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HEREDITARILY COMPACT SPACES.*

By A. H. StoxE.

1. Introduction. By definition, a hereditarily compact space, or a
“Zariski” or “Noether” space, is a topological space all of whose subspaces
are compact.® Such spaces have received some attention [9,10] because they
arise in algebraic geometry (in the Zariski topology) and in some other alge-
braic constructions. Here we study these spaces on their own account. In the
applications they are usually T; but not T';; in fact, a T', hereditarily compact
space is necessarily finite. However, we do not assume any separation axioms
except where they are explicitly stated. We begin by giving some alternative
characterizations (§2), and considering some properties related to some of
them (§3). In §4 we associate to every hereditarily compact space a topo-
logically invariant ordinal number, its ““type ”; this corresponds to the dimen-
sion in the application to algebraic geometry. This permits the “construc-
tion” of all hereditarily compact spaces (§5). In §6 we discuss the effect
of various standard operations on such spaces on their types, and in §7 we
consider the countable hereditarily compact spaces in more detail.

Notation. A space X is discrete if each point p € X has a neighborhood
in X consisting of p itself; X is weakly discrete if each p€ X has a neigh-
hood in X consisting of a finite set of points. (For T'; spaces these notions
are equivalent.) An indexed family {U,} of subsets of X is called finite if
Uy =0 for all but finitely many values of A.

2. Characterizations. We begin by observing that, in the definition of
hereditary compactness, it is not necessary to specify that all subspaces are
compact, and moreover the kind of compactness considered does not greatly
matter. Incidentally we also obtain some further characterizations.

TuEOREM 1. The following statements about an arbitrary space X are
equivalent :

* Received April 25, 1960.
* Throughout this paper, “ compact ” means “ quasicompact ” in the sense of Bour-
baki; that is, every open covering has a finite subcovering.
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HEREDITARILY COMPACT SPACES. 901

(1) Ewvery subspace of X s compact.

(1) Ewery countable subspace of X is compact.

(1,) Ewvery open subspace of X is compact.

(), (2e), (Ro) Hvery subspace (or countable, or open subspace) of X
1s sequentially compact.

(3), (3c), (80) Ewery subspace (or countable, or open subspace) of X
1s countably compact.

(4) X has no weakly discrete infinite subspace.

(5) Ewery strictly decreasing sequence of closed subsets of X s finite.

(6) X has a sub-base B of open sets such that every strictly increasing
sequence of finite untons of members of B is finite.

Remark. The equivalence of (1), (1,) and (5) is known (see [10] and
Bxposé 1 (by P. Cartier) of the Séminaire C. Chevalley, vol. 1, 1956-8).

Proof. Because countable compactness is implied by compactness or
sequential compactness, it is enough to prove the implications (3.) = (4)
> (5) > (1), (6) > (5), (3.) > (1) and (4) > (2). All ate easy; by way
of example we prove (4) > (5). If ;D Cy; D - - is an infinite strictly
decreasing sequence of closed subsets of X, pick pn€ Cp,—Chyy (n=1,2, - );
the points p, are all distinct, so the set P = {p,} is infinite. But each p,
has the neighborhood P N (X —C,,,) in P, and this consists of the n points
P10 5 Pa only. Thus (4) is contradicted.

Consider now the following modified compactness conditions (all weaker
than compactness) on a space X. (The list could easily be extended.)

(A) ZEvery open covering of X has a finite subsystem whose union is
dense in X.

(By) ZEvery locally finite system of open sets in X is finite.

(B;) Every locally finite system of disjoint open sets is finite.

(Bs) Every countable covering of X has a finite subsystem whose union
is dense in X.

(C.) Every locally finite open covering of X has a finite subcovering.

(Cz) ZEvery countable locally finite open covering of X has a finite sub-
covering.

(D) Every locally finite open covering of X has a finite dense sub-
system.

(D.) Every countably infinite open covering of X has a proper dense
subsystem.
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902 A. H. STONE.

(E,;) ZEvery star-finite open covering of X is finite.
(E;) Every countably infinite open covering of X by sets each of which
meets at most two others has a proper dense subsystem.

(F) Every continuous real-valued function on X is bounded.

Property (B,) is “feeble compactness” [7]; (B,) has been called “light
compactness” [1]; (F) is “pseudocompactness” [2]. It is easily seen that
each of these properties implies the next, and that (B,), (B,), (B;) are
equivalent (see [1,6]), and similarly (C,) and (C;), (D;) and (D,), and
(E:) and (E;) are equivalent; it can be shown by examples that there are
no other implications between them in general.? All except (A) are implied
by countable compactness, and are equivalent to it for normal 7', spaces [2],
but not in general. Weaker separation axioms suffice for some other equiv-
alences (for instance, regularity makes (B)—(E) equivalent [3,4,5]). But
the hereditary forms of all these properties are equivalent, irrespective of
separation axioms, as the next theorem shows.

