
PE2

Sarah R.F.

April 16, 2020

Get labeling style consistent between typing and reduction rules.

1 Introduction
PE2 is a system introduced in Abr93 as a term language for proofs in one-sided Cite prop-

erlysecond-order classical linear logic. This means that its terms and programs cor-
respond to proofs in that logic, and their types correspond to the things being
proved. Its reduction rules, in turn, correspond to the process of “cut elimi-
nation” in proofs.1 In this paper, however, I will attempt to give an informal
presentation and explanation of it as a programming language in its own right,
without touching directly on its relationship to logic.
Talk about how we’re gonna be bootstrapping understanding up with fake
cases and looping around to the real thing.

2 The grammar
We will begin with the grammars of types, terms, and programs. This is merely
to make clear the scope of our concern; I do not recommend trying to absorb
all of it at first, nor is it particularly easy to intuit the meaning of many of the
constructs from their syntax without prior knowledge of linear logic. Instead,
return to this section as a reference when necessary. Having established our
domains of discourse, we will work through the typing rules, reduction rules,
and intuitive meanings of the various constructs over the course of the remaining
sections.

Types are formed from the grammar in Figure 1. 1 and ⊥ are called the
units, ⊗ and ` are called the multiplicatives, & and ⊕ are called the additives, !
and ? are called the exponentials, and ∀ and ∃ are called the quantifiers. Terms

1This correspondence is technically not exact, insofar as the process of cut elimination
removes all instances of the cut rule from a proof, while reduction of a PE2 program will not
simplify its construct corresponding to cut if it occurs in certain places.
does this need elaboration?

1

A,B ::= types
α type variable (α may be any type variable name)
α⊥ dual type variable (α may be any type variable name)
1 one
⊥ bottom
A⊗B A tensor B (or A times B)
A`B A par B (as in “parallel”)
A&B A with B
A⊕B A plus B
!A of course A
?A why not A
∀α.A for all α, A
∃α.A exists α, A

Figure 1: The grammar of types (with names/pronunciations).

t, u, v ::= terms
x (x may be any variable name)
∗
∗⃝
t⊗ u
t` u
x1 . . . xn(P Q) (n ≥ 0)
inl(t)
inr(t)
x1 . . . xn(P) (n ≥ 0)
?t
_
t@ u

Figure 2: The grammar of terms.

P,Q ::= programs
t1 ⊥ u1, . . . , tn ⊥ un; v1, . . . , vm (n ≥ 0, m ≥ 0)

Figure 3: The grammar of programs.

2

and programs2 are formed from the mutually recursive grammars in Figures
2 and 3. Note that the occurrences of the symbols ⊗ and ` in the type and
term grammars are not a priori related; terms formed using these symbols will
indeed have types formed using these symbols in the type system we establish,
but there is no significance to their double usage at the level of the grammar.
In what follows, context should make clear whether a given ⊗ or ` refers to the
type constructor or term constructor.

3 Duality
A pervasive pair of notions in programming languages are those of introduc-
tion forms and elimination forms. In many languages, each of the basic forms
of expression (with a few exceptions) is associated to some type and classi-
fied by whether it constructs—“‘introduces”—a value of that type, or decom-
poses/uses—“eliminates”—one. For example, an integer literal is an introduc- explain
tion form for the type int, a field access is an elimination form for a compound
type, an anonymous function is an introduction form for a function type, and
a function application is an elimination form for one. Then, reduction can be
seen as the process of cancelling matching introduction and elimination forms.

These notions correspond to the logical notions of introduction and elimina-
tion rules, which are a feature of natural deduction systems. But PE2 is based
on sequent calculus, not natural deduction, and its terms have no elimination
forms, only introduction forms. That is to say, there is no way to write a term
which decomposes/uses one of its subterms in order to compute a final result;
the only terms (apart from variables) that may be written are those that are
already “literals”, in a certain sense, and not subject to reduction.

There is, however, still a way to express computation! Each type A is as-
signed a dual type A⊥, a value of which contains precisely the information that
would have been present in an elimination form for A. Given a term t of A and
u of A⊥, they may be placed into a coequation, which looks like t ⊥ u, and it is not a term
coequations that are subject to reduction; they can simplify, split into multiple
coequations, or disappear, making use of the structure of u to eliminate t.

Because coequations are based on the Cut rule of sequent calculus, we refer
to placing t and u in a coequation as “cutting t against u”.

The definition of the dualization operation on types is given by recursion
in Figure 4. Note that in the first clause, α⊥ on the left-hand side means the
application of the dualization operation to the type variable α, but on the right-
hand side it means the basic “dual variable” type also written α⊥; the fact that
the operation is defined this way for variables resolves the ambiguity that would
otherwise exist between the two interpretations of “α⊥”. Similarly, on the left-
hand side of the second clause, α⊥⊥ means the application of the dualization
operation to a “dual variable” type.

It is not too hard to see that this operation is in fact an involution—that is,
A⊥⊥ = A for all A. With a little thought, this shows that it is actually as valid maybe also

say some-
thing about
type con-
structors
coming in
dual pairs?

2What I call “programs” here are called “proof expressions” in Abramsky.

3

α⊥ = α⊥

α⊥⊥ = α

1⊥ = ⊥
⊥⊥ = 1

(A⊗B)⊥ = A⊥ `B⊥

(A`B)⊥ = A⊥ ⊗B⊥

(A&B)⊥ = A⊥ ⊕B⊥

(A⊕B)⊥ = A⊥ &B⊥

(!A)⊥ = ?(A⊥)

(?A)⊥ = !(A⊥)

(∀α.A)⊥ = ∃α.(A⊥)

(∃α.A)⊥ = ∀α.(A⊥)

Figure 4: The dual of each type.

to say that A⊥ is the type of things that As can eliminate as it is to say that
A⊥ is the type of things that can eliminate As! This means that if t ⊥ u makes
sense, then so does u ⊥ t—if u’s type is dual to t’s type, then t’s type is dual to
u’s type. Indeed, one of PE2’s basic congruence rules is swapping the sides of a
coequation! So in t ⊥ u, we can actually think either of u as the subject acting
on the object t to eliminate it, or vice versa—whichever is most convenient or
makes the most sense for the case at hand. Alternatively, we can imagine the
reduction of a coequation as something akin to the annihilation of a particle
and an antiparticle, although this is harder to understand by comparison to is this too

cutefamiliar languages. Because of this symmetry, we will not generally distinguish
between “cutting t against u” and “cutting u against t” as ways of referring to
the construction of t ⊥ u or u ⊥ t.

