Introduction 0000		Conditionals and representability	BSS Theorem 00	Conclusions 00	
	Blackwel	I–Sherman–Stein Th	neorem in		
Categorical Probability					

Tomáš Gonda

In collaboration with: Tobias Fritz, Paolo Perrone, and Eigil Rischel

Applied Category Theory Conference

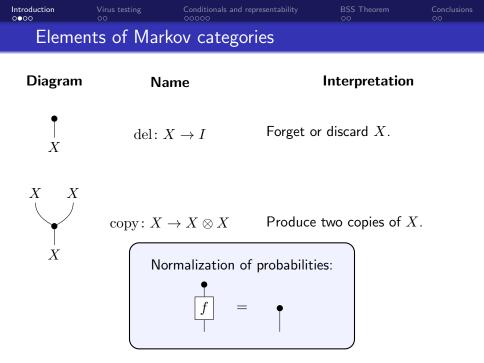
July 6, 2020

Introduction ●000		Conditionals and representability	BSS Theorem 00	Conclusions 00		
Categorical probability						

- Do measure-theory in a model agnostic way.
- Diagrammatic reasoning about probabilistic concepts.
- Synthetic proofs can apply to basic probability, stochastic processes, etc.
- Language of probabilistic programming. Aims to simplify implementation of Bayesian inference.
- Our setting: Markov categories¹

¹Fritz. A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics (2019)

Introduction 0●00		Conditionals and	l representability	BSS Theorem 00	Conclusions 00			
Eleme	Elements of Markov categories							
Diagram	Na	me		Interpretation				
$\begin{array}{c} X \\ f \\ A \end{array}$	$\begin{array}{c} morp \\ f \colon A \end{array}$		A proces Markov I	s with "random kernel.	"output.			
$\begin{array}{ccc} X & Y \\ \hline f & g \\ \hline A & B \end{array}$	tensor p $f \otimes$		Processe indepenc	s running in par lently.	allel,			
X	sta m: I		A probal	pility measure.				

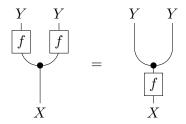


- *FinStoch*: Finite sets and stochastic matrices.
- BorelStoch: Standard Borel spaces and Markov kernels.
- Stoch: Measurable spaces and Markov kernels.
- Gauss: Vector spaces and affine maps with Gaussian noise.
- Fun(I, C): 'Functor category' with C Markov and I small.
- Any hypergraph category (such as *Rel*).
- Any category of commutative comonoids in an SMC D.

Introduction		Conditionals and representability	BSS Theorem 00	Conclusions 00
Deter	ministic mo			

 \boldsymbol{f} is deterministic if

"applying it to the same input always produces the same output".



- In *FinStoch* they are **functions**.
- In Stoch and BorelStoch, measurable maps.
- In Gauss, affine maps with no noise.

Introduction	Virus testing	Conditionals and representability	BSS Theorem	Conclusions
0000	●0		00	00
A toy	v example			

- Three hypotheses: $\Theta = \{v, a, 0\}.$
 - v: Virus present.
 - a: After disease. Antibodies present.
 - 0: No encounter with the virus.

• Two tests:	$V, A \colon \Theta \to X.$	Two outcomes: $X = \{+$	$-, -\}.$
$T_{I}(T_{I} O)$	0	$A(\mathbf{x} \mathbf{O})$	0

$V(X \Theta)$	v	a	0	$A(X \Theta)$	v	a	0
+	.9	.5	.1	+	.76	.6	.44
_	.1	.5	.9	_	.24	.4	.56

• Is one test better than the other?

Via simulation $V \succeq A$ if:

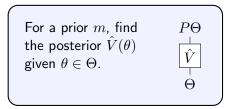
V is sufficient for A, i.e.