THEOREM R. The following statements about an arbitrary space X are
equivalent:

(1) (1c) Ewvery subspace (or countable subspace) of X has property (A).
()  (2) Every subspace (or countable subspace) of X has property (F).
(8) X has no infinite discrete subspace.

Further, if X is T,, these statements are equivalent to the statements in
Theorem 1.

It follows, of course, that any of the properties (B,)— (I,) could replace
(A) or (F) here.

Proof. As (A) > (F), it is enough to prove (2.) = (3) > (1) and that
if X is T, then (3) implies property (4) of Theorem 1. The first and last
of these are trivial; to prove the second, suppose ¥ is a subspace of X which

* Even for T, spaces. An example having property (D) but not (C) is given in
[1, p. 502] (note, however, that the statement on p. 503 lines 6, 7 is incorrect). It can
be modified to give an example satisfying (E) but not (D). The example given at the
beginning of § 3 below has property (A) without being countably compact. The usual
space of countable ordinals is countably compact, and so satisfies (B), but does not
satisfy (A). A suitable union of a sequence of spaces, each of which has no non-constant
continuous function, will satisfy (F) but not (E). A T, space satisfying (C) but not
(B) (from which a T, example can be derived by standard technique) is the set of all
finite non-empty sets F of positive integers, in which each F has the single neighborhood
U(F) = family of non-empty subsets of F. For the properties discussed here (and
many others), see [3,4,5,6].
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HEREDITARILY COMPACT SPACES. 903

does not have property (A), and let {U\x} be an open covering of Y. If
no finite subsystem of {U,} is demnse in Y, pick 2, € Y, say z, € Uy,; pick
2,€ Y — U, say 2,€ Uy, and generally pick 2,€ Y —(O\,U- - -U Oh,,),
say z, € Uy, Put V,=UxNY— (O\U- - -UU,,,), an open set con-
taining #z,. The sets V, V,,- - -, are disjoint, so Z = {2,} is an infinite
discrete subset of Y, contradicting (3).

Remark. In Theorem 2, in contrast to Theorem 1, it is not enough to
require that every open subspace of X has the relevant properties, even if X
is Ty. This is shown by the following example. Let X be the union of two
disjoint infinite sets ¥, Z; a subset of X is to be open if it is @ or contains
all but finitely many points of Z. Then X is a T, space and every open
subspace of X has property (A), but the closed subspace ¥ of X is discrete
and does not even have property (F).

Further, the T, axiom (instead of 7;) would not suffice for the equiv-
alence of the statements in Theorems 1 and 2. For let X be the space of
positive integers, with @, X and the sets {1,2, - -,n} (n=1,2,- - -) as the
only open sets. Every subset of X has property (A), but X is not compact.

3. Irreducibility. A space X is irreducible if it is not the union of
two proper closed subsets; equivalently, every two non-empty open subsets
of X intersect. It is known [10] that a hereditarily compact space is always
expressible as the union of a finite number of irreducible sets. Here we amplify
this property. We say that a space X is semi-irreducible if every family of
disjoint (non-empty) open subsets of X is finite. Thus every hereditarily
compact space is semi-irreducible ; but the converse is false, even for 7', spaces.
(Take, for example, X to be an uncountable set in which the closed sets are X
and its countable subsets; X is T, and irreducible but not even countably
compact.) We note the following easily verified properties:

(1) If ACX, A is irreducible, or semi-irreducible, if and only if A
has the corresponding property.

(R) If X is irreducible, or semi-irreducible, then so is every open subset
of X.

(3) If X is semi-irreducible and non-empty, then X contains a non-
empty maximal open irreducible subspace, and also a non-empty
maximal irreducible subspace (which must be closed, from (1)).

(4) X is hereditarily irreducible if and only if the open sets of X are
linearly ordered by inclusion; if X is T, it is hereditarily irre-
ducible if and only if it has at most one point.
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904 A. H. STONE.

THEOREM 3. The following statements about an arbitrary space X are
equivalent:

(i) X s semi-irreducible.

(ii) There is a finite system of disjoint open irreducible subspaces
Uy, - -, Uy of X such that |J U;=X.

(iii) X s the union of a finite number of disjoint irreducible subspaces,
each the difference between two closed sets.

(iv) X is the union of a finite number of closed irreducible subspaces.

(v) X 1s the union of a finite number of semi-irreducible subspaces.

(vi) There is an tnteger N such that X does not contain more than N
disjoint non-empty open sets.

