
Michael Robinson

Assignments to sheaves 
of 

pseudometric spaces



 Michael Robinson

Acknowledgements
● Collaborators:

– Brett Jefferson, Cliff Joslyn, Brenda Praggastis, Emilie Purvine 
(PNNL)

– Chris Capraro, Grant Clarke, Griffin Kearney, Janelle Henrich, Kevin 
Palmowski (SRC)

– J Smart, Dave Bridgeland (Georgetown)
– Steve Huntsman, Matvey Yutin (BAE)

● Students:
– Philip Coyle
– Ken Ewing

● Recent funding: DARPA, ONR, AFRL

– Samara Fantie
– Robby Green
– Fangei Lan

– Michael Rawson
– Metin Toksoz-Exley
– Jackson Williams



 Michael Robinson

Key ideas
● Sheaves of pseudometric spaces rather than of sets
● Motivate filtrations of partial covers as generalizing 

consistency filtrations of sheaf assignments
● Explore filtrations of partial covers as interesting 

mathematical objects in their own right with a dual 
categorial/topological nature:
– The consistency filtration is a covariant functor
– The consistency filtration is a continuous function

Big caveat: Only finite spaces are under consideration!
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Context
● Assemble stochastic models of data locally into a 

global topological picture
– Persistent homology is sensitive to outliers
– Statistical tools are less sensitive to outliers, but cannot 

handle (much) global topological structure
– Sheaves can be built to mediate between these two 

extremes... this is what I have tried to do for the past 
decade or so

● The output is the consistency filtration of a sheaf 
assignment
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Topologizing a partial order

Open sets are unions
of up-sets
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Topologizing a partial order

Intersections
of up-sets are also
up-sets
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(   )(   )

A sheaf on a poset is...

A set assigned to 
each element, called
a stalk, and …

ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1) (  )0 1
1 0

(  )-3 3
-4 4

This is a sheaf of vector spaces on a partial order

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

Stalks can be measure spaces!
We can handle stochastic data

2
3
1 2 -2

3 -3
1 -1
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(   )(   )

A sheaf on a poset is...
… restriction functions 
between stalks, 
following the 
order relation…

ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1

This is a sheaf of vector spaces on a partial order

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

(“Restriction” 
because it goes from
bigger up-sets to smaller ones)
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(   )(   )

A sheaf on a poset is...
ℝ

ℝ2 ℝ2

ℝ3

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

ℝ ℝ2

ℝ2

(1 -1) (  )0 1
1 0

(  )-3 3
-4 4

This is a sheaf of vector spaces on a partial order

ℝ3

(   )0 1 1
1 0 1

ℝ

(-2 1)

(1 -1) =

(   )0 1 1
1 0 1(1 0) = (0 1) (   )1 0 1

0 1 1

(  )0 1
1 0(  )-3 3

-4 4(   )1 0 1
0 1 1

2 -2
3 -3
1 -1

=

… so that the diagram
commutes!

2
3
1

2
3
1 2 -2

3 -3
1 -1

2 -2
3 -3
1 -1
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(   )(   )

An assignment is...

… the selection of a
value on some open 
sets

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(-1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
0

-2
-3
-1

The term serration is more common, but perhaps more opaque.
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(   )(   )

A global section is...

… an assignment
that is consistent 
with the restrictions

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(-1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
0

-2
-3
-1
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(   )(   )

Some assignments aren’t consistent

… but they might
be partially 
consistent

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(+1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
1

-2
-3
-1
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(   )(   )

Consistency radius is...
… the maximum 
(or some other norm)
distance between the 
value in a stalk and 
the values 
propagated 
along the 
restrictions

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(+1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
1

-2
-3
-1

2
3
1(   )0 1 1

1 0 1 ( )3
2- =   2

( )2
3(1 -1) - 1 = 2

(+1) - 
2
3
1

-2
-3    = 2  14
-1 MAX ≥ 2  14

Note: lots more restrictions to check!
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(   )(   )

Consistency radius is continuous
Theorem: It’s continuous 
both in the assignment 
and in the restrictions!

