
Category theory for optimization
Heng Zhao∗, Laurent Thiry∗ and Michel Hassenforder∗
∗MIPS, University of Haute-Alsace, Mulhouse, France

Email: {heng.zhao, laurent.thiry, michel.hassenforder}@uha.fr

Abstract—This paper shows how concepts coming from cate-
gory theory can help to improve the algorithms dealing with large
set of data. Data structures can be modeled by functors that are
related by natural transformations usable both to reduce data size
or to shift an algorithm applicable to a particular data structure
to an equivalent algorithm for another data structure, ie. results
are the same but time required to get it can be different. As
an illustration, the paper takes the example of queries on graph
databases used by semantic web and big data communities.

I. INTRODUCTION

The performance of an algorithm mostly depend on the data

structure considered, and a well-known optimization technic

is ”memoization” that stores a result (rather than to compute

it) and directly returns it when needed. An other common

optimization consists in splitting data and use concurrent

computations (”divide and conquer” principle). The question

is then: how to transform an existing algorithm to integrate

such an optimization principle and get better performance

? The paper proposes to profit of the fundamental concepts

from category theory to formalize both data structures (with

functors Fi), relations between this structures (with natural

transformations/isomorphisms ηij : Fi → Fj) and algorithms

using a particular structure (with catamorphisms ci : Fi → a).

An optimization is then a combination of these elements

(i.e. cj = ci ◦ ηji that can be simplified by using cut-

fusion principle). As an illustration, the paper consider graph

structures - the (Fi) then represents various representations of

a graph, and graph queries (see ci) that consists in finding a

specific subgraph in a graph. It then gives the times requires

for each model to show optimizations. The paper is divided

into two parts. The first one presents the categorical concepts

used in the proposition. The second one gives an application

to graph databases, and discusses the performances obtained.

II. CATEGORICAL CONCEPTS

A. Foundations

Category theory is a field of mathematics dealing with

”structures”. A category is composed with objects and mor-

phisms/arrows about them [1]. There is an identity morphism

for each object and a composition operator (◦), that is associa-

tive and has id as neutral element. An example of a category

is Set that has sets si as objects and functions fj : sk → sl as

arrows. (◦) is then the functional composition. This category is

also cartesian closed: all its products si× sj is also an object.

A functor is a structure preserving map that transforms objects

and arrows by respecting identities and composition. An

example is the powerset functor P : Set → Set such as P(si)

is a subset of si, and P(f){x1...xn} = {f(x1)...f(xn)}. An-

other example is the product functor obtained by defining the

product of two functions: (fi×fj)(xi, xj) = (fi(xi), fj(xj)).
These functors can be composed to obtain new ones, e.g.

P(si × sj), P(si × P(sj)), etc. A natural transformation

is a functor transformation that preserve the structure (ie.

composition). An example is η : P(si × sj) → P(si ×
P(sj)) with η(s) = {(x, {y | (x, y) ∈ s}) |x ∈ P(π1)(s)}
and π1(x1, x2) = x1. This transformation is invertible, ie.

∃η′, ∀s, η′(η(s)) = s, and the functors are said to be naturally

isomorphic (unformally, there is no lost of information) what

is written P(si × sj) ∼=η P(si × P(sj)).

B. Graph databases (and semantic web)

A directed graph G = (N,E) is defined by a set of nodes

N and a set of edges E ⊆ N × N , or equivalently E ∈
P(N × N). With the natural transformation presented above

the last expression is equivalent to E ∈ P(N × P(N)). A

graph morhism m : G(N,E) → G′(N ′, E′) is a mapping

f : N → N ′ that preserves the structure, ie. if (x1, x2) ∈ E
then (f(x1), f(x2)) ∈ E′. An example is presented in the

Figure 1.

Fig. 1. Sample graphs and graph morphism.

A graph can represent a relation and (x1, x2) ∈ G can

be interpreted as ”x1 is a friend of x2” for instance. Graph

morphisms can then serve to answer queries and find a

precise information such as ”who are the common friends to

1 and 4 ?”. This can be represented by the logical expression

∃X, (1, X) ∈ G ∧ (4, X) ∈ G that is graphically represented

by the graph G′. These concepts are a central part of the

298

2018 12th IEEE International Conference on Semantic Computing

0-7695-6360-0/18/$31.00 ©2018 IEEE
DOI 10.1109/ICSC.2018.00055

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 02,2020 at 00:07:53 UTC from IEEE Xplore. Restrictions apply.

semantic web [2] and involves complex algorithms due to the

size of data to be treated (size of the graph) and the problem

to be solved, ie. finding a morphism m.

III. ALGORITHMIC OPTIMIZATIONS

A. Functorial data structures

The concept of ”functor” is usefull to model data structures.

Products (x, y) ∈ X × Y corresponds to records with two

accessors functions π1 : X × Y → X and π2 : X × Y → Y .