(vil) X has only finitely many regular open sets.®

Proof. (i) = (ii) By Zorn’s lemma there is a maximal system U of
disjoint open irreducible subsets of X ; from (i), this system is finite, say
U= {U,,- - -,Un}. Let V=X—{J U;; from (2) and (3) above, if V£ 0,
V contains a non-empty open irreducible subset U,.,, contradicting the maxi-
mality of U. Hence V=@ and X = |J U,.

(ii) > (iii) Put Yi=U;— U {U;]j <1} (1 =1=n); then U,C Y;C T,
s0o ¥; = U, and Y, is irreducible by (1) above. Since X — |J ¥, (iii) follows.

(iii) > (iv) If X = |J Y, where Y; 4s irreducible, then X — | J ¥;, where
Y, is irreducible.

(iv) > (v) trivially, because every irreducible space is semi-irreducible.

(V) > (vi) Say X=X, U- - -UX,, where each X; is semi-irreducible.
Because (i) implies (iii), each X; is the union of a finite number of irre-
ducible sets, so we may write X =Y,U- - -U Yy, where each Y; is irre-
ducible. Suppose that U,,- - -, Uy, are disjoint non-empty open subsets of
X. Each U; meets some Y(;), and we must have j(i;) — j(4,) for two distinct
integers 1,, 1, (between 1 and N +1). Thus we may assume that both U,
and U, meet Y, ; but this contradicts the irreducibility of ¥

The implication (vi) = (i) is trivial.

(ii) > (vii) Let V be any regular open set in X ; we show V is one of
the 2" interiors of unions of the sets U; in (ii). We may suppose V meets
Uy,- - +,U, and is disjoint from U, - -, U, (where 0 =r=n). Then,
if 1=, the closure CI(V N U;) of VN U, in X must be U;; for, as U; is
irreducible, the non-empty open set V N U; is dense in U;. Hence

® A set G is “regular open ” if and only if G = Int (G).
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V —=Int(V) =Int(U CL(V N T;)) =Int(T,U- - -UT,).

(vii)=> (i) If X has an infinite family of disjoint (mon-empty) open
sets Gy, Gs,- - -, the sets X — G, X —G,,+ - - provide infinitely many dis-
tinct regular open sets.

CoroLLARY 1. If X is semi-irreducible (a fortiori if X is hereditarily
compact), X has only a finite number of components.

For an irreducible space is connected.

CoROLLARY 2. If X is regular, X is semi-irreducible if and only if X
has only finitely many open sets.*

For, in a regular space, every open set is a union of regular open sets.

Remarks. (a) From (iv) of Theorem 3, we can write any semi-irreducible
space X as X; U - + - U X,, where each X; is closed and irreducible, and where
no X; is contained in any other. It is easy to see that the sets Xy, - -, X,
are then uniquely determined, apart from their order. (Cf. [10] for the
hereditarily compact case.)

(b) A connected semi-irreducible 7'y space need not be irreducible.

THEOREM 4. For any Hausdorff space X, the following assertions are
equivalent:
(I) X s hereditarily compact.
(IT) X is semi-irreducible.
(IIT) X is finite.
For trivially (I) implies (II) and (III) implies (I); that (II) implies

(III) follows from Theorem 3(iv) since an irreducible Hausdorff space can
have at most one point.

TuEOREM 5. The following statements about an arbitrary space X are

equwvalent to those in Theorem 2, and thus to the hereditary compactness of
Xif X s T,:

(1) Every subspace of X is semi-irreducible.

(1c) Every countable subspace of X is semi-irreducible.

For if every subspace of X has property (A) (§2), it is clearly semi-

) ¢ “Regular ” means that each point has a basis of closed neighborhoods; the T,
axiom is not assumed. In the hereditarily compact case, Corollary 2 is due to Nollet [9].
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906 A. H. STONE.

irreducible. Conversely, if every countable subspace of X is semi-irreducible,
X can contain no infinite discrete subspace.

Remark. The analogous statement (1,)—that every open subspace of X
is semi-irreducible—would not be equivalent to the statements in Theorem 5
in general, being equivalent to the semi-irreducibility of X.

4. The type of a hereditarily compact space. Let X be a hereditarily
compact space, fixed for the moment. We assign, to each closed subspace of X,
an ordinal number, its “type,” as follows. The empty set (exceptionally)
has type — 1. When all the closed subsets of X of types < « have been dealt
with, and if X has other closed subsets, then (by Theorem 1(5)) X has
minimal closed subsets not of type < a; each of these is said to be wrreducibly
of type a. 'The finite unions of sets irreducibly of type = « are said to be
of type = a, and a (closed) set of type = « which is not of type < « is of
type @. Ultimately all closed subsets of X (including X) are assigned types.
The sets which are irreducibly of type 0 are precisely the non-empty trivial
closed subsets of X ; if X is T, they are the 1-point sets.> (Further examples
will be given later.) The following two properties follow at once from the
definitions.