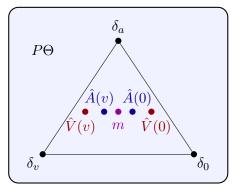
 $\exists g: \begin{array}{c} X & X \\ g \\ \hline y \\ \hline V \\ \Theta \end{array} = \begin{array}{c} A \\ H \\ \Theta \end{array}$ Yes, $g = \frac{1}{5} \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$ works.

$$\frac{1}{5} \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} .9 & .5 & .1 \\ .1 & .5 & .9 \end{pmatrix} =$$
$$= \begin{pmatrix} .76 & .6 & .44 \\ .24 & .4 & .56 \end{pmatrix}$$

$$A(\cdot|a) = \begin{pmatrix} 0.6\\ 0.4 \end{pmatrix} = = A(\cdot|v) + A(\cdot|0)$$

 $\Theta = \{v, a, 0\}$ $X = \{+, -\}$

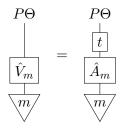




Via 2nd-order dominance $V \succeq A$ if:

V allows one to distinguish between hypotheses better, i.e.

 $\exists \text{ a dilation } t \colon P\Theta \to P\Theta \text{ with }$



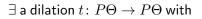
Via simulation $V \succeq A$ if:

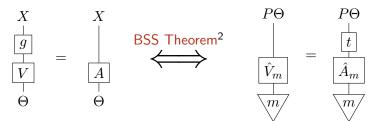
V is sufficient for A, i.e.

Via 2nd-order dominance $V \succeq A$ if:

V allows one to distinguish between hypotheses better, i.e.

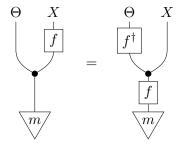
 \exists a kernel $g: X \to X$ s.t.





²Blackwell. Comparison of Experiments (1951)

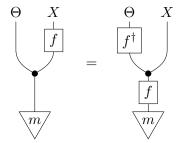
 $f^{\dagger} \colon X \to \Theta$ is a **Bayesian inverse** of $f \colon \Theta \to X$ if³



 $P(x|\theta) \cdot P(\theta) = P(\theta|x) \cdot P(x)$
for all $\theta \in \Theta, x \in X$

³Cho, Jacobs. *Disintegration and Bayesian inversion via string diagrams* (2019)

 $f^{\dagger} \colon X \to \Theta$ is a **Bayesian inverse** of $f \colon \Theta \to X$ if³

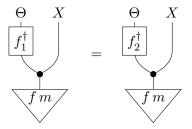


$$\begin{split} f(x|\theta) \cdot m(\theta) &= f^{\dagger}(\theta|x) \cdot f \, m(x) \\ \text{for all } \theta \in \Theta, \, x \in X \end{split}$$

³Cho, Jacobs. *Disintegration and Bayesian inversion via string diagrams* (2019)

Introduction	Virus testing	Conditionals and representability	BSS Theorem	Conclusions
0000	00	○●○○○	00	00
Almo	st surely			

If f_1^{\dagger} and f_2^{\dagger} are Bayesian inverses of f, then



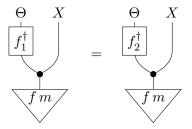
They are equal, f m-almost surely, in *FinStoch*:

$$f_1^{\dagger}(\theta|x) = f_2^{\dagger}(\theta|x)$$

for all θ and those x with f m(x) > 0.

Introduction	Virus testing	Conditionals and representability	BSS Theorem	Conclusions
0000	00	○●○○○	00	00
Almo	st surely			

If f_1^{\dagger} and f_2^{\dagger} are Bayesian inverses of f, then

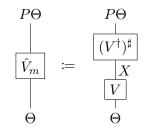


They are equal, f m-almost surely, denoted

$$f_1^{\dagger} =_{fm\text{-a.s.}} f_2^{\dagger}$$

Introduction 0000		Conditionals and representability	BSS Theorem 00	Conclusions 00
Stand	dard experir			

• The standard experiment of V is



where $(V^{\dagger})^{\sharp}$ maps x to $V^{\dagger}(x)$.

