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HEREDITARILY COMPACT SPACES.* 

By A. H. STONE. 

1. Introduction. By definition, a hereditarily compact space, or a 
"Zariski" or "Noether" space, is a topological space all of whose subspaces 
are compact.1 Such spaces have received some attention [9, 10] because they 
arise in algebraic geometry (in the Zariski topology) and in some other alge- 
braic constructions. Here we study these spaces on their own account. In the 
applications they are usually T1 but not T,; in fact, a T, hereditarily compact 
space is necessarily finite. However, we do not assume any separation axioms 
except where they are explicitly stated. We begin by giving some alternative 
characterizations (? 2), and considering some properties related to some of 
them (? 3). In ? 4 we associate to every hereditarily compact space a topo- 
logically invariant ordinal number, its "type "; this corresponds to the dimen- 
sion in the application to algebraic geometry. This permits the "construc- 
tion" of all hereditarily compact spaces (? 5). In ? 6 we discuss the effect 
of various standard operations on such spaces on their types, and in ? 7 we 
consider the countable hereditarily compact spaces in more detail. 

Notation. A space X is discrete if each point p C X has a neighborhood 
in X consisting of p itself; X is weakcly discrete if each p C X has a neigh- 
hood in X consisting of a finite set of points. (For T1 spaces these notions 
are equivalent.) An indexed family {Ux} of subsets of X is called finite if 
Ux = 0 for all but finitely many values of A. 

2. Characterizations. We begin by observing that, in the definition of 
hereditary compactness, it is not necessary to specify that all subspaces are 
compact, and moreover the kind of compactness considered does not greatly 
matter. Incidentally we also obtain some further characterizations. 

THEOREM 1. The following statements about an arbitrary space X are 
equivalent: 

* Received April 25, 1960. 
1 Throughout this paper, " compact " means " quasicompact " in the sense of Bour- 

baki; that is, every open covering has a finite subcovering. 
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HEREDITARILY COMPACT SPACES. 901 

(1) Every subspace of X is compact. 

(1,) Every countable subspace of X is compact. 
(1) Every open subspace of X is compact. 
(2), (2e), (2o) Every subspace (or countable, or open subspace) of X 

is sequentiallly compact. 

(3), (3,), (3o) Every subspace (or countable, or open subspace) of X 
is countably compact. 

(4) X has no weakly discrete infinite subspace. 
(5) Every strictly decreasing sequence of closed subsets of X is finite. 
(6) X has a sub-base 3 of open sets such that every strictly increasing 

sequence of finite unions of members of 3 is finite. 

Remark. The equivalence of (1), (1l) and (5) is known (see [10] and 
Expose 1 (by P. Cartier) of the Seminaire C. Chevalley, vol. 1, 1956-8). 

Proof. Because countable compactness is implied by compactness or 
sequential compactness, it is enough to prove the implications (3,) a (4) 
a (5) t (1), (6) t (5), (3o) t (1) and (4) a (2). All are easy; by way 
of example we prove (4) a (5). If C, D 2D D is an infinite strictly 
decreasing sequence of closed subsets of X, pick pn E Cn C.+, (n 1, 2, * ); 
the points pn are all distinct, so the set P = {pn} is infinite. But each pn 

has the neighborhood P n (X - CO+,) in P, and this consists of the n points 
pi,- * *,pn only. Thus (4) is contradicted. 

Consider now the following modified compactness conditions (all weaker 
than compactness) on a space X. (The list could easily be extended.) 

(A) Every open covering of X has a finite subsystem whose union is 
dense in X. 

(B1) Every locally finite system of open sets in X is finite. 
(B2) Every locally finite system of disjoint open sets is finite. 
(B3) Every countable covering of X has a finite subsystem whose union 

is dense in X. 

(C,) Every locally finite open covering of X has a finite subcovering. 
(C2) Every countable locally finite open covering of X has a finite sub- 

covering. 
(D1) Every locally finite open covering of X has a finite dense sub- 

system. 
(D2) Every countably infinite open covering of X has a proper dense 

subsystem. 
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902 A. H. STONE. 

(E1) Every star-finite open covering of X is finite. 
(E2) Every countably infinite open covering of X by sets each of which 

meets at most two others has a proper dense subsystem. 
(F) Every continuous real-valued function on X is bounded. 

Property (B2) is "feeble compactness" [7] ; (B1) has been called "light 
compactness" [1] ; (F) is "pseudocompactness" [2]. It is easily seen that 
each of these properties implies the next, and that (B1), (B2), (B3 ) are 
equivalent (see [1, 6]), and similarly (C1) and (C2), (D1) and (D,), and 
(E1) and (E2) are equivalent; it can be shown by examples that there are 
no other implications between them in general.2 All except (A) are implied 
by countable compactness, and are equivalent to it for normal T1 spaces [2], 
but not in general. Weaker separation axioms suffice for some other equiv- 
alences (for instance, regularity makes (B)-(E) equivalent [3,4, 5]). But 
the hereditary forms of all these properties are equivalent, irrespective of 
separation axioms, as the next theorem shows. 