(1) IfY,- - -,Y,are closed subsets of X of types = a, then Y, U---UY,
is of type = a.

(R) If Y is closed in X and is irreducibly of type a, then every closed proper
subset Z of Y is of type < a.

In the following statements it is to be understood that Y™ is a closed
subset of X—a restriction which will later be removed.

(3) If Y is of type o, then every closed subset Z of Y is of type = a.

For Y=Y,U- - -UY,, where Y; is irreducibly of type «; == a. Then
YiNZ is of type = a;, by (2), so Z is of type = a, by (1).

(4) Y is of type a if and only if Y —=F,U- - -UF,, where F; is closed
and wrreducibly of type a; and max (e, - -, a,) = a.

If ¥ is expressible in this form, ¥ has type =« by (1); but if ¥ is of
type < a, then each @; < « by (3), and therefore max(a,,- - -, a,) < @, which
is impossible. Conversely, if ¥ is of type «, the definition shows that
Y=F,U- - -UF,, where F; is closed and irreducibly of type = a, say of

® A space Y is “trivial ” if its only closed subsets are @ and Y.
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type @;. lLet B=max(ay,- - -, @) ; thus B=a. But (1) shows that ¥ has
type = B; hence B =a.
(5) Y is irreductbly of type a, if and only if Y 1s irreducible and of type a.

If Y is irreducible and of type o, we express ¥ as in (4) with n as small
as possible. Because Y is irreducible, n =1, and then ¥ = F,, irreducibly
of type @y =a. Conversely, if ¥ is irreducibly of type «, suppose ¥ =Y, U ¥,
where Y, ¥, are proper closed subsets of ¥'; by (2), Y, and Y, have types
< @, and (1) gives a contradiction.

(6) If Y 1is of type @, and B < a, then Y has a closed subset 7 of type B.*

As Y is a closed subset of X which is not of type < B, ¥ contains a
minimal closed subset Z (of X) with this property; and Z is irreducibly of
type B, by definition.

(7)  The type of a closed subset ¥ of X does not depend on the containing
space X.

It is enough to show that if ¥ has type « in X, ¥ has type a when
the containing space is ¥. We prove by transfinite induction on 8 that if a
closed subset Z of ¥ has type 8 in X, it has type 8 in ¥, and conversely. For

= —1 this is clear. Assume it true for all B <y, where y=<a. If Z is
irreducibly of type y in X, then Z is a minimal closed subset of X which
is not of type <y in X; in view of the induction hypothesis, it is also a
minimal closed subset of ¥ which is not of type <y in Y, and so it is
(irreducibly) of type y in ¥. If Z is of type y in X but not necessarily
irreducible, if follows from (4) and the preceding that Z is of type y in Y.
The converse is established by substantially the same argument.

We can thus speak of the type of a hereditarily compact space ¥, indepen-
dent of the containing space X ; it is, of course, a topological invariant of Y.
It follows from (7) that, in propositions (R)-(6), the hypothesis that ¥ is
closed in X" can be omitted; these propositions apply to arbitrary hereditarily
compact spaces Y.

(8) There exist hereditarily compact T, spaces of type a, for every ordinal a.

To construct one such space X, let 4 denote the section of ordinals < a,
beginning with — 1 (that is, we count — 1 as an ordinal), let I denote any

¢ It follows that, if « is finite, ¥ has a family of non-empty closed proper irreducible
subsets, well-ordered under inclusion and of ordinal «. This need not be true when
o« is infinite.
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908 A. H. STONE.

infinite set, and put X =4 X I. The closed sets in X are defined to be
those of the form (B X I)U F, where B is an arbitrary section of 4 (or 4
itself) and F is an arbitrary finite set. It is easily verified (using Theorem
1(5)) that X is a hereditarily compact T, space; and a straightforward trans-
finite induction on « shows that X is irreducibly of type «.

The hereditarily compact 7'y spaces of type O are finite unions of 1-point
spaces—that is, they are the finite (non-empty) T, spaces. The hereditarily
compact T'; spaces X irreducibly of type 1 are those of the following form: X is
an infinite set and its closed subsets are just X and its finite subsets. The
hereditarily compact spaces of finite type n are those of “dimension n”” in the
sense: n 41 is the greatest length of any strictly decreasing sequence of
irreducible closed non-empty subsets. This agrees with the usual dimension
for algebraic varieties in the Zariski topology. For n > 1, and still more
for infinite types, there are surprisingly many of them; we return to this in
§7. In the next section we show how all hereditarily compact 7', spaces of
type a can be “constructed” if we know enough about those of types < a.