• $(V^{\dagger})^{\sharp}$ is the deterministic analogue of V^{\dagger}

Introduction 0000		Conditionals and representability	BSS Theorem 00	Conclusions 00
Distr	ibution obie	ects		

• We would like:

```
stochastic matrices X \to Y \cong functions X \to PY
```

• In *BorelStoch*,

Markov kernels $X \to Y \cong$ measurable maps $X \to PY$

- In a representable Markov category C, $\mathcal{C}(X,Y) \,\cong\, \mathcal{C}_{\rm det}(X,PY)$
- Then $P \colon \mathcal{C} \to \mathcal{C}_{det}$ is right adjoint of $\mathcal{C}_{det} \hookrightarrow \mathcal{C}$.
- In BorelStoch, P gives the Giry monad.

Introduction	Virus testing	Conditionals and representability	BSS Theorem	Conclusions
0000	00		00	00
Unit and counit				

In a representable Markov category C,

 $\mathcal{C}(X,Y) \cong \mathcal{C}_{\det}(X,PY)$

$$\mathrm{id} \in \mathcal{C}(Y,Y) \iff \boldsymbol{\delta} \in \mathcal{C}_{\mathrm{det}}(Y,PY)$$

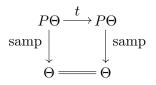
" δ maps y to the delta measure δ_y "

$$\mathbf{samp} \in \mathcal{C}(PY, Y) \iff \mathrm{id} \in \mathcal{C}_{\mathrm{det}}(PY, PY)$$

"takes a measure m and produces an m-distributed sample"

Introduction 0000		Conditionals and representability	BSS Theorem ●○	Conclusions 00
Dilati	ons			

A dilation $t \colon P\Theta \to P\Theta$ preserves barycenters.



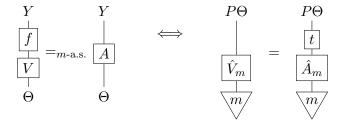
If it commutes μ -a.s., then t is a μ -dilation.

Introduction 0000		Conditionals and representability	BSS Theorem ○●	Conclusions 00	
Synthetic BSS Theorem					

- If a Markov category
 - is representable, and
 - has Bayesian inverses,

then for any $m\colon I\to \Theta$

 $\exists \text{ a morphism } f \colon X \to Y \qquad \exists \text{ an } (\hat{A} m) \text{-dilation } t \colon P \Theta \to P \Theta$

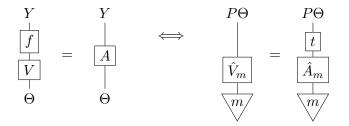


Introduction 0000		Conditionals and representability	BSS Theorem ○●	Conclusions 00
Synthetic BSS Theorem				

- If a Markov category
 - is representable, and
 - has Bayesian inverses,

then for any $m \colon I \to \Theta$ such that *m*-a.s. equality implies equality

 $\exists \text{ a morphism } f \colon X \to Y \qquad \exists \text{ an } (\hat{A} m) \text{-dilation } t \colon P \Theta \to P \Theta$



Introduction 0000		Conditionals and representability	BSS Theorem 00	Conclusions ●0
Conc	lusions			

Introduced in this talk:

- Synthetic BSS theorem for arbitrary $\Theta.$
- Distribution objects.
- Representable Markov categories.

To look for in the full article:

- 2nd-order stochastic dominance vs. partial evaluations.
- When is $C \cong KI(P)$?
- Compatibility of P and a.s. equality.

Outlook:

• Abstract resource theory of distinguishability / comparison of 'structured' experiments.

Thank you for listening!

Main references:

- Fritz. A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics (2019)
- Blackwell. Comparison of Experiments (1951)
- Cho, Jacobs. *Disintegration and Bayesian inversion via string diagrams* (2019)