THEOREM 2. The following statements about an arbitrary space X are 
equivalent: 

(1) (1,) Every subspace (or countable subspace) of X has property (A). 
(2) (2,) Every subspace (or countable subspace) of X has property (F). 
(3) X has no infinite discrete subspace. 

Further, if X is T1, these statements are equivalent to the statements in 
Theorem 1. 

It follows, of course, that any of the properties (B1)-((E2) could replace 
(A) or (F) here. 

Proof. As (A) > (F), it is enough to prove (2,) t (3) a (1) and that 
if X is T1 then (3) implies property (4) of Theorem 1. The first and last 
of these are trivial; to prove the second, suppose Y is a subspace of X which 

2Even for T1 spaces. An example having property (D) but not (C) is given in 
[1, p. 502] (note, however, that the statement on p. 503 lines 6, 7 is incorrect). It can 
be modified to give an example satisfying (E) but not (D). The example given at the 
beginning of ? 3 below has property (A) without being countably compact. The usual 
space of countable ordinals is countably compact, and so satisfies (B), but does not 
satisfy (A). A suitable union of a sequence of spaces, each of which has no non-constant 
continuous function, will satisfy (F) but not (E). A To space satisfying (C) but not 
(B) (from which a T1 example can be derived by standard technique) is the set of all 
finite non-empty sets P of positive integers, in which each P has the single neighborhood 
U (F) -family of non-empty subsets of F. For the properties discussed here (and 
many others), see [3, 4, 5, 6]. 
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HEREDITARILY COMPACT SPACES. 903 

does not have property (A), and let { Ux} be an open covering of Y. If 
no finite subsystem of { Ux} is dense in Y, pick z1 C Y, say z1 C Ux1; pick 
z2C Y-UCT,, say z2,C U2, and generally pick znC Y-( U *U * U UX,-), 
say zGC Ux.. Put VY==Ux,,n Y- (ULx1U U UX,1), an open set con- 
taining zn. The sets V1, V2, * , are disjoint, so Z = {zn} is an infinite 
discrete subset of Y, contradicting (3). 

Remark. In Theorem 2, in contrast to Theorem 1, it is not enough to 
require that every open subspace of X has the relevant properties, even if X 
is T1. This is shown by the following example. Let X be the union of two 
disjoint infinite sets Y, Z; a subset of X is to be open if it is 0 or contains 
all but finitely many points of Z. Then X is a T1 space and every open 
subspace of X has property (A), but the closed subspace Y of X is discrete 
and does not even have property (F). 

Further, the To axiom (instead of T1) would not suffice for the equiv- 
alence of the statements in Theorems 1 and 2. For let X be the space of 
positive integers, with 0, X and the sets {1, 2, , n} (n 1, 2, ) as the 
only open sets. Every subset of X has property (A), but X is not compact. 

3. Irreducibility. A space X is irreducible if it is not the union of 
two proper closed subsets; equivalently, every two non-empty open subsets 
of X intersect. It is known [10] that a hereditarily compact space is always 
expressible as the union of a finite number of irreducible sets. Here we amplify 
this property. We say that a space X is semi-irreducible if every family of 
disjoint (non-empty) open subsets of X is finite. Thus every hereditarily 
compact space is semi-irreducible; but the converse is false, even for T1 spaces. 
(Take, for example, X to be an uncountable set in which the closed sets are X 
and its countable subsets; X is T1 and irreducible but not even countably 
compact.) We note the following easily verified properties: 

(1) If A C X, A is irreducible, or semi-irreducible, if and only if A 
has the corresponding property. 

(2) If X is irreducible, or semi-irreducible, then so is every open subset 
of X. 

(3) If X is semi-irreducible and non-empty, then X contains a non- 
empty maximal open irreducible subspace, and also a non-empty 
maximal irreducible subspace (which must be closed, from (1)). 

(4) X is hereditarily irreducible if and only if the open sets of X are 
linearly ordered by inclusion; if X is T1, it is hereditarily irre- 
ducible if and only if it has at most one point. 
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904 A. H. STONE. 

THEOREM 3. The following statements about an arbitrary space X are 
equivalent: 

(i) X is semi-irreducible. 
(ii) There is a finite system of disjoint open irreducible subspaces 

U1, - ** Un of X such that U U ==X. 
(iii) X is the union of a finite number of disjoint irreducible subspaces, 

each the difference between two closed sets. 
(iv) X is the union of a finite number of closed irreducible subspaces. 
(v) X is the union of a finite number of semi-irreducible subspaces. 
(vi) There is an integer N such that X does not contain more than N 

disjoint non-empty open sets. 
(vii) X has only finitely many regular open sets.3 

Proof. (i) a> (ii) By Zorn's lemma there is a maximal system St of 
disjoint open irreducible subsets of X; from (i), this system is finite, say 

l {U1 . , , Un}. Let V= X- U Us; from (2) and (3) above, if VI#0, 
V contains a non-empty open irreducible subset U.+1, contradicting the maxi- 
mality of t. Hence V 0 and X = U UC. 