5. Dual direct systems. Let {F),f\*} be a direct system of spaces F
(the suffixes A running over a directed set A) and maps fy*: Fy—F, (A < n)
subject to the usual rule f,’fi* =7y for A < u <v. We assume further that
the maps fy* are closed. Let S be the limit space; thus a point of § is an
equivalence class {z} of representatives = {,}, where 2, € F\ for A > A(7)
and fi#(an) =, for u> A > A(2); two representatives {z)\} and {y\} are
equivalent if and only if o\ =y, for A > A(z,y). We give S, not the usual
direct limit topology, but one which (roughly speaking) uses closed sets
instead of open sets. Let fy be the usual mapping of Fy in 3, defined as
follows: given z) € Fy write z, = fy*(z)) for u > A, and put

A(an) = {{zu |o > A}} €S.

The closed sets of S are to be the intersections of sets of the form H(EN),
where K is closed in F); that is, the sets S —f, (K») form a basis of open
sets. 1t is easily verified that, if A <, f,fA? = f, and thence that, if v > A gy
IEVV Fu(Ey) =Fo (i (Ex)U fu? (Ku) ) = f»(K,), where K, is closed in F
if Ky, K, are closed in Fy, F,. Hence this does define a topology on S, the
coarsest in which each fy is closed. (In general, the mappings fy will not be
continuous, even if each fy* is continuous.) We call S, with this topology, the
“dual direct limit space” of the system {F),fy}. Clearly S is a T, space
if each Fy is T,.

We are particularly concerned with the case in which each fr# is 1-1 and
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continuous (and thus a homeomorphism into); we then call {F),fy*} an
imbedding system. In this case the closed proper subsets of § are simply
the sets fr(K»), where K, is closed in F)(A€ A), and each f) is a homeo-
morphism into.

TurorEM 6. The dual direct limit space S of an imbedding system
{F\, /r*} of hereditarily compact spaces, each of type < a, is hereditarily
compact and of lype = a; 1t is irreductble providing no fy* is onto, and T,
if each Fy is. Conversely, every irreducible hereditarily compact Ty space
of type a > 0 is romeomorphic lo the dual direct limit space of an imbedding
system {F, fr*}, where each Fy is hereditarily compact, T, and of type < a,
and no fr* is onto.

In a sense, this theorem determines all hereditarily compact T, spaces
by transfinite induction over the type; for any such space is a finite union
of closed irreducible subsets of no greater type (4(4) and 4(5)).

Proof. Suppose each F) is hereditarily compact and of type < a. If
there could be an infinite strictly decreasing sequence of closed proper
subsets fy,(Ky,) of § (n=1,2,- - ), where K,, is closed in F,, the sets
(A () ) would form a strictly decreasing sequence of closed subsets of
F\,, which is impossible (Theorem 1(5)). Hence S is hereditarily compact.
Each proper closed subset of S, being homeomorphic to a closed subspace of
some F), is of type < a (by 4(3) and 4(7)); hence S is of type <a. If S
is reducible, it is the union of two sets of the form f\(K3), f.(K,). Take
v> A, p: it follows that f,(F,) =S, and thence (because the mappings are
1-1) that f,# is onto for all p > v. The T, property is obvious.

(Conversely, if the direct limit space S of an imbedding system {Fy, fr#}
is hereditarily compact and of type =<, or is T, then the same is true of
each Fy; for F, is homeomorphic to a closed subspace of S.)

If X is irreducible, T',, and hereditarily compact of type a > 0, let {F)\}
be the family of its closed proper subsets, ordered by (proper) inclusion; as
F\U F, is also a closed proper subset, the family is directed.” Let r* be the
inclusion map (“identity ”) for F,— F,. This defines an imbedding system ;
let § be its dual direct limit space. Tt is easily verified that § is homeo-
morphic to X” (the T, axiom guarantees that the obvious map of § in X is
onto), and that the other properties asserted hold good.

Remark. In the first part of Theorem 6, to ensure the hereditary com-

" The T, axiom is used here to produce a closed proper subset of X properly con-
taining F\ and Fy when \ = 4,

17
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pactness of the direct limit § of a direct system of hereditarily compact
spaces, we have assumed that each f\* is closed, continuous and 1-1. None
of these assumptions can be omitted; nor can the usual (instead of the dual)
direct limit topology be used.

6. Standard operations and types.

Lemma 1. If every proper closed subset Z of a space X is hereditarily
compact and of type < @, then X is hereditarily compact and of type = a.