(Proof involves 
establishing 
some inequalities)

Use a product 
metric on stalks 
and topology of 
uniform 
convergence on restrictions

0 1 1
1 0 1

1 0 1
0 1 1

(1 0)
(0 1)

(1 -1)

2
3
1

(  )0 1
1 0

(  )-3 3
-4 4

2 -2
3 -3
1 -1 (   )0 1 1

1 0 1

(-2 1)

(-1)

( )2
3

( )-4
-3

( )-3
-4

( )3
2

(-4)

(-4)

2
3
0

-2
-3
-1
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Amateur radio foxhunting
Typical sensors:
● Bearing to Fox
● Fox signal strength
● GPS location

Fox A

Fox B

Sensor 1Sensor 2

Sensor 3
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Bearing sensors

0.5

1

0

30

60

90

120

150

180

210

240

270

300

330

Antenna pattern
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Bearing sensors… reality…

0.5

1

0

30

60

90

120

150

180

210

240

270

300

330

Antenna pattern
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Bearing observations

Bearing as a function of 
sensor position

0.5

1

0

30

60

90

120

150

180

210

240

270

300

330

Antenna pattern

Recenter
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Bearing sheaf

Typical Mbearing function:

0.5

1

0

30

60

90

120

150

180

210

240

270

300

330

Antenna pattern



 Michael Robinson

Bearing sheaf (two sensors)
Fox position Sensor 2 position, BearingSensor 1 position, Bearing

Fox position, Sensor 1 position Fox position, Sensor 2 position
ℝ2×ℝ2

ℝ2×S1 ℝ2×S1

ℝ2×ℝ2

ℝ2

pr1
pr1(pr2,Mbearing)

(pr2,Mbearing)

Global sections of this sheaf 
correspond to two bearings 
whose sight lines intersect at 
the fox transmitter
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Consistency of proposed fox locations
Consistency radius minimization … 

… converges to a likely fox location … does not converge!



 Michael Robinson

Local consistency radius

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

Consistency radius of this open set = 0

Lemma: Consistency radius on an open set U is computed by 
only considering open sets V1 ⊆ V2 ⊆ U

{A,C} {B,C}

{C}

{A,B,C}
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Local consistency radius

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

c(U) = ½

Lemma: Consistency radius does not decrease as its support grows:
if U ⊆ V then c(U) ≤ c(V).

Consistency radius of this open set = 0
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Local consistency radius

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

c(U) = ½ c(V) = ½

c(U ∩ V) = 0

Lemma: Consistency radius does not decrease as its support grows:
if U ⊆ V then c(U) ≤ c(V).
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Consistency radius is not a measure

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

c(U) = ½ c(V) = ½

c(U ∩ V) = 0

c(U ∪ V) = ⅔  ≠ c(U) + c(V) – c(U ∩ V)

(Consistency radius yields an inner measure after some work)
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The consistency filtration

1

⅓

(1)

(1)

Consistency
threshold 0 ½ ⅔

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

Consistency radius = ⅔

● … assigns the set of open sets (open cover) with consistency 
less than a given threshold

● Lemma: consistency filtration is itself a sheaf of collections 
of open sets on (ℝ,≤).  Restrictions in this sheaf are cover 
coarsenings.

refine refine
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Persistent Čech cohomology
● Consider a point cloud

x1 x2

x3

x4



 Michael Robinson

Persistent Čech cohomology
● Build the Alexandrov topology on the complete 

simplex with the points as vertices...

x1 x2

x3

x4

[x1] [x2] [x3] [x4]

[x1,x2] [x2,x3] [x3,x4][x1,x3] [x2,x4][x1,x4]

[x1,x2,x3] [x1,x2,x4] [x1,x3,x4] [x2,x3,x4]

[x1,x2,x3,x4]
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Persistent Čech cohomology
● ...Build the constant sheaf on that. (Restrictions are 

identity maps.)