These notions of “subject” and “object” will be a running theme. To fully this is at
the intuitive
level

understand a value of type A, we should ideally understand both what it means
when viewed as the acted-open object of a coequation (in which case something
of type A⊥ will act upon it), and what it means when viewed as the acting
subject of a coequation (in which case it will act upon something of type A⊥).
The former is more akin to how values are usually thought of, but the latter is
equally (if not more!) critical in this framework.

We now look at our first concrete example of these phenomena in the form
of the additives, & and ⊕, beginning from the object perspective for each. We
defer the actual typing rules until later, because they involve concepts that we
have not yet seen.

4

A&B is the type of lazy pairs of A and B. A value of this type contains a kind
of thunk for producing an A and one for a B. This is what the x1 . . . xn(P Q)
term form is for. However, we have not yet discussed the language features
necessary to understand the significance of the full syntax, so we will for now
only consider the simplest case, when the thunks are already values, in which this feels like

a vaguely
dishonest
description?

case this construct takes the form (; t ;u), where t has type A and u has type
B. Ultimately, the user of such a pair must request one of the two elements (at
which point the thunk is forced) and discard the other; they cannot take both.

A ⊕ B is the disjoint union of A and B; its values look like inl(t) for t of
type A and inr(u) for u of type B. The user of such a value must be prepared
to eliminate either an A or a B.

We now turn to the subject perspective. Figure 4 states that (A & B)⊥ =
A⊥⊕B⊥, so a value of A&B viewed as a subject should eliminate objects of type
A⊥⊕B⊥. This is realized as follows: personifying slightly, the subject examines
the object to check whether it is an inl(t) or an inr(u). In the inl(t) case, t is an
A⊥, so the subject computes its own first element, an A, and discards its own
second thunk. Then the computed A is tasked with continuing to eliminate t.
The inr(u) case is largely similar, except that the second element is computed
instead.

This can be summarized by saying that, viewed as a subject, a value of
A & B is a case or match statement; intuitively speaking, v ⊥ (; t ;u) means
something like

case v of {inl(t′) → t′ ⊥ t | inr(u′) → u′ ⊥ u}.

The two elements of its object role correspond to the two branches of the state-
ment, the laziness corresponds to the fact that branches of a statement are not
evaluated until they are encountered, and the fact that only one of the two
elements may be retrieved corresponds to the fact that only one of the two
branches is taken.

Inverting the subject-object relationship, Figure 4 has (A⊕B)⊥ = A⊥&B⊥,
and a value of A ⊕ B as a subject should eliminate objects of type A⊥ & B⊥.
For inl(t) with t an A, this is realized by projecting out the first element of
the object and then tasking t with eliminating it; for inl(u), similarly with the
second element. Thus, a value of A⊕B as a subject is a projection: intuitively,
v ⊥ inl(t) means v.1 ⊥ t and v ⊥ inr(u) means v.2 ⊥ u.

Both of these perspectives are viewpoints on one symmetrical system. We
will not yet look at the full reduction rules for these types, since we have not
yet discussed the full syntax for & terms, but the special cases of those rules for
the special cased syntax we have considered are

(; t ;u) ⊥ inl(v) −→ t ⊥ v (Case Left)
(; t ;u) ⊥ inr(v) −→ u ⊥ v. (Case Right)

5

4 Programs and variables
In PE2, coequations and terms always appear within a program. As described
in Figure 3, a program in PE2 consists of a (possibly empty) sequence of coequa-
tions, called its solution3, separated by a semicolon from a (possibly empty)4

sequence of terms, called its main body. Rules like Case Left and Case Right
that simplify a coequation or sequence of coequations into a coequation or se-
quence of coequations are called reaction rules, and PE2 provides a reaction
context rule that allows them to be applied within the solution of a program:

Θ −→ Ξ
(Reaction Context)

Θ1, Θ, Θ2; t −→ Θ1, Ξ, Θ2; t

Here Θ1, Θ, Θ2, and Ξ may be instantiated with any sequences of coequations
(so the comma is actually overloaded to mean concatenation here, as is com-
mon), and t may be instantiated with any sequence of terms. We will continue
to use similar names for such metavariables without comment.

PE2 also has congruence rules that allow the sides of a coequation to be
swapped and the coequations of a solution permuted before and after taking a
step. First, there is a relation ⇋ between sequences of coequations defined by am I un-

derestimat-
ing what
counts as
a context?
also, align
the rule cor-
rectly

t ⊥ u ⇋ u ⊥ t

t ⊥ u, t′ ⊥ u′ ⇋ t′ ⊥ u′, t ⊥ u

Θ ⇋ Ξ

Θ1,Θ,Θ2 ⇋ Θ1,Ξ,Θ2

Then, using the equivalence relation ⇋∗ it generates, there is a magical mixing call attn to
thisrule5:

Θ ⇋∗ Θ′ Θ′; t −→ Ξ′; u Ξ′ ⇋∗ Ξ
(Magical Mixing)

Θ; t −→ Ξ; u

In other words: if we can use ⇋ to convert our program’s solution into a form
in which a simplification applies, and then convert the new solution into a final
form, then we can simplify to that final form.
Is there some way I can say “finish this next bit before thinking about any-
thing in it too carefully”?

