Assignments to sheaves of pseudometric spaces

Acknowledgements

- Collaborators:
 - Brett Jefferson, Cliff Joslyn, Brenda Praggastis, Emilie Purvine (PNNL)
 - Chris Capraro, Grant Clarke, Griffin Kearney, Janelle Henrich, Kevin Palmowski (SRC)
 - J Smart, Dave Bridgeland (Georgetown)
 - Steve Huntsman, Matvey Yutin (BAE)

Recent funding: DARPA, ONR, AFRL

- Students:
 - Philip Coyle
 - Ken Ewing

- Samara Fantie
- Robby Green
- Fangei Lan

- Michael Rawson
- Metin Toksoz-Exley
- Jackson Williams

Key ideas

- Sheaves of **pseudometric spaces** rather than of sets
- Motivate *filtrations of partial covers* as generalizing *consistency filtrations* of sheaf assignments
- **Explore** filtrations of partial covers as interesting mathematical objects in their own right with a dual categorial/topological nature:
 - The consistency filtration is a covariant functor
 - The consistency filtration is a continuous function

Big caveat: Only finite spaces are under consideration!

Context

- Assemble stochastic models of data locally into a global topological picture
 - *Persistent homology* is sensitive to outliers
 - Statistical tools are less sensitive to outliers, but cannot handle (much) global topological structure
 - Sheaves can be built to mediate between these two extremes... this is what I have tried to do for the past decade or so
- The output is the *consistency filtration* of a sheaf *assignment*

Topologizing a partial order

Topologizing a partial order

A sheaf on a poset is...

This is a *sheaf* of vector spaces on a partial order

A sheaf on a poset is...

This is a *sheaf* of vector spaces on a partial order

A sheaf on a poset is...

A

This is a *sheaf* of vector spaces on a partial order

An assignment is...

The term *serration* is more common, but perhaps more opaque.

A global section is...

Some assignments aren't consistent

Consistency radius is...

Consistency radius is continuous

Amateur radio foxhunting

Bearing sensors

Bearing sensors... reality...

Bearing observations

Bearing sheaf

Michael Robinson

Consistency of proposed fox locations

Local consistency radius

<u>Lemma</u>: Consistency radius on an open set U is computed by only considering open sets $V_1 \subseteq V_2 \subseteq U$

Local consistency radius

Consistency radius of this open set = 0

<u>Lemma</u>: Consistency radius does not decrease as its support grows: if $U \subseteq V$ then $c(U) \leq c(V)$.

Local consistency radius

 $c(U \cap V) = 0$

<u>Lemma</u>: Consistency radius does not decrease as its support grows: if $U \subseteq V$ then $c(U) \leq c(V)$.

Consistency radius is not a measure

 $c(U \cap V) = 0$

 $c(U \cup V) = \frac{2}{3} \neq c(U) + c(V) - c(U \cap V)$

(Consistency radius yields an *inner measure* after some work)

The consistency filtration

- ... assigns the set of open sets (open cover) with consistency less than a given threshold
- Lemma: consistency filtration is itself a sheaf of collections of open sets on (\mathbb{R}, \leq) . Restrictions in this sheaf are *cover coarsenings*.

• Consider a point cloud

• Build the Alexandrov topology on the complete simplex with the points as vertices...

• ...Build the constant sheaf on that. (Restrictions are identity maps.)

• The coordinates of the points form an assignment to the vertices (lowest level in the poset)

• Find the global assignment with minimal consistency radius

• Each value in the assignment turns out to be the circumcenter of each subset of points

• <u>Theorem</u>: The consistency filtration is isomorphic to the one in "usual" persistent Čech cohomology

Filtrations of partial covers

Covers of topological spaces

- Classic tool: Čech cohomology
 - Coarse
 - Usually blind to the cover; only sees the underlying space
- Cover measures (Purvine, Pogel, Joslyn, 2017)
 - How fine is a cover?
 - How overlappy is a cover?

Cover measures

- <u>Theorem</u>: (Birkhoff) The set of covers ordered by refinement has an explicit rank function
 - The rank of a given cover is the number of sets in its downset as an antichain of the Boolean lattice
 - This counts the number of sets of consistent faces there are
- <u>Conclusion</u>: An assignment whose maximal cover has a higher rank is more self-consistent

Cover measures

• Consider the following two covers of {1,2,3,4}

Since 6 < 11, cover *B* is coarser

Computing the number of sets in its downset as an antichain of the Boolean lattice

The lattice of covers

Defining **PartCovers** : partial covers

- Start with a fixed topological space
- Objects: Collections of open sets
- No requirement of coverage

Defining **PartCovers** : partial covers

• Morphisms are *refinements* of covers:

If \mathscr{U} and \mathscr{V} are partial covers, \mathscr{V} refines \mathscr{U} if for all V in \mathscr{V} there is a U in \mathscr{U} , with $V \subseteq U$.