x1 x2

x3

x4

[x1]:ℝN [x2]:ℝN [x3]:ℝN [x4]:ℝN

[x1,x2]:ℝN [x2,x3]:ℝN [x3,x4]:ℝN[x1,x3]:ℝN [x2,x4]:ℝN[x1,x4]:ℝN

[x1,x2,x3]:ℝN [x1,x2,x4]:ℝN [x1,x3,x4]:ℝN [x2,x3,x4]:ℝN

[x1,x2,x3,x4]:ℝN
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Persistent Čech cohomology
● The coordinates of the points form an assignment to 

the vertices (lowest level in the poset)

x1 x2

x3

x4

[x1]:x1 [x2]:x2 [x3]:x3 [x4]:x4

[x1,x2]:ℝN [x2,x3]:ℝN [x3,x4]:ℝN[x1,x3]:ℝN [x2,x4]:ℝN[x1,x4]:ℝN

[x1,x2,x3]:ℝN [x1,x2,x4]:ℝN [x1,x3,x4]:ℝN [x2,x3,x4]:ℝN

[x1,x2,x3,x4]:ℝN
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Persistent Čech cohomology
● Find the global assignment with minimal consistency 

radius

x1 x2

x3

x4

[x1]:x1 [x2]:x2 [x3]:x3 [x4]:x4

[x1,x2]:x12 [x2,x3]:x23 [x3,x4]:x34[x1,x3]:x13 [x2,x4]:x24[x1,x4]:x14

[x1,x2,x3]:x123 [x1,x2,x4]:x124 [x1,x3,x4]:x134 [x2,x3,x4]:x234

[x1,x2,x3,x4]:x1234
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Persistent Čech cohomology
● Each value in the assignment turns out to be the 

circumcenter of each subset of points

x1 x2

x3

x4

[x1]:x1 [x2]:x2 [x3]:x3 [x4]:x4

[x1,x2]:x12 [x2,x3]:x23 [x3,x4]:x34[x1,x3]:x13 [x2,x4]:x24[x1,x4]:x14

[x1,x2,x3]:x123 [x1,x2,x4]:x124 [x1,x3,x4]:x134 [x2,x3,x4]:x234

[x1,x2,x3,x4]:x1234

x134
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Persistent Čech cohomology
● Theorem: The consistency filtration is isomorphic to 

the one in “usual” persistent Čech cohomology 

x1 x2

x3

x4

[x1]:x1 [x2]:x2 [x3]:x3 [x4]:x4

[x1,x2]:x12 [x2,x3]:x23 [x3,x4]:x34[x1,x3]:x13 [x2,x4]:x24[x1,x4]:x14

[x1,x2,x3]:x123 [x1,x2,x4]:x124 [x1,x3,x4]:x134 [x2,x3,x4]:x234

[x1,x2,x3,x4]:x1234

x134



 

 

Michael Robinson

Filtrations of partial covers
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Covers of topological spaces
● Classic tool: Čech cohomology

– Coarse
– Usually blind to the cover; only sees the underlying space

● Cover measures (Purvine, Pogel, Joslyn, 2017)
– How fine is a cover?
– How overlappy is a cover?
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Cover measures
● Theorem: (Birkhoff) The set of covers ordered by 

refinement has an explicit rank function
– The rank of a given cover is the number of sets in its 

downset as an antichain of the Boolean lattice
– This counts the number of sets of consistent faces there 

are
● Conclusion: An assignment whose maximal cover has 

a higher rank is more self-consistent
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● Consider the following two covers of {1,2,3,4}

1  2  3  4

Cover measures

1  2  3  4
A

1  2  3  4
B

1  2  3  4

1  2  3  4

Refine Refine

Refine
Total = 6 sets

Total = 11 sets

Since 6 < 11, 
cover B is coarser

Computing the number of sets in its downset 
as an antichain of the Boolean lattice
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The lattice of covers
● Theorem: The lattice of 

covers is graded using this 
rank function

1  2  3  4

1  2  3  4

1  2  3  4

1  2  3  4

Coarser

Finer

Lattice graphic by E. Purvine
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Defining PartCovers : partial covers
● Start with a fixed topological space
● Objects: Collections of open sets
● No requirement of coverage 1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6
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Defining PartCovers : partial covers
● Morphisms are refinements of 

covers:
If 𝒰 and 𝒱 are partial 
covers, 𝒱  refines 𝒰 if for all 
V in 𝒱 there is a U in 𝒰, with 
V ⊆ U.