Having laid this groundwork, we can now address an elephant in the room.
Although I used phrases like “a term t of type A” in the last section, I avoided

3As in chemistry, not algebra—the operational semantics of PE2 draw upon the notion of
a “chemical abstract machine”, with the idea that coequations are like molecules floating in a
solution, and the congruence rules that rearrange coequations are like the Brownian motion
that allows molecules in a solution to come into contact and react.

4Although (as a nontrivial theorem) no program with an empty main body is well-typed.
5This is the technical term.

6

ever writing t : A. This is because terms of PE2 are not, in fact, assigned types
in isolation, and while “a term t of type A” is therefore misleading, the notation
t : A is downright wrong! Instead, terms must be considered within a program okay maybe

this is a
little too
cute and not
quite accu-
rate

before they can be given a type. A typing judgment looks like

clarify
phrasing
maybe?
who’s my
audience?

` Θ; t1 : A1, . . . , tn : An.

We can see that types are assigned to terms of a program’s main body jointly—
a typing judgment is a simultaneous claim about all of the terms in the main
body at once. Furthermore, this does not just mean that each individual vi :
Ai is separately true, even on an intuitive level—each vi : Ai is a statement
contingent on the fact that vi is part of the overall program in the judgment.
The simplest explanation for this is that the various terms of a program may be

and not en-
tirely truth-
ful. does
this add
much?

linked together, and so they will not function correctly as their claimed type if
they are removed from their context. This arises from the behavior of variables
in PE2, whose basic typing rule is

(Variable)
` ; x : A⊥, x : A

Since A⊥⊥ = A, by substituting A⊥ for A we also have

(Variable)
` ; x : A, x : A⊥

The rest of the typing rules of PE2 continue to ensure that any given variable
that appears in a program will always have exactly 2 occurrences. The idea is
that these occurrences constitute the two endpoints of a kind of “connection”.
We will turn to the reduction rules next before coming back to the typing rule;
do not worry too much about its meaning until then.

t ⊥ x, x ⊥ u −→ t ⊥ u (Communication)
x ⊥ t, Θ; u −→ Θ; u[t/x] (if x occurs substitutable6 in u) (Cleanup)

Note that although Communication appears to be limited in that it cannot
apply to non-adjacent coequations, the existence of the Mixing rule means that
this limitation is only apparent, since any two coequations can be moved next
to each other prior to simplification. Similarly, one can apply Cleanup to a
coequation other than the first by permuting the solution so that the desired
one is now at the beginning.

Let us examine the meaning of these reduction rules in the subject/object
framework. In the case of Communication, we can view the simplification as sth about

being only
intuition?
value of
mentioning
symmetry?

either a fusion or as one of the coequations terminating and the other being
updated. The former is more amenable to a symmetrical viewpoint; the latter
is more amenable to the asymmetrical notion of a variable as a subject or object,

6It is possible for a variable to occur in a term without it being possible to substitute for
it if it occurs as one of the variables in front of x1 . . . xn(P Q) or x1 . . . xn(P) rather than
as a subterm. Such an occurrence is said to be passive; others are active.

7

and so it is the one we will consider—in particular, we will imagine that the
activity of the rule takes place in the first coequation, and that the effects to
the second are byproducts of this. Then if x is the subject of the coequation
t ⊥ x, Communication expresses that one way it may accomplish its task of
eliminating t is by transferring it to the location of the other occurrence of
x, thereby delegating the task to u. This completes the purpose of the first
coequation, at which point it evaporates, and we are left only with t ⊥ u. If x
is instead seen as the object of t ⊥ x, then Communication expresses that x can
provide a value by finding another coequation x ⊥ u that the other occurrence
of x is in, removing that coequation, and stealing its other side u, once again
leaving only t ⊥ u. In any of these cases, we see a behavior where the two
occurrences of a variable act together as a kind of proxy to connect t to u.

Cleanup is slightly less symmetric, and it is difficult to interpret the variable
in its coequation as anything other than a subject. x’s behavior as a subject
here is basically similar to the account given for Communication: it moves t
to the location of the other occurrence. Note that since there can be only
one other occurrence in a well-typed program, and Cleanup is only applicable
if that occurrence is in the main body, there is at no point a choice between
applying Cleanup and Communication (since Communication requires there to
be another occurrence in the solution). The substitution in Cleanup will also
only cause an actual change in at most one term of the main body, since exactly
one term can include the exactly one other occurrence of x.

Returning to the typing rule, we can now see that ` ; x : A⊥, x : A expresses
any of the following equivalent facts:

• the first x can eliminate an A, at the cost (or perhaps benefit) of the
second x needing to be treated as a potential A;

• the first x can be treated as a potential A⊥, at the cost (or perhaps benefit)
of the second x needing to eliminate an A⊥;

• the second x can eliminate an A⊥, at the cost (or perhaps benefit) of the
first x needing to be treated as a potential A⊥;

• the second x can be treated as a potential A, at the cost (or perhaps
benefit) of the second x needing to eliminate an A.

However, none of this makes sense anymore if the individual occurrences are con-
sidered in isolation, rather than assigning types to both of them simultaneously—
hence (one part of) the fundamental need for a simultaneous typing judgment.

Having seen the functionality carried by variables, we can now examine the
form of programs more closely. Since terms have no reduction rules, the main
body is “inert”; all of the computation takes place in the solution. However, the
Cleanup rule allows this action in the solution to cross over and cause a term
to be substituted into the main body, if the two occurrences of a variable are
on opposite sides of the semicolon. With a few exceptions, the coequations of a
well-typed program can generally continue to simplify up until they disappear,
so many programs will finish only once the solution is empty. Thus, the main

8

body is the output of the program, and the coequations produce useful results
from a distance by replacing holes in the output (occurrences of variables) with
values, via the Cleanup rule.

In general, a judgment like ` Θ; t : A, u : B, v : C indicates that:

1. each of t, u, and v is an “incomplete” value, of type A, B, and C respectively—
incomplete in the sense that some of their subterms may be variables only in that

sense?instead of standalone values;

2. some of those incompletenesses can be resolved by allowing the coequa-
tions in Θ to execute and deposit results into the main body;

3. any remaining incompletenesses “complement each other”, such that t, u,
and v can all be used in coequations as their claimed types in spite of the
missing portions, by “cooperating with each other” to accomplish their
tasks.