• <u>Convention</u>: $\mathcal{U} \to \mathcal{V}$

Irredundancy

- *Irredundant cover* has no cover elements contained in others
- Minimal representatives of **PartCovers** isomorphism classes
 - Minimal according to inclusion, not refinement
- <u>Lemma</u>: Every finite partial cover is **PartCovers**-isomorphic to a unique irredundant one

- Objects are chains of morphisms in **PartCovers** with a monotonic height function
 - Height increases as cover coarsens
 - Could be the cover lattice rank, but need not be

• Morphisms are commutative ladders of refinements with a monotonic mapping $\phi : \mathbb{R} \to \mathbb{R}$ of height functions

• Morphisms are commutative ladders of refinements with a **monotonic mapping** $\phi : \mathbb{R} \to \mathbb{R}$ of height functions

• Morphisms are commutative ladders of refinements with a monotonic mapping $\phi : \mathbb{R} \to \mathbb{R}$ of height functions

Interleavings in CoarseFilt

• Pair of morphisms between two objects

Interleavings in CoarseFilt

• Measure the maximum displacement of the heights, minimize over all interleavings = *interleaving distance*

Consistency filtration stability

- <u>Theorem</u>: Consistency filtration is continuous under the **CoarseFilt** interleaving distance
- Thus the persistent Čech cohomology of the consistency filtration is **robust** to perturbations

A small perturbation ...

• Perturbations allowed in both assignment **and** sheaf (subject to it staying a sheaf!)

A small perturbation ...

• Compute consistency filtrations...

... bounds interleaving distance

... bounds interleaving distance

Michael Robinson

Functoriality of consistency filtrations

Consistency and functoriality

• Category of sheaves and assignments: ShvFPA

Sheaves on Finite spaces with Pseudometrics paired with Assignments (a bit of a mouthful. Sorry!)

- Suppose \mathscr{S} is a sheaf on X and \mathscr{R} is a sheaf on Y
- Assignments *a* and *b*
- A morphism $m: (\mathcal{G}, a) \to (\mathcal{R}, b)$ consists both of
 - A *base space map* on the base spaces $f: X \to Y$ and
 - Component maps $m_U : \mathscr{G}(f^{-1}(U)) \to \mathscr{R}(U)$ for each open set U in Ysuch that $m_U(a(f^{-1}(U))) = b(U)$ for each open U in Y
- <u>Theorem</u>: Consistency filtration is a covariant functor **ShvFPA→CoarseFilt**

- Objects: order preserving functions $\operatorname{Open}(X) \to \mathbb{R}^+$
- Example: local consistency radius

Ideally, we want...

- Consistency radius is a functor **ShvFPA** \rightarrow **Con**
- A functor $\mathbf{Con} \rightarrow \mathbf{CoarseFilt}$ acting by thresholding

Ideally, we want...

- Consistency radius is a functor **ShvFPA** \rightarrow **Con**
- A functor $\mathbf{Con} \rightarrow \mathbf{CoarseFilt}$ acting by thresholding
- To get this, the morphisms of **Con** are a little strange
- A morphism $K: m \to n$ of **Con** is a nonnegative real K so that $m(U) \le K n(U)$ for all open U.
- Composition works by multiplication!

A morphism $K: m \to n$ of **Con** is a nonnegative real K so that $m(U) \le K n(U)$ for all open U.

These objects are not **Con**-isomorphic!

Con and CoarseFilt

<u>Theorem</u>: **Con** is equivalent to a subcategory of **CoarseFilt** by way of two functors:

- A faithful functor **Con** → **CoarseFilt**
- A non-faithful functor **CoarseFilt** \rightarrow **Con**

such that $\mathbf{Con} \to \mathbf{CoarseFilt} \to \mathbf{Con}$ is the identity functor.

<u>Interpretation</u>: May be able to summarize filtrations of partial covers using consistency functions, but this is lossy!

- Motivation: generalization of consistency filtration
- Idea: thresholding!

Showing an irredundant representative for this object

Object in CoarseFilt

• Morphisms in **Con** transform to linear rescalings of the heights in **CoarseFilt** ... monotonicity does the rest $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 &$

Morphism in CoarseFilt

• Morphisms in **Con** transform to linear rescalings of the heights in **CoarseFilt** ... monotonicity does the rest

Morphism in CoarseFilt

• Morphisms in **Con** transform to linear rescalings of the heights in CoarseFilt ... monotonicity does the rest: Faithful! B A ()0 Refine Refine CB \boldsymbol{A} $1/_{2}$ $1/_{2}$ 2 Refine $2/_{3}$ Ré \boldsymbol{A} B 2/3 \boldsymbol{A} 2/3Refine B AMorphism in **Con**

Morphism in CoarseFilt

• At first, this seems easy. Just look up the threshold for each open set

Object in CoarseFilt

• At first, this seems easy. Just look up the threshold for each open set

Object in CoarseFilt

- But what if the cover is not irredundant?
- This does not matter!

Object in Con

Fix: take the smallest threshold where the open set is contained in a cover element

• Recall: CoarseFilt morphisms are given by height rescaling functions ϕ , which may not be linear

Morphism in CoarseFilt

• Morphism in **Con** is given by $K = \max \frac{t}{\phi(t)}$

Morphism in CoarseFilt

Wrapping up...

- Assignments to sheaves can be studied using both topology and category theory...
- The main tools are the consistency radius and consistency filtration
- Although consistency radius isn't functorial, there are fancier invariants that are!
- Open question: Can we relate structure of local consistency of a sheaf assignment to the structure of functions on the base?

To learn more...

Michael Robinson

michaelr@american.edu

http://drmichaelrobinson.net

Main reference for this talk: "Assignments to sheaves of pseudometric spaces," *Compositionality*, 2:2, 2020.

Software: https://github.com/kb1dds/pysheaf