● Convention: 𝒰 → 𝒱  

Refine

Refine

1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6
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Irredundancy
● Irredundant cover has no cover 

elements contained in others
● Minimal representatives of 

PartCovers isomorphism 
classes
– Minimal according to inclusion, 

not refinement
● Lemma: Every finite partial 

cover is PartCovers-
isomorphic to a unique 
irredundant one

1  2  3  4   5  6
Refine

1  2  3  4   5  6
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CoarseFilt : Filtrations in PartCovers
● Objects are chains of morphisms in PartCovers with 

a monotonic height function
– Height increases as cover coarsens
– Could be the cover lattice rank,

but need not be 1.0

0.5

0.0

height

Refine

Refine

1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6
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CoarseFilt : Filtrations in PartCovers
● Morphisms are commutative ladders of refinements 

with a monotonic mapping ϕ : ℝ→ℝ of height 
functions

1.0

0.5

0.0

height

1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6

Refine

Refine

1.2

0.7

0.3

0.1

height 1  2  3  4  5  6
Refine

Refine

Refine

1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6
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CoarseFilt : Filtrations in PartCovers
● Morphisms are commutative ladders of refinements 

with a monotonic mapping ϕ : ℝ→ℝ of height 
functions

1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6

Refine

Refine

1.0

0.5

0.0

height

1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6

Refine

Refine

1.2

0.7

0.3

0.1

height 1  2  3  4  5  6
Refine
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CoarseFilt : Filtrations in PartCovers
● Morphisms are commutative ladders of refinements 

with a monotonic mapping ϕ : ℝ→ℝ of height 
functions

1.0

0.5

0.0

height

1.2

0.7

0.3

0.1

height

Refine

Refine

Refine

Refine

Refine

1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6

1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6

Refine

Refine

1  2  3  4  5  6
Refine
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Interleavings in CoarseFilt
● Pair of morphisms between two objects

1.0

0.5

0.0

height

1.2

0.7

0.3

0.1

height

Refine

Refine

Refine

1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6

Refine

Refine

1  2  3  4  5  6
Refine

Refine

Refine

1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6
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1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6

Refine

Refine

1  2  3  4  5  6
Refine

Interleavings in CoarseFilt
● Measure the maximum displacement of the heights, 

minimize over all interleavings = interleaving distance

1.0

0.5

0.0

height

1.2

0.7

0.3

0.1

height

Refine

Refine

Refine

Dist = 0.2
Dist = 0.3
Dist = 0.2

Dist = 0.2
Dist = 0.2
Dist = 0.3

Dist = 0.2

Dist = 0.1

Refine

Refine

1  2  3  4   5  6

1  2  3  4  5  6

1  2  3  4  5  6
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Consistency filtration stability

1

⅓

(1)

(1)

0 ½ ⅔

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

Consistency radius = ⅔

● Theorem: Consistency filtration is continuous under the 
CoarseFilt interleaving distance

● Thus the persistent Čech cohomology of the consistency 
filtration is robust to perturbations

Consistency
threshold 

refine refine



 Michael Robinson

A small perturbation … 
● Perturbations allowed in both assignment and 

sheaf (subject to it staying a sheaf!)

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

0 0.9

0.6

0.3(2)

(1)

(0.8)

(0.8)

(0.4)
Max difference = 0.2



 Michael Robinson

A small perturbation … 
● Compute consistency filtrations...