That X is hereditarily compact follows from Theorem 1(5); the rest
follows from the way in which types were defined.

THEOREM 7. If Y is any subspace of a hereditarily compact space X
of type a, then Y is hereditarily compact and of type < a.

This is proved by transfinite induction on @. We may assume that the
theorem is true for all smaller types, and also (since we may replace X by ¥,
in view of 4(8)) that X —=¥. Suppose first that ¥ is irreducible; then X is
also irreducible (3(1)). Any proper relatively closed subset of ¥ is of the
form ¥ N Z, where Z is a closed proper subset of X ; say Z has type 8. Then
B < a because X is irreducible; the hypothesis of induction then gives that
the type of ¥ N Z is = B < @, and by Lemma 1 the type of ¥ is < «. Finally,
if ¥ is not irreducible, we have ¥ =Y, U - - -U Y, where each Y; is (rela-
tively) closed and irreducible and of type a; say. By the result just established,
w=a (i=1, - -,n); thus the type of ¥ —max(ay," - L) = a.

TrEOREM 8. The union X of a finite number of hereditarily compact
spaces Yy, - -, ¥, is hereditarily compact; and if Y, is of type a; and X of
type a, then

max(a,: © o) Se=14+a= (3) (14 ).

Here (X)a; denotes the “natural ” sum of the ordinals @+, a,; that
is, we express each a; in the form w,éik;, + wobkiz + - - - 4 wybnkipy, Where the
ordinals ¢; satisfy & > & > - *>ém=0, and ki, - -, ki are positive
integers or 0, and define

(E)Gi = 0’051 2 ki + ct + w0£“ 2 Eim.
(See [11, pp. 363, 364].) When a,,- - -, a, are all finite, this coincides with

their ordinary sum.

Note that 14 a=a 1 if « is finite, but 1 -+ a = o otherwise.
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Proof. That X is hereditarily compact is obvious, and that @ = max(a,,

« +,a,) follows from Theorem 7. To prove the remaining inequality, we
use transfinite induction over the ordered n-ples (@, © -, @,) of ordinal
numbers (each = some large enough «*), ordered lexicographically (n being
fixed) ; this is a well-ordered family. It is convenient to count -—1 as an

ordinal here. Thus the induction starts with each @;—=-—1; each Y, is empty,
so X is empty and of type a=-—1 as required. Now suppose that the
assertion is true for all (e, - -, @) < (@, *,@,). We first assume that

each Y; is trreductbly of type a;. If Z is any proper closed subset of X — |J ¥,
then Y;NZ is for at least one ¢ a proper closed subset of Y;; hence if
Y;N Z has type B;, we have gi=a; (1 =9=n), and B; < «; for at least one
value of j. Thus (By, - *,Bx) < (o, - *,a,), and it follows from the
induction hypothesis that the type B of Z satisfies

1+8=(2) 1+ ) <(2) 1+ ).

Hence, by Lemma 1, the type « of X satisfies 1 +a= (3) (1 + a;).

In the general case, let Yi=|J {Yy|j=1,2,- - -, m(4)}, where ¥y is
relatively closed and irreducible, and for each of the m(1)m(2)- - -m(n)
choices A of suffixes, put Z) = ﬂ Yaw- Then ZyNY; C Yy, so we have

ZNCU{Yaw|i=1,2,- - -,n}. By Theorem 7 and the case already dealt
with, the type y\ of Z, satisfies

(I4+mn) = () (1 +typeof Yiny) = () (14 ).

But X' = J Z), a finite union of closed sets; hence the type « of X satisfies
«=max(y,), and the desired relation (14 a) = (3) (1 + @) follows.

Remark. The inequalities in (2) are “best possible,” even for T spaces,
as can be seen by taking X to be the example constructed to prove 4(8).

TrroREM 9. The product X of a finite number of hereditarily compact
spaces Yy, « -, ¥, 1s hereditarily compact; and if Y; is of type a; and no
Y is empty, then the type of X is (D) (1=i=n).