We have now seen enough of the language to appreciate the real typing rules
for coequations, inl(), inr(), and the “exchange rules” which allow terms and
coequations in a program to be permuted in order to assign types, although we
will continue to wait on a full examination of & until after some more ground
has been covered. In what follows, Γ and ∆ are used as metavariables that may
be instantiated with any sequences of term-type pairs like t1 : A1, . . . , tn : An. talk @ some

point about
the pur-
pose of the
exchange
rules?

` Θ; Γ, t : A ` Ξ; ∆, u : A⊥
(Coequation) (†)

` Θ, Ξ, t ⊥ u; Γ, ∆

` Θ; Γ, t : A
(Plus (i))

` Θ; Γ, inl(t) : A⊕B

` Θ; Γ, t : B
(Plus (ii))

` Θ; Γ, inr(t) : A⊕B

` Θ, t ⊥ u, t′ ⊥ u′, Ξ; Γ
(Xchg (i))

` Θ, t′ ⊥ u′, t ⊥ u, Ξ; Γ

` Θ; Γ, t : A, u : B, ∆
(Xchg (ii))

` Θ; Γ, u : B, t : A, ∆

The (†) next to the coequation rule indicates that an important side condition
must hold when it is instantiated in order for it to be considered a valid usage:
no one variable may appear in both of the programs in the premises. Placing this
side condition on each rule with multiple premises ensures the aforementioned
property that a variable can only appear exactly twice in a well-typed program
if it appears at all, because variables are introduced in pairs and rules that
combine programs together preserve the property.

One might expect the rule for coequations to instead look something like

` Θ; Γ, t : A, u : A⊥
(Not a real rule)

` Θ, t ⊥ u; Γ

9

However, this would allow undesirable programs to be typed! The simplest
example is

(Variable)
` ; x : A⊥, x : A

(Fake Coequation)
` x ⊥ x;

This program cannot simplify. At a deeper level, the problem is that, as de-
scribed above, the terms in the main body of a program are incomplete and only
able to be used in a coequation as their listed type insofar as they can rely on
the other terms of the main body as “collaborators”. If one of the terms is cut
against a term from another program, this is well and good; but if a coequation
is built out of two terms that already rely on each other, this can create a kind
of “dependency loop” where each needs to be able to offload the task on the
other. Since we regard variables as a means of proxying between two terms
in our intuitive framework, we can see this effect fairly clearly in the program
above; each x in x ⊥ x is attempting to call on the other occurrence of x, and
in doing so, is attempting to delegate to itself. We avoid this kind of trap by
insisting that the terms of a coequation be typed independently of each other,
with disjoint sets of dependencies.

5 The multiplicatives
This whole section is pretty drafty & needs a lot of feedback & work.

With this understanding of potential “communication” and “dependency”
between terms, we can now turn to our next dual pair of type constructors: I never did

talk about
constructors
coming in
pairs...

the multiplicatives ⊗ and `. From the object viewpoint, A ⊗ B is the type of
strict pairs of A and B; a value of this type contains an A value and a B value,
and the user of the A ⊗ B must accept both, in contrast with &. A ` B, in
turn, is the type of incomplete pairs of A and B; a value of this type contains
an A value and a B value, but which are permitted to together have the kind
of “complementary incompleteness” discussed above. Before giving any further
explanations, however, I will set down the actual typing and reduction rules so
that I can give concrete examples:

` Θ; Γ, t : A ` Ξ; ∆, u : B
(Tensor) (†)

` Θ, Ξ; Γ, ∆, t⊗ u : A⊗B

` Θ; Γ, t : A, u : B
(Par)

` Θ; Γ, t` u : A`B

t⊗ u ⊥ t′ ` u′ −→ t ⊥ t′, u ⊥ u′ (Pairing)

Note that the same side condition about no shared variables as in the coequa-
tion rule applies to the ⊗ typing rule.

10

For both A ⊗ B and A ` B, a term contains a subterm of type A and a
subterm of type B. However, the typing rule for ⊗ requires that the two terms
be defined in separate programs before being brought together, whereas the rule
for ` requires that they come from the same program. Thus, the components
of a ⊗ term are “independent” of one another, can be individually regarded as
values in their own right7, and can, for example, be cut against each other. By
contrast, the components of a ` term cannot in general be separated from each
other, and broadly share characteristics with the terms of a program’s main
body. It is best, therefore, not to think of ` as a type of pairs, even if its terms
have two components. For example, the following typing derivation works for
any choice of A:

(Variable)
` ; x : A⊥, x : A

(Par)
` ; x` x : A⊥ `A

By contrast, inverting the typing rule for ⊗ shows that ` ; t⊗u : A⊥⊗A would
require independently ` ; t : A⊥ and ` ; u : A, which is far more in line with
how types of pairs are usually understood.8 umm, maybe

this isn’t
self-evident?

We have (A⊗B)⊥ = A⊥`B⊥ and (A`B)⊥ = A⊥⊗B⊥. The subject view-
point on ⊗ and `, and the duality between them, is closely related to the earlier
discussion about the form of the typing rule for coequations and the hazard of
“dependency loops”. As a subject, an A⊗B eliminates an A⊥ `B⊥ by tasking
each of its components with independently eliminating the corresponding half
of the `. This will work in spite of the fact that the components of the ` are
incomplete, because of the previously-described notion that their incomplete-
nesses are “complementary” in a way that allows cooperation to compensate for
them, once the terms are put to actual use. In order for this to succeed, the
characteristic independence between the two components of the ⊗ is critical:
since the halves of the ` may perform “delegation” through one another, and
each is being eliminated by half of the ⊗, the two halves of the ⊗ are liable
to being delegated against each other, and so they must be independent. As
an extreme example, consider again the term x ` x and what happens when
something of the form t⊗ u tries to eliminate it:

t⊗ u ⊥ x` x −→ t ⊥ x, u ⊥ x ⇋ t ⊥ x, x ⊥ u −→ t ⊥ u.