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

0 ½ ⅔
Consistency
threshold 

{C}

{A,C}

{B,C}
{A,B,C}

0 0.9

0.6

0.3(2)

(1)

(0.8)

(0.8)

(0.4)

0 0.6 0.66
Consistency
threshold 

{C}

{A,C}

{B,C}
{A,B,C}

0.3

Max difference = 0.2
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… bounds interleaving distance

0 ½ ⅔
Consistency
threshold 

{C}

{A,C}

{B,C}
{A,B,C}

0 0.6 0.66

Consistency
threshold 

{C}

{A,C}

{B,C}

{A,B,C}

0.3

{C}

{A,C}

{B,C}
{A,B,C}

Shift = 0.5-0.3 = 0.2

Refine Note that 
{A,C} ⊆ {A,B,C} etc.
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… bounds interleaving distance

0 ½ ⅔
Consistency
threshold 

{C}

{A,C}

{B,C}
{A,B,C}

0 0.6 0.66

Consistency
threshold 

{C}

{A,C}

{B,C}

{A,B,C}

0.3

{C}

{A,C}

{B,C}
{A,B,C}

Shift = 0.6-0.5 = 0.1

Max shift = 0.2, 
This is bounded 
above by constant 
times the 
perturbation (0.2 
in this case)Refine
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Functoriality of consistency filtrations
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Consistency and functoriality
● Category of sheaves and assignments: ShvFPA

● Suppose 𝒮 is a sheaf on X and ℛ is a sheaf on Y
● Assignments a and b
● A morphism m: (𝒮,a) → (ℛ,b) consists both of 

– A base space map on the base spaces f : X → Y and 
– Component maps mU : 𝒮 (f-1(U)) → ℛ(U) for each open set U in Y
such that mU(a(f-1(U))) = b(U) for each open U in Y

● Theorem: Consistency filtration is a covariant functor 
ShvFPA→CoarseFilt

Sheaves on Finite spaces with Pseudometrics paired with Assignments
(a bit of a mouthful.  Sorry!)
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Defining Con : consistency functions
● Objects: order preserving functions Open(X) → ℝ+

● Example: local consistency radius

0 1

½

⅓(2)

(1)

(1)

(1)

(½)

{A,C} {B,C}

{C}

{A,B,C}

½ ½

0

⅔

Open sets Assignment Local consistency radius
Object in Con
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Defining Con : consistency functions
Ideally, we want…
● Consistency radius is a functor ShvFPA → Con
● A functor Con → CoarseFilt acting by thresholding

{A,C} {B,C}

{C}

{A,B,C}

½ ½

0

⅔

Open sets Local consistency radius
Object in Con

A    C    B

A    C    B

A    C    B

Refine

Refine

Consistency filtration
Object in CoarseFilt

He
igh

t =
 co

ns
ist

en
cy
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Defining Con : consistency functions
Ideally, we want…
● Consistency radius is a functor ShvFPA → Con
● A functor Con → CoarseFilt acting by thresholding

To get this, the morphisms of Con are a little strange
A morphism K: m → n of Con is a nonnegative real K  
so that m(U) ≤ K n(U) for all open U.
Composition works by multiplication!
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Defining Con : consistency functions
A morphism K: m → n of Con is a nonnegative real K 
 so that m(U) ≤ K n(U) for all open U.

½ ½

0

⅔

Object in Con

½

0

⅔

Object in Con

1

1

½

2

½

These objects are not Con-isomorphic!



 Michael Robinson

Con and CoarseFilt
Theorem: Con is equivalent to a subcategory of 
CoarseFilt by way of two functors:
● A faithful functor Con → CoarseFilt
● A non-faithful functor CoarseFilt → Con

such that Con → CoarseFilt → Con is the identity 
functor.
Interpretation: May be able to summarize filtrations 
of partial covers using consistency functions, but this 
is lossy!
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Con → CoarseFilt
● Motivation: generalization of consistency filtration
● Idea: thresholding!