It will suffice to prove this when n = 2, as then the general result follows
by induction over n. As in the proof of Theorem 8 we use transfinite induction
over the ordered pairs (ay, ) in lexicographic ordering, and may assume the
theorem for products of spaces of types 8, and 8, whenever (8;, 82) < (o, @s).
Again, as in Theorem 8, we can easily reduce the proof to the case in which
Y, and Y, are irreducible. It readily follows that X is irreducible too. Let
Z be any proper closed subset of X ; then X —Z contains a set of the form
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U, X U,, where U,, U, are non-empty open subsets of ¥y, ¥,. Then ¥, —U,
and Y, — U, are of types (say) B: and B,, where 3, < ; and B, < .. Hence,
by the induction hypothesis, (¥;—U,;) X Y; and ¥, X(¥Y,—U.) are heredi-
tarily compact and of types Bi(-+ )@z, @:i(4)B2. As they are closed in X,
Theorem 8 and 4(1) show that their union 7 is hereditarily compact and of
type max (B (+) ez, a1 (+)B:) < @ (4)a.. But Z C T, so the same is true
of Z; and from Lemma 1 it follows that X is hereditarily compact and of
type = a;(+ ). To obtain the reverse inequality, suppose (say) .s=0.
For every ordinal y, < @,, Y, contains a closed proper subset of type v.;
applying the induction hypothesis again shows that X contains a closed proper
subset of type o;(-+)y.. Thus the type of X is greater than a«;(-+)y. for
every y; < @, and so is = a; (4 ).

If ¢y =a,=0 (i.e., to start the induction), ¥, and Y, are trivial spaces;
consequently X is trivial too, and so is hereditarily compact and of type 0.

Remark. A product of infinitely many non-trivial spaces is mnever
hereditarily compact. For it contains a subspace homeomorphic to ] Y,
(n=1,2,- - -), where Y, consists of two points a,, b, and (b,) is open
in Y. But this contains the infinite discrete subset (by,@.," = *,dn," - ),
(@1, bs, a5, - +), ete.

THrOREM 10. Let f be a continuous mapping of a hereditarily compact
space X of type a. Then f(X) is hereditarily compact and of type less
than w***.

Let Y =f(X). Each Z CY is compact, being a continuous image of
the compact set f*(Z) C X. To prove the remainder of the assertion, suppose
first that X is irreducible. We show by transfinite induction over ¢ that ¥
has type = w,®, if = 0. When ¢ =0, X is trivial; hence Y is trivial, so its
type =0 <w,°. In general, if Z is any closed proper subset of ¥, which
we may assume to be non-empty, let f1(Z) =8,U- - - U §,, where each S;
is a non-empty closed irreducible subset of X, necessarily proper. Let §; have
type Bi, and put B =max (B, - -, B8x); thus B8 < @, because X is irreducible.
By the hypothesis of induction, the type of f(.S;) is = wo#; and by Theorem 8
the type of Z — {J f(8:) is = wefn < wof** = 0, Hence, by Lemma 1, ¥ has
type = w*

In the general case, we have X =X,U: - -UX,,, where X is irre-
ducible of type a;, and « —max(a;,* - -, @,) (4(4) and 4(5)). By Theorem
8 and the foregoing, the type of ¥ is = w,®m < wo®**.

BRemark. The bound for the type of f(X) here is sharp, even for T,
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spaces, and even if f is 1-1. But if « is finite and f(X) is T, its type is
< wo®% which is now “best possible”; for infinite @, Theorem 10 is sharp
even for 7', spaces and 1-1 mappings. However, if f is closed and continuous,
it is easily seen that the type of f(X) does not exceed the type of X.

7. Countable spaces. The simplest hereditarily compact spaces are
those which have at most countably many closed (or open) sets. Concerning
these we have:

THrorEM 11. Let X be a hereditarily compact space. Then:

(1) The family of open subsets of X is countable if and only if X has
a countable base.

(%) If X is T, and has a countable base, then X s countable.

(8) If X is Ty, X has a countable base if and only if it satisfies the
first aziom of countability.

Proof. (1) Let By, B,,- - - be a countable base of open sets. We show
that the open sets coincide with the finite unions of the sets B;—which
evidently form a countable family. In fact, if U is open, U is a union of
sets B;, and being compact is covered by a finite number of them. ¢ Only if”
is trivial.

(2) By (1), X bas at most N, distinct closed sets; but the sets
(z€ X) are all distinct.

(8) Assuming X is “first countable,” we first show that XX is countable,
using transfinite induction over the type « of Y. We may clearly assume that
X is irreducible and not empty. Pick p€ X and let Uy, U,,- - - be a basis
of open neighborhoods of p; thus () Up= (p). Put F,—X—U,; then F,
has type < @, so by the induction hypothesis ¥, is countable. Hence X is
countable.®* If the points of X are enumerated as ¢y, q.,- - -, and if
Vs Vs, - - is a basis of open neighborhoods of ¢,, the sets V,, evidently
form a countable basis for X.

The converse implication is trivial.

Remark. There are hereditarily compact 7', spaces which satisfy the
first axiom of countability and have arbitrarily large cardinal, and there are
hereditarily compact 7', spaces (of type 1) which are separable but have
arbitrarily large cardinal.

