than by using distribu-
tive laws. Here, we would like to mention that there is another pseudo-monad on
CFib(B), which takes a fibration p and produces a fibration Λ(p), the free bicomple-
tion of p. For this construction, cartesian closure of the base category is not needed.
The pseudo-algebras for Λ are the fibrations which have (chosen) simple products
and -coproducts. Roughly, Λ(p) is constructed by iterating the monads Sum and
Prod and by taking a suitable colimit. Explicitly, an object of Λ(p) is a tuple
(I,X1, X2, . . . , Xn, α), where α is an object of p−1(I ×X1 × · · · ×Xn). We think
of such an object as the predicate ∃x1∀x2 . . . ∀xn.α(i, x1, . . . , xn). The morphisms
in Λ(p) are generated by those of the iterates (SumProd)n(p), together with newly
added isomorphisms forcing the resulting category to have the desired structure,
e.g. (I,X1, 1, 1, X2, α) ∼= (I,X1, X2, α), et cetera. A more detailed description and
analysis of this construction is in preparation.

The free bicompletion of an ordinary category was first studied in [17], where
it was characterized in terms of its so-called softness property.

Appendix A. Coherence for Sum.

This appendix establishes the coherence for the pseudo-monad structure on
Sum. Let me say first that a direct verification is not difficult; the work is greatly
reduced by making use of that the multiplication is left adjoint to the unit. Another
approach would be to replace Sum(p) by its closure in Fam(p); the coherence for
the resulting pseudo-monad would then be automatic, and one would only need to
show that it is equivalent to Sum.

However, one may still ask for a more conceptual explanation; part of the
motivation here is that there is a sense in which Sum is a club4 (see [18]), i.e.
determined by its action on the terminal fibration; moreover, one would hope that
coherence for Sum is a formal consequence of the coherence at the terminal object.
This should also help in dealing with pseudo-monads on CFib(B) similar to Sum
(but perhaps not satisfying the KZ property).

In what follows I heavily use the fact that the forgetful 2-functor CFib −→ Cat is
a 2-fibration (see [12] for detailed discussion). In particular, we can lift natural
transformations from Cat to CFib as follows: consider a fibration E

p−−→ B, functors

4As far as I’m aware, no precise definition of pseudo-club exists.
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L,R : B′ −→ B in the base, and a natural transformation φ : L⇒ R. Now suppose
we have a lifting R of R, as in

E′

p′

��

R

// E

p

��

B′
R
// B.

Then we may define a lift of L by letting L̃(α) = φ∗I(α), where p′(α) = I. Moreover,
for each object α over I we get a cartesian morphism φ(I,α) : φ∗I(α) −→ α over φI .
These assemble to give a natural transformation φ : L̃⇒ R over φ, as in

E′

p′

��

R

77

eL
''

⇓φ E

p

��

B′

R

66

L
((

⇓φ B.

We call φ the cartesian lifting of φ. Note that by construction all components of φ
are cartesian. The assignment φ 7→ φ has various other good naturality properties,
which we won’t spell out.

Instead of just lifting a single natural transformation we can also lift entire
pasting diagrams; for example, a diagram

B′ G //

F

⇓φ 99

H

⇓ψ %%
B

can be lifted by first lifting φ, and then lifting ψ. One can also lift the composite
ψφ in one single step, and the two outcomes differ by a unique vertical transfor-
mation, whose component at an object α over I is simply the unique vertical map
mediating between ψ∗Iφ

∗
I(Fα) and (φψ)∗I(F (α)). A similar observation can be made

for whiskering φ on either side. The result of this is, that, up to unique vertical
natural isomorphism, the lifting of a pasting diagram is well-defined.

We are now in a position to explain in which sense the coherence for Sum comes
for free. To this end, I will describe data on the terminal object from which one
can construct a pseudo-monad on CFib(B).

Datum 1. A (split) fibration t : T(B) −→ B.

Datum 2. A functor ` : T(B) −→ B (which is not supposed to be a fibred functor).
Given these, we may to extend T to a 2-functor on CFib via pullback:

T(E)

T`

��

T(p)

  

// E

p

��

T(B)

t

��

` // B

B
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just as we did for Sum and Fam.

Datum 3. Fibred functors ηB : B −→ T(B) and µB : T2(B) −→ T(B).

Datum 4. Natural isomorphisms (not fibred)

B
ηB //

=

⇓φ

  
BBBBBBBBB T(B)

`

��

T2(B)

⇓ψ

µB //

T2`

��

T(B)

`

��

B T(B)
`

// B.