(ii)a (iii) Put Yi C U {CjIj<i} (1<i?n); then UiC Y*C U*, 
so ri= U* and Yi is irreducible by (1) above. Since X - U Yi, (iii) follows. 

(iii) a> (iv) If X = U Yi, where Yi is irreducible, then X = U ri, where 
Yi is irreducible. 

(iv) i4 (v) trivially, because every irreducible space is semi-irreducible. 

(v) i4 (vi) Say X = X1 U U X,, where each Xi is semi-irreducible. 
Because (i) implies (iii), each Xi is the union of a finite number of irre- 
ducible sets, so we may write X= Y1 U . U YN, where each Y* is irre- 
ducible. Suppose that U1, . , UN+1 are disjoint non-empty open subsets of 
X. Each U* meets some Yj(j), and we must have j(ik) = j(i2) for two distinct 
integers i1, i2 (between 1 and N + 1). Thus we may assume that both U1 
and U2 meet Y1; but this contradicts the irreducibility of Y 

The implication (vi) 4> (i) is trivial. 
(ii) a> (vii) Let V be any regular open set in X; we show V is one of 

the 2n interiors of unions of the sets U* in (ii). We may suppose V meets 
Ui, , Ur and is disjoint from Ur+i, , U1, (where 0 ? r ? n). Then, 
if i r, the closure Cl(V fn Ui) of V n Ui in X must be 5%i; for, as Ui is 
irreducible, the non-empty open set V n u* is dense in Ui. Hence 

3 A set G is " regular open " if and only if G- Int (6). 

This content downloaded from 128.255.6.125 on Wed, 10 Dec 2014 23:37:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


HEREDITARILY COMPACT SPACES. 905 

V = Int(V) = Int( UCl(v n Ui)) )= Int(UiU u ur). 

(vii) > (i) If X has an infinite family of disjoint (non-empty) open 
sets G,, G2, , the sets X - 79, X - 2,** provide infinitely many dis- 
tinct regular open sets. 

COROLLARY 1. If X is semi-irreducible (a fortiori if X is hereditarily 
compact), X has only a finite number of components. 

For an irreducible space is connected. 

COROLLARY 2. If X is regular, X is semi-irreducible if and only if X 
has only finitely many open sets.4 

For, in a regular space, every open set is a union of regular open sets. 

Remaarks. (a) From (iv) of Theorem 3, we can write any semi-irreducible 
space X as X1 U U X, where each Xi is closed and irreducible, and where 
no Xi is contained in any other. It is easy to see that the sets X1,, - , X 
are then uniquely determined, apart from their order. (Cf. [10] for the 
hereditarily compact case.) 

(b) A connected semi-irreducible T1 space need not be irreducible. 

THEOREM 4. For any Hausdorff space X, the follovwing assertions are 
equivalent: 

(I) X is hereditarily compact. 
(II) X is semi-irreducible. 

(III) X is finite. 

For trivially (I) implies (II) and (III) implies (I); that (II) implies 
(III) follows from Theorem 3 (iv) since an irreducible Hausdorff space can 
have at most one point. 

THEOREM? 5. The following statements about an arbitrary space X are 
equivalent to those in Theorem 2, and thus to the hereditary compactness of 
X if X is T1: 

(1) Every subspace of X is semi-irreducible. 
(le) Every countable subspace of X is semi-irreducible. 

For if every subspace of X has property (A) (? 2), it is clearly semi- 

4"Regular " means that each point has a basis of closed neighborhoods; the T, 
axiom is not assumed. In the hereditarily compact case, Corollary 2 is due to Nollet [9]. 
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906 A. H. STONE. 

irreducible. Conversely, if every countable subspace of X is semi-irreducible, 
X can contain no infinite discrete subspace. 

Rernark. The analogous statement (1)-that every open subspace of X 
is semi-irreducible-would not be equivalent to the statements in Theorem 5 
in general, being equivalent to the semi-irreducibility of X. 

4. The type of a hereditarily compact space. Let X be a hereditarily 
compact space, fixed for the moment. We assign, to each closed subspace of X, 
an ordinal number, its "type," as follows. The empty set (exceptionally) 
has type - 1. When all the closed subsets of X of types < c have been dealt 
with, and if X has other closed subsets, then (by Theorem 1(5)) X has 
minimal closed subsets not of type < c; each of these is said to be irreducibly 
of type a. The finite unions of sets irreducibly of type ?< a are said to be 
of type ?< a, and a (closed) set of type ?< a which is not of type < c is of 
type a. Ultimately all closed subsets of X (including X) are assigned types. 
The sets which are irreducibly of type 0 are precisely the non-empty trivial 
closed subsets of X; if X is T1 they are the 1-point sets.5 (Further examples 
will be given later.) The following two properties follow at once from the 
definitions. 