 This argument applies, more generally, if instead of assuming that X is 7, and
first countable, we assume that each point of X is a G5 in X.
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One might expect that, conversely, a countable 7', hereditarily compact
space has to satisfy the first axiom of countability, at least at one point,
especially in view of a theorem of S. Mréwka [8] asserting that a compact 7',
space with fewer than 2% points must satisfy the first axiom of countability
at some point. But this is not the case, as the following example shows.

Example 1. There exists a countable hereditarily compact Ty space of
type 2, having ¢ closed subsets, and not having a countable base of neighbor-
hoods at any point.

The example requires the following lemma, which is due to Sierpinski
(cf. [11, p. 77]).

Lemma 2. Let S be a set with 8, elements. There is a family of ¢
distinct infinite subsets A, of S, every two of which intersect in at most a
finite set.

We may take S to be the set of rational numbers, and for each real
number = take A, to be a sequence of rational numbers converging to z.?°

Now topologize S by taking its closed sets to be: S, and all sets of the
form EU U 4,, (1=1,2,- - -,n), where n is a non-negative integer and
E is finite. § is easily seen to be irreducible, hereditarily compact and T,.
The closed sets of type 0 are the non-empty sets F ; the irreducible closed sets
of type 1 are the sets A,; and thus S is of type 2. We may assume that,
given p€ S, there are uncountably many sets 4, which do not contain p;
for the set of points p for which this is not true must be finite, and we simply
omit them from §. If V,, V,,- - - is a countable basis of open neighborhoods
of p, we have V,,—8— (B, U U {4,|z€ F}), where E,, F,, are finite.
As |J Fn is countable, there exists a suffix y¢ F,, for which p¢ 4,, and
§S—A4, is a neighborhhod of p. It must contain some V,, and then
4, CE,U U {4,;|z€Fn}. But each 4,N A4, (z€F,) is finite, so 4, is
finite, giving a contradiction as required.

A countable hereditarily compact space X can evidently have at most ¢
closed subsets; its type must therefore have cardinal =c¢ (from 4(6)).
Further, as there are at most 2¢ ways of selecting the ¢ sets which are to be
closed in X, there can be at most 2° nonhomeomorphic countable hereditarily
compact (or, indeed, countable) spaces. We show now that these trivial
estimates are in fact “best possible,” even for 7', spaces. That there can be
as many as ¢ closed sets has been shown by Example 1.

° This simple proof of Lemma 2 is also due to Sierpinski.
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Ezample 2. There exists, for each ordinal A of cardinal = ¢, a countable
hereditarily compact Ty space of type A.

We use transfinite induction over A. TUsing the sets S, 4, of Lemma 2,
and noting that the number of ordinals 8 < A is at most ¢, we assign to
each B < A one or more spaces 4, and topologise them as (countable) heredi-
tarily compact T, spaces of type 8. Now define a topology on S by taking
the closed sets to be: S, and all sets of the form |J F,, (1=1,2,- - -,n),
where F,, is closed in A,,. One easily verifies that this does give a topology
on 8, in which § is T, and hereditarily compact, and that the subspace topology
it induces on each A, coincides with the topology originally assigned to A4,.
Hence 8 is irreducibly of type A.

TarEorEM 1R. There are 2° nonhomeomorphic countable hereditarily
compact Ty spaces.

Let Q denote the smallest ordinal of cardinal ¢ ; let P be the set of ordinals
less than Q, @ the set of non-limit ordinals in P, and R any subset of (.
Thus there are 2¢ distinct sets B, and for each of them there are ¢ elements
in P—R. We construct for each E a corresponding space as follows. Again
we use Lemma 2. Let z<>a(z) be a 1-1 correspondence between the set of
suffixes  and the set P—R. From Example 2, we can give each set 4, a
hereditarily compact T topology, irreducibly of type «(z). As in Example
R, we can extend these topologies to a hereditarily compact T, topology on S.
Now the sets A, will be precisely the maximal proper irreducible closed subsets
of 8. Hence the topology of S determines the family of types of the sets
4., and hence determines R. That is, different sets B give nonhomeomorphic
spaces S, and the theorem follows.

It would be interesting to know how many nonhomeomorphic countable
hereditarily compact T'; spaces have a given type «. By a slight modification
of the above argument one can show that this number is at least 2l®l if
Bo=|a|=c, where | a| denotes the cardinal of a.

It would also be interesting to have corresponding estimates for heredi-
tarily compact T'; spaces of larger cardinals. The above methods can of course
be extended, but do not suffice to settle the questions in general; the difficulty
is that the analogue of Lemma 2 is false for “most™ cardinals (see [12]).

THE UNIVERSITY,
MANCHESTER, ENGLAND.
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