This will end poorly if t and u rely on each other!
An A`B as a subject likewise eliminates an A⊥⊗B⊥ by matching component

to component, but in this viewpoint, it is the two subjects which are entitled
7Of course, they may still be interdependent with other terms of the main bodies of their

respective originating programs if there are any, but at a minimum they do not share any
variables with each other.
uhh, that’s true, right? also: can I make some kind of stronger statement
about “safety to treat something as a value from a given viewpoint”

8Actually, it is impossible to write any program Θ; t with ⊢ Θ; t : A⊥ ⊗ A, even for
particular A—that would correspond to being able to prove a contradiction in linear logic!

11

to “cooperate”. Once again, this is safe because of the independence of the
components of the ⊗.

Another, arguably more useful viewpoint on the multiplicatives comes from
the notion of the linear function type A ⊸ B, which is defined to be shorthand
for A⊥ ` B. The key shift in perspective is as follows: when thinking of t ` u
as having type A ⊸ B rather than type A⊥ ` B, we generally view it as an
object—a function (from A to B)—but rather than thinking of its components
t and u as both objects, we see t as a subject and u as an object. Conversely,
when thinking of t′⊗u′ as having type (A ⊸ B)⊥ rather than type A⊗B⊥, we
generally view it as a subject—a function call awaiting a function to be attached
to—but rather than thinking of its components t′ and u′ as both subjects, we
see t′ as an object and u′ as a subject. We conceptualize each piece as follows:

• t, of type A⊥, is a subject whose role is to eliminate the argument supplied
to the function t` u.

• u, of type B, is an object whose role is to be the result of the function
t ` u. The fact that we have t ` u rather than t ⊗ u means that t and u
can be linked, so as t eliminates an argument, it can update u, much like
how the main body of a program can be updated by coequations using
the Cleanup rule. This allows the result of the function to depend on the there are

some im-
portant
differences—
how should
I talk about
them?

argument.

• t′, of type A, is an object whose role is to be the argument to the function
being called.

• u′, of type B⊥, is a subject whose role is to eliminate the result of the
function once it returns. It is important that we have t′ ⊗ u′ rather than

”once it re-
turns” really
doesn’t de-
scribe the
shape of
PE2’s exe-
cution...

t′ ` u′, because otherwise the argument to the function could depend in
some way on the result of the call, which could create dependency cycles.

If we analogize values of type A⊥ to patterns that can match and destructure

maybe I
should in-
troduce this
concept ear-
lier?!!

values of type A9, then in this reading t`u becomes analogous to λt.u. In turn,
the action in t′ ⊗ u′ ⊥ v is analogous to u′ ⊥ v(t′). If we apply both of these
analogies, then the reduction Pairing rule looks like

u′ ⊥ (λt.u)(t′) −→ t′ ⊥ t, u′ ⊥ u,

which is quite close in flavor to β-reduction. The resulting t′ ⊥ t is in some sense
the processing due to the function consuming its argument, and the u′ ⊥ u is
in some sense the processing due to the caller consuming the function result.
The shared variables between t and u allow these two pieces of processing to
interact.

Under this interpretation, the recurring example of x` x in A⊥ `A reveals
itself as the identity function in A ⊸ A. The previously-mentioned simplifica-
tion

t⊗ u ⊥ x` x −→ t ⊥ x, u ⊥ x ⇋ t ⊥ x, x ⊥ u −→ t ⊥ u

9Although this analogy breaks down slightly when one tries to interpret, e.g., & as a
“pattern” for ⊕.

12

in fact demonstrates why: if t is the argument and u is the consumer of the
result, then the call reduces to u acting directly on t—i.e., x ` x has simply
returned its argument!

Some examples to chew on are given in Figure 5. The first four can be Need some
simplifica-
tion exam-
ples too.

loosely analogized to terms in a lambda calculus with pattern matching by the
scheme above. In order to interpret t′ ⊗ u′ in its function-call role as a pattern
to match arguments of function type against, we will need our lambda calculus
to support an unorthodox feature somewhat akin to Haskell’s view patterns: if
e is an expression and p is a pattern, we have a pattern e 7→ p, and a function f
can be matched against e 7→ p by taking f(e) and matching it against p. That
is, e 7→ p is a pattern for functions that map e to something matching p. Then
we have the following rough analogies:

` ; x` inl(x) : A ⊸ A⊕B ∼
` λx.inl(x) : A → A+B

` ; inl(x)` x : A&B ⊸ A ∼
` λ(x,_).x : A×B → A

` ; x` y ` (x⊗ y) : A ⊸ B ⊸ A⊗B ∼
` λx.λy.(x, y) : A → B → A×B

` ; x` (inr(x)⊗ y)` y : B ⊸ (A⊕B ⊸ C) ⊸ C ∼
` λx.λ(inr(x) 7→ y).y : A → (A+B → C) → C

The fifth example, however, is a trap! It is meant to illustrate a danger in
taking the analogies above too literally. Although it is only a slight tweak of
the fourth example, if we try to apply a similar “translation” to it, we get the
following nonsense:

` ; (inr(x)⊗ y)` x` y : (A⊕B ⊸ C) ⊸ B ⊸ C ∼
` λ(inr(x) 7→ y).λx.y : (A+B → C) → A → C

x gets used out of scope! This danger arises because most things in PE2 are
fundamentally symmetric, while most of the analogies I have presented rely on
selectively choosing an asymmetric perspective, and in particular, the notion
of a function has a clear sense of directedness. In a lambda calculus, variables
are bound in a pattern and used in an expression, so it is clear that there is
a violation above, since the occurrence as a use appears before the occurrence
as a binding. But PE2 has no such distinction! Neither occurrence of x in
(inr(x) ⊗ y) ` x ` y is technically “binding”, and in fact either can cause the
other to be replaced with something else.