These allow us, using the lifting properties of natural transformations, to extend
ηB and µB to pseudo-natural transformations (η, η) : 1 −→ T, (µ, µ) : T2 −→ T.
More explicitly, here is how we get the unit at p : E −→ B. We lift the natural
transformation φ : `ηB −→ 1B to a natural transformation φE : L̃ −→ 1E. Now
factorize this using the fact that the right hand square in the diagram below is a
pullback:

E

p

��

eL
''

ηE

//___ T(E) //

��

E

p

��

B ηB

// T(B) ` // B

The left hand square is in general not a pullback. We now obtain (using the lifting
properties of natural transformations) a natural transformation ηF as in

E
ηp
//

⇓ηFF

��

T(E)

T(F )

��

// E

F

��

D ηq

// T(D) // D.

making (η, η) a pseudo-natural transformation. Completely analoguous is the con-
struction of µ and µ from µB giving (µ, µ) : T2 −→ T.

Finally, we specify the data needed to ensure that we can endow T with the
structure of a pseudo-monad.

Datum 5. Fibred natural isomorphisms

T(B)

=

⇓λ

##GGGGGGGGG
TηB // T2(B)

µB

��

T(B)
ηTBoo

=

⇓ρ

{{wwwwwwwww
T3(B)

Tµ
//

µT

��

T2(B)

µ

��

⇓τ

T(B) T2(B) µ
// T(B)

subject to the usual coherence conditions for the modifications up to which the
monad laws hold, and in addition three conditions relating λ, ρ and τ to φ and ψ:
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(a)

T(B)

`

��

TηB // T2(B)
µ
//

T`

��

T(B)

`

��

B

=

η
// T(B) ` // B

⇓ψ

B

⇓φ

B

= T(B)
TηB // T2(B)

µ
//

⇓λ

T(B)

T(B)

`

��

T(B)

`

��

=

B B

(b)

T(B)
ηT
// T2(B)

µ
//

T`

��

T(B)

`

��

T(B)

⇓φT

T(B) ` // B

⇓ψ

= T(B)
ηT
// T2(B)

µ
//

⇓ρ

T(B)

`

��

T(B) T(B)
`
//

wwwwwwwww

wwwwwwwww
T(B)

(c)

T(B)
Tµ

//

⇐ψT

µT

##FFFFFFFF
T2`

{{xxxxxxxx
T2(B)

µ

##FFFFFFFFF

T2(B)

T`
##GGGGGGGG

T2(B)

T`
{{wwwwwwww

µ
//

⇓τ

⇓ψ

T(B)

`
{{wwwwwwwwww

T(B)
`

// B

= T(B)
T2`

{{xxxxxxxx

Tµ
//

=

T2(B)
µ

##FFFFFFFFF
T`

{{xxxxxxxxx

T2(B)

T`
##GGGGGGGG
µ

// T(B)
`

##GGGGGGGGGG
T(B)

`

{{wwwwwwwwww

T(B)
`

//

⇓ψ

B

⇓ψ

In the case of Sum, all of the isomorphisms λ, ρ, τ, φ, ψ are simply coherence
isomorphisms for the product structure on B, and the coherence conditions are
immediate.

We can now lift λ, ρ and τ . The point is here that we know that λ, ρ and τ
fit into pasting diagrams whose composite is equal to a pasting diagram involving
ψ, φ, and thus that we can find liftings which are of the right type (i.e. have the
correct domain and codomain). It now also follows immediately by uniqueness of
such liftings that the coherence conditions are inherited from those at B.

This gives the main observation of this section:

Theorem A.1. The data 1-5 described above, induces a pseudo-monad struc-
ture on T. The underlying pseudo-functor is strict, and when each of φ, ψ, λ, ρ and
τ are strict then (T, η, µ) is a strict 2-monad.



THE DIALECTICA MONAD AND ITS COUSINS 31

References

1. S. Abramsky and J. Väänänen, From IF to BI, a tale of dependence and separation, Submitted

for publication.
2. M. Barr, The Chu construction, Theory and Applications of Categories 2 (1996), 17–35.

3. M. Barr and C. Wells, Toposes, Triples, Theories, Grundlehren der mathematische Wis-
senschaften, Springer-Verlag, 1983, available online at http://www.cwru.edu/artsci/math/

wells/pub/ttt.html.

4. J. Bénabou, Fibred categories and the foundations of naive category theory, Journal of Sym-
bolic Logic 50 (1985), no. 1, 10–37.

5. B. Biering, Dialectica interpretations - a categorical analysis, Ph.D. thesis, IT University of

Copenhagen, 2008.
6. E. Cheng, J.M.E. Hyland, and A.J. Power, Pseudo-distributive laws, Electronic notes

in theoretical computer science 83 (2004), URL: http://www.elsevier.nl/locate/entcs/

volume83.html.
7. V. de Paiva, The dialectica categories, Proc. of Categories in Computer Science and Logic,

Boulder, CO, 1987 (J.W. Gray and A. Scedrov, eds.), vol. 92, American Mathematical Society,

1989, pp. 47–62.
8. , A dialectica-like model of linear logic, Category Theory and Computer Science,

Manchester, UK (D. Pitt, D. Rydeheard, P. Dybjer, A. Pitts, and A. Poigné, eds.), Lecture
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