(1) If Y1, . . *, Yn are closed subsets of X of types < a, then Y1 U U Yn 
is of type ? a. 

(2) If Y is closed in X and is irreducibly of type o, theni every closed proper 
subset Z of Y is of type < a. 

In the following statements it is to be understood that Y is a closed 
subset of X-a restriction which will later be removed. 

(3) If Y is of type a, then every closed subset Z of Y is of type ?< o. 

For Y Y1 U . U Yn, where Yi is irreducibly of type xi _< a. Then 
Yin Z is of type <ci, by (2), so Z is of type ?< a, by (1). 

(4) Y is of type a if and only if Y FU U . u Fn, wlhere Fi is closed 
and irreducibly of type ai and max (a1, , an) (x. 

If Y is expressible in this form, Y has type ? o by (1); but if Y is of 
type < c, then each ci < a, by (3), and therefore max(c,1, , can) < c, which 
is impossible. Conversely, if Y is of type o, the definition shows that 
Y-F1 . . . U Fl, where Fi is closed and irreducibly of type -< a, say of 

5 A space Y is " trivial " if its only closed subsets are 0 and Y. 
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HEREDITARILY COMPACT SPACES. 907 

type ai. Let /3=max(a1,, *,a,); thus 3<?a. But (1) shows that Y has 
type -/ ,; hence , / a. 

(5) Y is irreducibly of type a, if and only if Y is irreducible and of type a. 

If Y is irreducible and of type a, we express Y as in (4) with n as small 
as possible. Because Y is irreducible, n = 1, and then Y = F1, irreducibly 
of type a= a. Conversely, if Y is irreducibly of type a, suppose Y = Y1 U Y2, 
where Y1, Y2 are proper closed subsets of Y; by (2), Y, and Y2 have types 
< a, and (1) gives a contradiction. 

(6) If Y is of type a, and 6 < a, then Y has a closed sutbset Z of type /3.6 

As Y is a closed subset of X which is not of type < 3, Y contains a 
minimal closed subset Z (of X) with this property; and Z is irreducibly of 
type /3, by definition. 

(7) The type of a closed subset Y of X does not depend on the containing 
space X. 

It is enough to show that if Y has type a in X, Y has type a when 
the containing space is Y. We prove by transfinite induction on /3 that if a 
closed subset Z of Y has type / in X, it has type / in Y, and conversely. For 
,8 = - 1 this is clear. Assume it true for all /8 < y, where y ? a. If Z is 
irreducibly of type y in X, then Z is a minimal closed subset of X which 
is not of type <y in X; in view of the induction hypothesis, it is also a 
minimal closed subset of Y which is not of type < y in Y, and so it is 
(irreducibly) of type y in Y. If Z is of type y in X but not necessarily 
irreducible, if follows from (4) and the preceding that Z is of type y in Y. 
The converse is established by substantially the same argument. 

We can thus speak of the type of a hereditarily compact space Y, indepen- 
dent of the containing space X; it is, of course, a topological invariant of Y. 
It follows from (7) that, in propositions (2)-(6), the hypothesis that Y is 
closed in X can be omitted; these propositions apply to arbitrary hereditarily 
compact spaces Y. 

(8) There exist hereditarily compact T1 spaces of type a, for every ordinal a. 

To construct one such space X, let A denote the section of ordinals < a, 
beginning with - 1 (that is, we count -1 as an ordinal), let I denote any 

6 It follows that, if oc is finite, Y has a family of non-empty closed proper irreducible 
subsets, well-ordered under inclusion and of ordinal a. This need not be true when 
a is infinite. 
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908 A. H. STONE. 

infinite set, and put X = A X I. The closed sets in X are defined to be 
those of the form (B X I) U F, where B is an arbitrary section of A (or A 
itself) and F is an arbitrary finite set. It is easily verified (using Theorem 
1(5) ) that X is a hereditarily compact T1 space; and a straightforward trans- 
finite induction on a shows that X is irreducibly of type a. 

The hereditarily compact T1 spaces of type 0 are finite unions of 1-point 
spaces-that is, they are the finite (non-empty) T1 spaces. The hereditarily 
compact T1 spaces X irreducibly of type 1 are those of the following form: X is 
an infinite set and its closed subsets are just X and its finite subsets. The 
hereditarilv compact spaces of finite type n are those of " dimension n " in the 
sense: n + 1 is the greatest length of any strictly decreasing sequence of 
irreducible closed non-empty subsets. This agrees with the usual dimension 
for algebraic varieties in the Zariski topology. For n > 1, and still more 
for infinite types, there are surprisingly many of them; we return to this in 
? 7. In the next section we show how all hereditarily compact T1 spaces of 
type a can be "constructed" if we know enough about those of tvpes < a. 