13

Probably make a note of associativity; could be a source of confusion!

(Variable)
` ; x : A⊥, x : A

(Plus (i))
` x : A⊥, ; inl(x) : A⊕B

(Par)
` ; x` inl(x) : A ⊸ A⊕B

(Variable)
` ; x : A, x : A⊥

(Plus (i))
` ; x : A, inl(x) : A⊥ ⊕B⊥

(Xchg (ii))
` ; inl(x) : A⊥ ⊕B⊥, x : A

(Par)
` ; inl(x)` x : A&B ⊸ A

(Variable)
` ; x : A⊥, x : A

(Variable)
` ; y : B⊥, y : B

(Tensor)
` ; x : A⊥, y : B⊥, x⊗ y : A⊗B

(Par)
` ; x : A⊥, y ` (x⊗ y) : B ⊸ A⊗B

(Par)
` ; x` y ` (x⊗ y) : A ⊸ B ⊸ A⊗B

(Variable)
` ; x : B⊥, x : B

(Plus (ii))
` ; x : B⊥, inr(x) : A⊕B

(Variable)
` ; y : C, y : C⊥

(Tensor)
` ; x : B⊥, y : C, inr(x)⊗ y : (A⊕B)⊗ C⊥

(Xchg (ii))
` ; x : B⊥, inr(x)⊗ y : (A⊕B)⊗ C⊥, y : C

(Par)
` ; x : B⊥, (inr(x)⊗ y)` y : (A⊕B ⊸ C) ⊸ C

(Par)
` ; x` (inr(x)⊗ y)` y : B ⊸ (A⊕B ⊸ C) ⊸ C

(Variable)
` ; x : B⊥, x : B

(Plus (ii))
` ; x : B⊥, inr(x) : A⊕B

(Variable)
` ; y : C, y : C⊥

(Tensor)
` ; x : B⊥, y : C, inr(x)⊗ y : (A⊕B)⊗ C⊥

(Xchg (ii))
` ; x : B⊥, inr(x)⊗ y : (A⊕B)⊗ C⊥, y : C

(Xchg (ii))
` ; inr(x)⊗ y : (A⊕B)⊗ C⊥, x : B⊥, y : C

(Par)
` ; inr(x)⊗ y : (A⊕B)⊗ C⊥, x` y : B ⊸ C

(Par)
` ; (inr(x)⊗ y)` x` y : (A⊕B ⊸ C) ⊸ B ⊸ C

Figure 5: Sample terms with typing derivations that make use of the multiplica-
tive types.

14

6 Full &
Even draftier.
Should probably talk somewhere in here about how & breaks cut-free-ness
of canonical forms, and the active occurrence condition on the Cleanup rule.

We are finally in a reasonable position to discuss the full functionality of &.10

We first lay out the issue that needs to be addressed. In a pair like ⊗, the two
components must come from separate programs and can share no dependencies,
because they must both be usable independently and simultaneously. In a &,
there need not be any such restriction; since only one of the two components
will ever be used, both can theoretically be linked to the same dependencies
without problem. Thus, we might imagine a syntax like t u where t and u are
terms, with a typing rule like

` Θ; Γ, t : A ` Θ; Γ, u : B
(Not a real rule) (†)

` Θ; Γ, t u : A&B

However, for technical reasons, such as the desirable property that a variable
appears in a program exactly twice, it is not as simple as just requiring both
halves to be well-typed within the program that the full &-term appears in.
Instead, we pass through some indirection. Recalling Figure 2, the full syntax
for &-terms is actually x1 . . . xn(P Q), where P and Q are programs. Having
previously described the components of such a term as thunks, we can see that
the solutions of P and Q are the deferred computations in question. However,
this leaves the question of why there is a full multi-term main body in each
half, and what the variables at the beginning are for! In fact, this is precisely
the means by which the indirection is accomplished. The typing constrains the
main bodies of P and Q to have n+1 terms, where n is the number of variables
at the beginning. The final term in the main body of each half is the actual
result of the thunk. The first n terms are a kind of “linking interface”; since
they are in the main body of a program with the final term, the final term
may be linked to them. Then, they can be linked to in the rest of the program
outside of the &-term by referring to the variables at the beginning of the term.
Intuitively, each xi binds a means of referring to “the future ith item of the
selected component’s main body”, deferred until the &-term is actually used
and a component is selected, and thus indirectly a means of interfacing with the
final term of the body.

Here are the full rules. In the typing rule, x is to be instantiated with a
list of variables distinct from any occurring in either of the premises; C is to be
instantiated with a list of types; t, u, x, and C must be the same length; and
x : C is to be expanded as x1 : C1, . . . , xn : Cn.

` Θ; t : C, t : A ` Ξ; u : C, u : B
(With) (†)

` ; x : C, x(Θ; t, t Ξ; u, u) : A&B

10Strictly, this section could go directly after the one on variables and programs, but it is
helpful to gain some perspective from the multiplicatives first.

15

This typing rule is a bit unusual in that it prescribes the form of the entire
program in the conclusion, rather than just one or two of its terms or coequa-
tions. This means that a typing derivation for a program containing a &-term
must “isolate” it before using the (With) rule. We will go over some examples
shortly.

In the reduction rules, x ⊥ t is to be expanded as x1 ⊥ t1, . . . , xn ⊥ tn.

x(Θ; t, t Ξ; u, u) ⊥ inl(v) −→ Θ, x ⊥ t, t ⊥ v (Case Left)
x(Θ; t, t Ξ; u, u) ⊥ inr(v) −→ Ξ, x ⊥ u, u ⊥ v (Case Right)

In one of these reductions, 3 things happen.
1. The coequations from the selected “thunk” are “released into the solution”, this is a di-

rect Abram-
sky quote!
(albeit in
reference to
a different
thing)

making them now subject to computation.

2. The final term of the selected “thunk” is cut against the term from the ⊕.
This is just the content of our previous simplified understanding.