Powerset models the well known datatype ”set of Xs”, i.e.

{x, y, z} ∈ P(X). These functors can be composed to model

relations, e.g. {(1, x), (2, y), (3, z)} ∈ P(N × X), or graph

as illustrated in the previous part. As a remark, the previous

example can be used to model the ”list of Xs” datatype,

i.e. [x, y, z] : L(X). The use of lists, rather than sets, is

more interesting in the sense their are naturally found in most

of the functional programming languages. In particular, the

following functors have been encoded in Haskell to compare

the performances (time required) in returning the result of a

query for various database structures.

Common data structures used by information systems can

now be modeled by four functors. Relational databases use

a (indexed) set of tables that can be modeled by binary

relations, and will be represented in a simplified version by

F1(X) = L(X × L(X,X)) - the first X corresponds to

the table name associated to a list of records (the second

X corresponds to the first column and the third X to the

second one). Graph databases use labeled graphs that can be

represented by F2(X) = L(X × (X × X)) where the first

X corresponds to the source of an edge, the second to the

label and the third to the destination. Document databases are

composed by objects having a list of properties, and can be

represented by F3(X) = L(X×L(X×X)) where the first X
correspond to a object, the second to a property name, and the

third to the property value. Finally, distributed databases with

(two computers) can be represented by a couple of databases,

i.e. F4(X) = F2(X)×F2(X) if the local databases are graph

databases. The change of a data structure to another one can be

formalized by a natural transformation ηij : Fi(X) → Fj(X)
and is, with the previous definitions, invertible.

As explained in section II-B, a precise search of an informa-

tion can use a logical expression that can be represented itself

by a graph with variables. An example is, if q=”(?x married

sophie)”, ”query2 q graphdb” that will return [(?x,laurent)]

if the graphdb contains the edge (laurent married sophie).

The signature of the function1 is then (X × X × X) →
F2(X) → L(X × X). Having this algorithm, one can shift

the program to query other database structures by using

natural transformations. For instance, ”query1 p relationnaldb

= query2 p (η12 relationnaldb)” that has type (X×X×X) →
F1(X) → L(X × X), By using pointwise representation,

the program can be expressed by ”query1 p = (query2 p)

η12”. Now, the short cut-fusion can be used to suppress the

composition (◦) by using the definition of query2 and η12 to

eliminate unecessary computations and get efficient code for

1The code is detailled in [3]

query1. This can be applied to the other database models to

get query3 on F3 and query4 for F4.

B. Results
The performances obtained to get the results of each queryi

has been measured by finding some informations from the

titanic dataset2. More precisely, the queries considered are the

following ones:
q1 = (?X Sex male)
q2 = (?X Sex male) and (?X Survived 1)
q3 = (?X ?Y ?Z)
The times obtained to get the result according to a percent-

age of the whole database are:

Size \ Query q1 q2 q3

0.1% 0.00084s 0.00047s 0.00044s
1% 0.00891s 0.00389s 0.00637s

10% 0.04412s 0.04378s 0.04432s
50% 0.17314s 0.18080s 0.17075s
100% 0.34306s 0.36010s 0.35782s

TABLE I
PERFORMANCE OF DIFFERENTS SIZE OF DATABASE

An analysis of the results is: the time required is approxima-

tively proportional to the size of the database. The performance

of this data model is depended on the number of edges. The

edges are similar with the example in III-A. However, if it

has used the distributed databases with two computers , the

time required could be reallly improved. For example, there

is a transformation below: trf ′ [(x, v1), (x, v2), (x, v3)] ==
[(x, [v1, v2, v3])] if the results set has n (key, value) elements,

corresponding to the possible values of the variables in a query,

then trf ′ (result)/result′ has approximately n/2 (key,values)

elements.

Size\Query q1 q2 q3

100% 0.00365s 0.00071s 0.16356s

TABLE II
PERFORMANCE FOR NEW DATA STRUCTURE

The distributed version of this new application, except for

q3, 10x more faster than the original one.

IV. CONCLUSION

As an useful tool, Category theory could be used to formal-

ize data structure, relations between these structures. By using

this approach, the results are the same but time required to get

it can be different. There are other capabilities offered by the

system such as graph rewrting that are currently studied and

will be presented in the future.

REFERENCES

[1] J.A.Goguen. A categorical manifesto. In Mathematical Strucutre in
Computer Science, pages 49-67,1991;

[2] T.Segaran, C.Evans ans J.Taylor. Programming the Semantic Web.
O’Reilly Media, Inc., 1st edition, 2009.

[3] L.Thiry, M.Manfoudh, and M.Hassenforder. A functional inference
system for the web. IJWA, 6(1):1-13,2014.

2Available at https://www.kaggle.com/c/titanic/data

299

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 02,2020 at 00:07:53 UTC from IEEE Xplore. Restrictions apply.