5. Dual direct systems. Let {Fx, fxIL} be a direct system of spaces FX 
(the suffixes A running over a directed set A) and maps fx/L: Fx -* Ft (X < y) 
subject to the usual rule flvfxI = fxv for X <xu < v. We assume further that 
the maps fxJI are closed. Let S be the limit space; thus a point of S is an 
equivalence class {x} of representatives x = {xx}, where xx E Fx for X> X(x) 
and fxI (xx) xs, for pt > X > X(x) ; two representatives {xx} and {yx} are 
equivalent if and only if xx = yx for A > X(x, y). We give S, not the usual 
direct limit topology, but one which (roughly speaking) uses closed sets 
instead of open sets. Let fx be the usual mapping of F-x\ in S, defined as 
follows: given xx E F' write xl,= fxIL (xx) for ,u > X, and put 

fx(xx) {{x1l, > A}} E S. 

The closed sets of S are to be the intersections of sets of the form f,(K,), 
where Kx is closed in FX; that is, the sets S -fx(Kx) form a basis of open 
sets. It is easily verified that, if A < v, fvfxv = fx, and thence that, if v> X, > 
fx (Kx) U f,.L (KAL) = fv (fxv (Kx) U fv,, (Kf,,)) = fv (Kv), where K. is closed in F 
if Kx, Ki, are closed in Fx, Fl,. Hence this does define a topology on S, the 
coarsest in which each fx is closed. (In general, the mappings fx will not be 
continuous, even if each fx/l is continuous.) We call S, with this topology, the 
"dual direct limit space" of the system {Fx, fx/L}. Clearly S is a T1 space 
if each Fx is T1. 

We are particularly concerned with the case in which each fxIl is 1-1 and 
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HEREDITARILY COMPACT SPACES. 909 

continuous (and thus a homeomorphism into); we then call {Fx, fxI} an 
imnbedding system. In this case the closed proper subsets of S are simply 
the sets fx(Kx), where KE is closed in Fx((A E A), and each fx is a homeo- 
morphism into. 

THEOREm 6. The dual direct limit space S of an imnbedding system 
{Fx, fxl} of 7hereditarily compact spaces, each of type <a, is hereditarily 
compact and of type <; _ it is irreducible providing no fx," is onto, and T1 
if each Fx is. Conver-sely, every irredutcible hereditarily compact T1 space 
of type a > 0 is homeomorphic to the diual direct litnit sp(ace of an imibedding 
systemii {Fx, fx'}, wh7iere each Fx is htereditarily comapact, T,, antid of type < a, 
and nao fxI is onto. 

In a sense, this theorem deternmines all hereditarily compact T1 spaces 
by transfilnite induction over the type; for any such space is a finite union 
of closed irreducible subsets of no greater tvpe (4(4) and 4(5)). 

Pr0oof. Suppose each FP. is hereditarily compact and of type < a. If 
there could be an infinite strictly decreasing sequence of closed proper 
subsets f?n (Kx,n) of S (n = 1, 2, . ), where Kx,, is closed in Fx,,, the sets 
fx'-l (f,." (Kx,,) ) would form a strictly decreasing sequence of closed subsets of 
FX,, which is impossible (Theorem 1 (5)). Hence S is hereditarily compact. 
Each proper closed subset of S, being homeomorphic to a closed subspace of 
some F,, is of type < a (by 4(3) and 4(7)); hence S is of type < a. If S 
is reducible, it is the union of two sets of the form f, (K,.), fi, (K). Take 
v> A, it follows that f, (F,) =5, and thence (because the mapping:s are 
1-1) that f,P is onto for all p > i'. The TL property is obvious. 

(Conversely, if the direct limit space S of an imbedding system {F,, fxt} 
is hereditarily compact anld of tvpe at., or is T1, then the same is true of 
each F,; for F, is homeomorphic to a closed subspace of S.) 

If X is irreducible, Tl, and hereditarily compact of type a > 0, let {F,.} 
be the family of its closed proper subsets, ordered by (proper) inclusion; as 
F, U F/, is also a closed proper subset, the family is directed.7 Let f'A be the 
inclusion map (" identity '") for F, -* F,l. This defines an imbedding system; 
let S be its dual direct limit space. It is easily verified that S is homeo- 
morphic to X (the T1 axiom guarantees that the obvious map of S in X is 
onto), and that the other properties asserted hold good. 

Remzark. In the first part of Theorem 6, to ensure the hereditary com- 

I The T1 axiom is used lhere to produce a closed proper stibset of X properly con- 
taining FA and F,1 when X = 

17 
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pactness of the direct limit S of a direct system of hereditarily compact 
spaces, we have assumed that each fx/A is closed, continuous and 1-1. None 
of these assumptions can be omitted; nor can the usual (instead of the dual) 
direct limit topology be used. 