3. Some coequations are generated from the x and t. To understand this,
consider the context of the larger program the coequation being simplified
exists within. The x variables are used elsewhere as “advance references”
to whichever of the t or u is picked. Since this reduction is precisely
the point at which one is picked, the “advance references” must now be
resolved. This is accomplished by the addition of these coequations, which
we can see as binding each xi to each ti or ui.

Let’s take a look at a typing derivation.

(Variable)
` ; r : B, r : B⊥

(Plus (i))
` ; r : B, inl(r) : A⊥ ⊕B⊥

(Xchg (ii))
` ; inr(r) : A⊥ ⊕B⊥, r : B

(Variable)
` ; l : A, l : A⊥

(Plus (i))
` ; l : A, inl(l) : A⊥ ⊕B⊥

(Xchg (ii))
` ; inl(l) : A⊥ ⊕B⊥, l : A

(With)
` ; p : A⊥ ⊕B⊥, p(; inr(r), r ; inl(l), l) : B &A

(Par)
` ; p` p(; inr(r), r ; inl(l), l) : A&B ⊸ B &A

…

7 The units
How do I explain these ;_;

(One)
` ; ∗ : 1

` Θ; Γ
(Bottom)

` Θ; Γ, ∗⃝ : ⊥

∗ ⊥ ∗⃝ −→ (Unit)

16

8 Interlude: Fixed-width integers
Gotta reorganize so that I’ve introduced the units by the time we’re here.

We now have enough types and operations to carry out a medium-size ex-
ample: we will define addition on fixed-width binary integers. We begin by
defining a type of booleans and the “true” and “false” terms:

2 ≜ 1⊕1

tt ≜ inl(∗)
ff ≜ inr(∗)

We then have ` ; tt : 2 and ` ; ff : 2. The simplest nontrivial function on
booleans is negation, and it is defined as follows:

not ≜ o(; ff , ∗⃝ ; tt, ∗⃝)` o

(known)
` ;ff : 2

(Bottom)
` ; ff : 2, ∗⃝ : ⊥

(known)
` ; tt : 2

(Bottom)
` ; tt : 2, ∗⃝ : ⊥

(With)
` ; o : 2, o(; ff , ∗⃝ ; tt, ∗⃝) : ⊥&⊥

(Xchg (ii))
` ; o(; ff , ∗⃝ ; tt, ∗⃝) : ⊥&⊥, o : 2

(Par)
` ; o(; ff , ∗⃝ ; tt, ∗⃝)` o : 2 ⊸ 2

Unpacking this:

switch on the argument︷ ︸︸ ︷
o(; ff︸︷︷︸

becomes o

, ∗⃝︸︷︷︸
eliminates the 1 in arg︸ ︷︷ ︸

“arg is tt” branch

; tt, ∗⃝︸ ︷︷ ︸
“arg is ff” branch

)`
return forward reference︷︸︸︷

o

Rigorously speaking, we now cannot use not more than once in a program, or
in a program that uses the variable name o already for something else; but in
practice, we shall use a convention that whenever we define a name for a term
or program, all future uses of this name in building larger terms or programs
will carry an implicit operation of variable freshening to ensure no conflicts and
to allow multiple uses. motivate

betterHere is what happens if “not” is applied to, say, tt, using the variable r to
capture the output:

I should
probably ex-
plain that
concept
somewhere,
huh

17

(known)
` ; tt : 2

(Variable)
` ; r : 2, r : 2⊥

(Tensor)
` ; r : 2, tt⊗ r : 2⊗ 2⊥ (known)

` ; not : 2 ⊸ 2
(Coequation)

` tt⊗r ⊥ not; r : 2

tt⊗r ⊥ not; r
(Pairing)−−−−−−→ tt ⊥ o(; ff , ∗⃝ ; tt, ∗⃝), r ⊥ o; r ⇋∗

o(; ff , ∗⃝ ; tt, ∗⃝) ⊥ tt, r ⊥ o; r
(Case Left)−−−−−−−→ o ⊥ ff , ∗⃝ ⊥ ∗, r ⊥ o; r ⇋∗

∗ ⊥ ∗⃝, r ⊥ o, o ⊥ ff ; r
(Unit)−−−−→ r ⊥ o, o ⊥ ff ; r

(Communication)−−−−−−−−−−−→ r ⊥ ff ; r

(Cleanup)−−−−−−→ ; ff

Next, we define the type FWk for k ≥ 0 as the k-fold ⊗-power of 2: this is too
wide. also:
note on im-
portance of
working thru
this

FW0 ≜ 1

FWk+1 ≜ FWk ⊗ 2

Thus, FWk is the type of k-tuples of booleans. If we further identify tt with 1
and ff with 0, we can see these as bitstrings of length k, and hence use them
to represent elements of Z/2kZ. For example, we can represent 10 as a term in
FW6 = (((((1⊗2)⊗ 2)⊗ 2)⊗ 2)⊗ 2)⊗ 2 by:

` ; (((((∗ ⊗ ff)⊗ ff)⊗ tt)⊗ ff)⊗ tt)⊗ ff : FW6

We will abbreviate this to just ` ; 001010 : FW6 for convenience. wait, we
don’t really
use this

By recursion on k, we define:

zero0 ≜ ∗
zerok+1 ≜ zerok ⊗ff

So for example, zero6 is 000000, in our shorthand. For each k, we have:

` ; zerok : FWk

We then define the successor operation, suck, with the intent that ` ; suck :
FWk ⊸ FWk. In the case of FW0, this is just the identity, since there is only
one zero-width integer.

suc0 ≜ x` x

suck+1 ≜ (

high bits︷︸︸︷
h `ho(

case for low bit 1︷ ︸︸ ︷
suck ⊥ h1 ⊗ h′

1︸ ︷︷ ︸
“h′

1 = suck(h1)”

;

“h in branch 1”︷︸︸︷
h1 , h′

1 ⊗ ff , ∗⃝

case for low bit 0︷ ︸︸ ︷
;