0

⅔

Object in Con

1

Refine

Object in CoarseFilt

½
½

0

⅔

1

Showing an 
irredundant 
representative 
for this object{A,C} {B,C}

{C}

{A,B,C}
Open sets

A    C    B

A    C    B

A    C    B

Refine

Refine

A    C    B
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Con → CoarseFilt
● Morphisms in Con transform to linear rescalings 

of the heights in CoarseFilt … monotonicity does 
the rest

½

0

⅔

Morphism in Con

1

Morphism in CoarseFilt

0

½

⅔

1

½ ½

0

⅔

2 ½

0

⅔

1

A    C    B

A    C    B

A    C    B

Refine

A    C    B

Refine

Refine

A    C    B

A    C    B

A    C    B

Refine

Refine
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Refine

Refine

Refine

Refine

Refine

A    C    B

A    C    B

A    C    B

Con → CoarseFilt
● Morphisms in Con transform to linear rescalings 

of the heights in CoarseFilt … monotonicity does 
the rest

½

0

⅔

Morphism in Con

1

Morphism in CoarseFilt

0

½

⅔

1

½ ½

0

⅔

2 ½

0

⅔

1

A    C    B

A    C    B

A    C    B

A    C    B
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● Morphisms in Con transform to linear rescalings 
of the heights in CoarseFilt … monotonicity does 
the rest: Faithful!

Refine

Refine

Refine

Refine

Refine

A    C    B

A    C    B

A    C    B

Con → CoarseFilt

½

0

⅔

Morphism in Con

1

Morphism in CoarseFilt

0

½

⅔

1

½ ½

0

⅔

2 ½

0

⅔

1

A    C    B

A    C    B

A    C    B

A    C    B



 Michael Robinson

CoarseFilt → Con
● At first, this seems easy.  Just look up the threshold 

for each open set

Object in CoarseFilt

½

0

⅔

1

0

⅔

Object in Con

1

?{A,C} {B,C}

{C}

{A,B,C}
Open sets

Refine

A    C    B

A    C    B

A    C    B

A    C    B

Refine

Refine
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CoarseFilt → Con
● At first, this seems easy.  Just look up the threshold 

for each open set

Object in CoarseFilt

0

⅔

Object in Con

1

½{A,C} {B,C}

{C}

{A,B,C}
Open sets

½

0

⅔

1
Refine

A    C    B

A    C    B

A    C    B

A    C    B

Refine

Refine
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CoarseFilt → Con
● But what if the cover is not irredundant?
● This does not matter!

0

⅔

Object in Con

1
A    C    B

Refine

Refine

Object in CoarseFilt

Refine½
½

0

⅔

1

A    C    B

A    C    B

A    C    B

Fix: take the 
smallest threshold 
where the open set 
is contained in a 
cover element
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● Recall: CoarseFilt morphisms are given by height 
rescaling functions ϕ, which may not be linear

CoarseFilt → Con

Morphism in CoarseFilt

0

⅔

Morphism in Con

1

½ ½

0

⅔

Refine

Refine

Refine

Refine

Refine

A    C    B

A    C    B

A    C    B

½

0

⅔

1

½

0

⅔

1

A    C    B

A    C    B

A    C    B

A    C    B
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CoarseFilt → Con
● Morphism in Con is given by K = max 
● Not faithful!

Morphism in CoarseFilt

0

⅔

Morphism in Con

1

½ ½

0

⅔

t
ϕ(t)

2
Refine

Refine

Refine

Refine

Refine

A    C    B

A    C    B

A    C    B

½

0

⅔

1

½

0

⅔

1

A    C    B

A    C    B

A    C    B

A    C    B
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Wrapping up...
● Assignments to sheaves can be studied using both 

topology and category theory…
● The main tools are the consistency radius and 

consistency filtration
● Although consistency radius isn’t functorial, there 

are fancier invariants that are!
● Open question: Can we relate structure of local 

consistency of a sheaf assignment to the structure 
of functions on the base?
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To learn more...
Michael Robinson

michaelr@american.edu
http://drmichaelrobinson.net

Main reference for this talk: “Assignments to sheaves of 
pseudometric spaces,” Compositionality, 2:2, 2020. 

Software: https://github.com/kb1dds/pysheaf

mailto:michaelr@american.edu
http://drmichaelrobinson.net/
https://github.com/kb1dds/pysheaf
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