6. Standard operations and types. 

LEMMA 1. If every proper closed subset Z of a space X is hereditarily 
compact and of type < a, then X is hereditarily compact and of type ? a. 

That X is hereditarily compact follows from Theorem 1(5); the rest 
follows from the way in which types were defined. 

THEOREM 7. If Y is any subspace of a hereditarily compact space X 
of type a, then Y is hereditarily compact and of type _ cc. 

This is proved by transfinite induction on a. We may assume that the 
theorem is true for all smaller types, and also (since we may replace X by YP, 
in view of 4(3) ) that X = ?. Suppose first that Y is irreducible; then X is 
also irreducible (3(1)). Any proper relatively closed subset of Y is of the 
form Y n Z, where Z is a closed proper subset of X; say Z has type Al. Then 
/3 < ac because X is irreducible; the hypothesis of induction then gives that 
the type of Y n Z is ?<, < a, and by Lemma 1 the type of Y is ? ac. Finally, 
if Y is not irreducible, we have Y -Y1 U . U Yn, where each YJ is (rela- 
tively) closed and irreducible and of type aci say. By the result just established, 
cca?cc (i=1, * ,n); thus the type of Y=max((a1, , a.) ?cc. 

THEOREM 8. The union X of a finite number of hereditarily compact 
spaces Y1, . . ., Yn is hereditarily compact; and if Y, is of type ac and X of 
type ac, then 

max(a,*, an) a,C1 + a C (E)(1?+) 

Here (.) act denotes the "natural" sum of the ordinals cc1,, ccn; that 
is, we express each cci in the form Co$l + 6ookCi2 + + oo4mkst7 where the 
ordinals e satisfy el :> 2 *> * > em =0, and kil, .. , kim are positive 
integers or 0, and define 

('F) ?zi = (w)jl E kl + * + wjOt E 7kim. 

(See [11, pp. 363, 364].) When cc1,* *, ,an are all finite, this coincides with 
their ordinary sum. 

Note that 1 + a, = cz + 1 if a is finite, but 1 + a -= c otherwise. 
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Proof. That X is hereditarily compact is obvious, and that a ? max (ar, * an) follows from Theorem 7. To prove the remaining inequality, we 
use transfinite induction over the ordered n-ples (a,, * * *, an) of ordinal 
numbers (each < some large enough a*), ordered lexicographically (n being 
fixed); this is a well-ordered family. It is convenient to count -1 as an 
ordinal here. Thus the induction starts with each ai = -1; each Yi is empty, 
so X is empty and of type a -=1 as required. Now suppose that the 
assertion is true for all (a,', - , Can') < (a,. - * * an). We first assume that 
each Yi is irreducibly of type ai. If Z is any proper closed subset of X = U Yi, 
then Yi n z is for at least one i a proper closed subset of Y*; hence if 
Yf n Z has type /3, we have i ?< ai (1 ? i ?n), and /3 < aj for at least one 
value of j. Thus (,81, ...fl/) < (ajy * , a.), and it follows from the 
induction hypothesis that the type /8 of Z satisfies 

1 + C1 () (1 + A) < (E) (1 +i 

Hence, by Lemma 1, the type a of X satisfies 1 + a ? (z) (1 + a). 
In the general case, let Yi = U {Y1jI j = 1, 2 , in (i) }, where Yij is 

relatively closed and irreducible, and for each of the m (1) m (2) m (n) 
choices A of suffixes, put Zx n ri,x(j). Then Zx n Yi c Ytx(i), so we have 

i 

Zx C U {Yix(i) I = 1, 2, i, n). By Theorem 7 and the case already dealt 
with, the type yX of Zx satisfies 

(1 + -yx) -- (E,) (1 + type of Yix (j) ) ()(1+ ai) . 

But XV U Zx, a finite union of closed sets; hence the type a of XV satisfies 
a = max(yx), and the desired relation (1 + a) < (E) (1 + ai) follows. 

Remaric. The inequalities in (2) are "best possible," even for T1 spaces, 
as can be seen by taking X to be the example constructed to prove 4(8). 

THEOREM 9. The product X of a finite number of hereditarily compact 
spaces Y1,. . ., Y., is hereditarily compact; and if Yi is of type ai and no 
YJ is empty, then the type of X is ( ) ai (1 ?< i ? n). 

It will suffice to prove this when n = 2, as then the general result follows 
by induction over n. As in the proof of Theorem 8 we use transfinite induction 
over the ordered pairs (a1, a2) in lexicographic ordering, and may assume the 
theorem for products of spaces of types /,3 and /32 whenever (/3k 2) < (a,, a2). 
Again, as in Theorem 8, we can easily reduce the proof to the case in which 
Y, and Y2 are irreducible. It readily follows that X is irreducible too. Let 
Z be any proper closed subset of X; then X - Z contains a set of the form 
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U1 X U2, where U1, U2 are non-empty open subsets of Y1, Y2. Then Y1 - U1 
and YJ, - U, are of types (say) i3 and 82, wlhere I < K,, and 32< K , TIence, 
by the induction hypothesis, (Y1 - U1) X Y'2 and Y1 X (Y2 - U.,) are heredi- 
tarily compact and of types 81(+)a2, al(+),82. As they are closed in X, 
Theorem 8 and 4(1) show that their unioni T is hereditarily compact anid of 
type max ($1 (+() )2, ,'1 (+), 2) < oK (+) a, But Z C T, so the same is true 
of Z; and from Lemma 1 it follows that X is hereditarily compact anid of 
type _ < (+) 2. To obtain the reverse inequality, suppose (say) a, < 0. 
For every ordinal y2 < a2, Y2 contains a closed proper subset of tvpe 72; 
applying the induction hypothesis again shows that X contains a closed proper 
subset of type ec1(+)y2. Thus the type of X is greater than X (+) y2 for 
every y2 < a2, and so is ? al(+) a2 

If a1 = 2 0 (i. e., to start the induction), Y1 and Y2 are trivial spaces; 
consequently X is trivial too, and so is hereditarily compact and of type 0. 

Remark. A product of infinitely many non-trivial spaces is never 
hereditarily compact. For it contains a subspace homeomorphic to H Yn 
(n =- 1, 2, * ), where Yn consists of two points a,, br, and (ba,) is open 
in Y. But this contains the infinite discrete subset (b1, a-, , an, 

(a, b2,,a3,, ), etc. 

THEOREM 10. Let f be a continuous mapping of a hereditarily conmpact 
space X of type a. Th!en f (X) is hereditarily compact and of type less 
than wo0a+1. 

Let Y = f(X). Each Z C Y is compact, being a continuous image of 
the compact set f-I (Z) C X. To prove the remainder of the assertion, suppose 
first that X is irreducible. We show by transfinite induction over o: that Y 
has type ?< w0 if a -> 0. When a = 0, X is trivial; hence Y is trivial, so its 
type = 0 < o00. In general, if Z is any closed proper subset of Y, which 
we may assume to be non-empty, let f-1 (Z) = S1 U . . U Sn, where each Si 
is a non-empty closed irreducible subset of X, necessarily proper. Let Si have 
type /8., and put =- max (Pu1 - * * ,An); thus A < ,, because X is irreducible. 
By the hypothesis of induction, the type of f(Si) is < wo; and by Theorem 8 
the type of Z = U f(Si) is ?<wo0n < wo8+1 ? c. Hence, by Lemma 1, Y has 
type _ Wa. 

In the general case, we have X = X1 U . U Xm, where Xj is irre- 
ducible of type aj, and a c max (a,, . ' * * a,c7) (4(4) and 4(5) ). By Theorem 
8 and the foregoinig, the type of Y is ?< *om < woa+1. 

Remark. The bound for the type of f (X) here is sharp, even for To 
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spaces, and even if f is 1-1. But if a is filite and f(X) is T1, its type is 
< woo, which is now "best possible"; for infinite a, Theorem 10 is sharp 
even for T1 spaces and 1-1 mappings. However, if f is closed and continuous, 
it is easily seen that the type of f (X) does not exceed the type of X. 

7. Countable spaces. The simplest hereditarily compact spaces are 
those which have at most countably many closed (or open) sets. Concerning 
these we have: 

THEOREM 11. Let X be a hereditarily comnpact space. Then: 

(1) The family of open subsets of X is countable if and only if X hias 
a countable base. 

(2) If X is To and has a countable base, then X is countable. 
(3) If X is T1, X has a countable base if and only if it satisfies the 

first axiom of countability. 

Proof. (1) Let B1, B2, be a countable base of open sets. We show 
that the open sets coincide with the finite unions of the sets B--which 
evidently form a countable family. In fact, if U is open, U is a union of 
sets Bi, and being compact is covered by a finite number of them. "Only if" 
is trivial. 

(2) By (1), X has at most 8o distinct closed sets; but the sets x 
(xC X) are all distinct. 

(3) Assuming X is "first countable," we first show that X is countable, 
using trainsfinite induction over the type a of X. We may clearly assume that 
X is irreducible and not empty. Pick p C X and let U1, U, , be a basis 
of open neighborhoods of p; thus n u,== (p). Put F =X- U,; then FIi 
has type < a, so by the induction hypothesis F, is countable. Hence X is 
countable.8 If the points of X are enumerated as q1, q.,, , and if 
V,, V1,, is a basis of openi neighborhoods of q, the sets Vnlm evidently 
form a countable basis for X. 

The converse implication is trivial. 

Remarlc. There are hereditarily compact To spaces which satisfy the 
first axiom of countability and have arbitrarily large cardinial, and there are 
hereditarily compact T1 spaces (of type 1) which are separable but have 
arbitrarily large cardinal. 

8 This argument applies, more generally, if instead of assuming that X is T1 and 
first couintable, -we assume that each point of X is a G, in X. 
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One might expect that, conversely, a countable T1 hereditarily compact 
space has to satisfy the first axiom of countability, at least at one point, 
especially in view of a theorem of S. Mrowka [8] asserting that a compact T2 
space with fewer than 291 points must satisfy the first axiom of countability 
at some point. But this is not the case, as the following example shows. 

Example 1. There exists a countable hereditarily compact T1 space of 
type 2, having c closed subsets, antd not having a counttable base of neighbor- 
hoods at any point. 

The example requires the following lemma, which is due to Sierpinski 
(cf. [11, p. 77]). 

LEMMA 2. Let S be a set with 80 elements. There is a family of c 
distinct infinite subsets Ax of S, every two of which intersect in at most a 
finite set. 

We may take S to be the set of rational numbers, and for each real 
number x take A, to be a sequence of rational numbers converging to x.9 

Now topologize S by taking its closed sets to be: S, and all sets of the 
form E U U Ax (i 1, 2, , ,n), where n is a non-negative integer and 
E is finite. S is easily seen to be irreducible, hereditarily compact and T1. 
The closed sets of type 0 are the non-empty sets E; the irreducible closed sets 
of type 1 are the sets Ax; and thus S is of type 2. We may assume that, 
given p C S, there are uncountably many sets Ax which do not contain p; 
for the set of points p for which this is not true must be finite, and we simply 
omit them from S. If V1, V2, * is a countable basis of open neighborhoods 
of p, we have V S (Em U U {AI xC Fm}), where Em, Fmrz are finite. 
As U Fm, is countable, there exists a suffix y W . for which p g Ay, and 
S -Ay is a neighborhhod of p. It must contain some Vmn and then 
Ay C EmU U {Ax xIC Fm}. But each Ay nAx (x CF,,) is finite, so A, is 
finite, giving a contradiction as required. 

A countable hereditarily compact space X can evidently have at most c 
closed subsets; its type must therefore have cardinal ? c (from 4(6)). 
Further, as there are at most 2c ways of selecting the c sets which are to be 
closed in X, there can be at most 2c nonhomeomorphic countable hereditarily 
compact (or, indeed, countable) spaces. We show now that these trivial 
estimates are in fact "best possible," even for T1 spaces. That there cain be 
as many as c closed sets has been shown by Example 1. 

9 This simple proof of Lemma 2 is also due to Sieipinski. 
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Example 2. There exists, for each ordinal A of car-dinal _ c, a countable 
hereditarily compact T1 space of type A. 

We use transfinite induction over A. Using the sets S, A, of Lemma 2, 
and noting that the number of ordinals / <A is at most c, we assign to 
each 3 < A one or more spaces AS and topologise them as (countable) heredi- 
tarily compact T1 spaces of type /3. Now define a topology on S by taking 
the closed sets to be: S, and all sets of the form U Fx (i = 1, 2, ,n), 
where Fi is closed in A,,. One easily verifies that this does give a topology 
on S, in which S is T1 and hereditarily compact, and that the subspace topology 
it induces on each A, coincides with the topology originally assigned to A-. 
Hence S is irreducibly of type A. 

THEOREM 12. There are 2c nonhomeomnorphic countable hereditarily 
compact T1 spaces. 

Let Q denote the smallest ordinal of cardinal c; let P be the set of ordinals 
less than Q, Q the set of non-limit ordinals in P, and R any subset of Q. 
Thus there are 20 distinct sets R. and for each of them there are c elements 
in P-R. We construct for each R a corresponding space as follows. Again 
we use Lemma 2. Let x <->a (x) be a 1-1 correspondence between the set of 
suffixes x and the set P-iR. From Example 2, we can give each set A, a 
hereditarily compact T1 topology, irreducibly of type ao(x). As in Example 
2, we can extend these topologies to a hereditarily compact T1 topology on S. 
Now the sets A, will be precisely the maximal proper irreducible closed subsets 
of S. Hence the topology of S determines the family of types of the sets 
A, and hence determines R. That is, different sets R give nonhomeomorphic 
spaces S, and the theorem follows. 

It would be interesting to know how many nonhomeomorphic countable 
hereditarily compact T1 spaces have a given type a. By a slight modification 
of the above argument one can show that this number is at least 21cal if 
So I |a I ? c, where I a j denotes the cardinal of a. 

It would also be interesting to have corresponding estimates for heredi- 
tarily compact T1 spaces of larger cardinals. The above methods can of course 
be extended, but do not suffice to settle the questions in general; the difficulty 
is that the analogue of Lemma 2 is false for "most" cardin-als (see [12]). 

THE UNIVERSITY, 
MANCHESTER, ENGLAND. 
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