“h in branch 2”︷︸︸︷
h2 , h2 ⊗ tt, ∗⃝))` o

Finally, we can define full addition. Writing out a direct term for the addition
function addk+1 would involve two occurrences of addk as subterms, one on each

18

side of a &-term, which would cause a combinatorial explosion of the size of the
term in practice. To avoid this, we will place one occurrence of it outside of
the &-term and then make reference to it from inside by means of the “forward
reference” variables. However, in order to accomplish this, we will need to define
some programs rather than terms. For each k ≥ 0, we define a solution addΘk
and a term addtk, such that ` addΘk ; addtk : FWk ⊸ FWk ⊸ FWk.

addΘ0 ; addt0 ≜ ; ∗⃝ ` x` x

addΘk+1; addtk+1 ≜ addΘk ,

”r(x) = addt
k(ah, x)”︷ ︸︸ ︷

addtk ⊥ ah ⊗ r; (ah︸︷︷︸
high bits of arg a

`
switch on low bit of arg a︷ ︸︸ ︷

bro(P Q))` b` o

where P ≜ suck ⊥ b1 ⊗ (

high and low bit[s] of b + 1︷ ︸︸ ︷
b′h1 ` b′l1); b1, b

′
h1 ⊗ oh1︸ ︷︷ ︸

becomes “call to” r

, oh1 ⊗ b′l1, ∗⃝

where Q ≜ ; bh2 ` bl2, bh2 ⊗ oh2︸ ︷︷ ︸
becomes “call to” r

, oh2 ⊗ bl2, ∗⃝

am I sure
that this is
well-typed?9 Type variables and the quantifiers

Hmm, doing an awful lot of casual assumption about familiarity on the part
of the reader here...

PE2 has support for parametric polymorphism; its level of power is roughly
on par with System F. This is accomplished using the type variables, dual type reference

some kind of
tutorial on
System F for
readers who
aren’t famil-
iar, maybe?
am I past
the point
of trying
to target
people who
might not
know what
System F is?

variables, and quantifiers. Type variables play a familiar role; the purpose of
dual type variables is to allow reference to the dual of a quantified-over type.
Their existence introduces one minor subtlety worth noting: capture-avoiding
substitution of a type for a type variable is defined in the case of dual variables
by

α⊥[A/α] = A⊥.

The remainder of the definition is utterly conventional.
A term of type ∀α.A is a term which is usable as type A[B/α] for all choices

of B. A term of type ∃α.A is a term which is usable as type A[B/α] for some
choice of B. So a term with a ∀ type is one which is parametrically polymorphic,
while a term with an ∃ type has no special properties, but could be any of a
wider range of things than something with a more concrete type. There are no
special term forms for these types; it is simply possible to generalize or abstract
the type of any term.11 The rules for doing so are:

` Θ; Γ, t : A
(All) (∗)

` Θ; Γ, t : ∀α.A
` Θ; Γ, t : A[B/α]

(Exists)
` Θ; Γ, t : ∃α.A

11That is, PE2 uses Curry-style rather than Church-style type quantifiers.

19

The “(∗)” next to the (All) rule indicates the standard restriction that α must
not occur free in any other type from Γ. This prevents us from generalizing
types that must match other types; for example, we would like to allow the first
of these derivations but not the second:

(Variable)
` ; x : α⊥, x : α

(Par)
` ; x` x : α ⊸ α

(All)
` ; x` x : ∀α.α ⊸ α

(Variable)
` ; x : α⊥, x : α

(All)
` ; x : α⊥, x : ∀α.α

(Par)
` ; x` x : α ⊸ ∀α.α

Because there are no special term forms, there are no associated reduction rules
either. We do have (∀α.A)⊥ = ∃α.(A⊥) and (∃α.A)⊥ = ∀α.(A⊥), but the
existing reduction rules can already handle any coequation between terms with
these types! If we have t ⊥ u with t from ∃α.A and u from ∀α.(A⊥), then there
is some B such that t can instead be regarded as having type A[B/α]. We can wait, is that

rigorously
true?

further safely use u as type (A⊥)[B⊥/α], since it is a ∀, and this is fairly easily
equal to A[B/α]⊥. Then whatever rules exist for coequations between A[B/α]

double check
this!

and A[B/α]⊥ apply here too!

10 The exponentials
D r a f t y
Talk about the failure of A ⊗ B ⊸ A ` B somewhere? Also, would it be
better to bring up values being used exactly once earlier?

PE2 has no fundamental mechanism for duplicating arbitrary values. Vari-
ables let values be moved from one place to another, and values A⊥ let values
of A be used up, but that is all. Indeed, it turns out that we cannot write
any term t with ` ; t : ∀α.α ⊸ α ⊗ α.12 Ultimately, this should be expected:
since terms can have dependencies on other terms, duplicating them may well wait, am I

obfuscat-
ing between
“terms” and
“values”?

be unsafe: if a term is duplicated and then used, its dependencies may be used

...but what
about delet-
ing them?

up or modified as well, meaning that the duplicate will no longer work. That
said, there are types whose values can be duplicated, as an operation specific to
that type. For example:

say some-
thing about
what that
implies
about the
type?

` ; ∗⃝ ` (∗ ⊗ ∗) : 1 ⊸ 1⊗1

` ; o(; tt⊗ tt, ∗⃝ ;ff ⊗ff , ∗⃝)` o : 2 ⊸ 2⊗ 2

In order to support more general and more polymorphic patterns of du-
plication and deletion, PE2 has the final dual pair of types we will examine:
the exponentials, ! and ?. It is easiest to understand values of !A as objects
and those of ?A as subjects, so that is the approach we will primarily take.
A value of !A is, as an object, a safely copyable and deletable factory for

12We do have ⊢ ;x` x(; x1, x1 ; x2, x2) : ∀α.α ⊸ α& α, though! But this doesn’t count
as “duplication”, since we can only get one component back out.

20

As. Dually, a value of ?A = (!(A⊥))⊥ is, as a subject, something that con-
sumes several (or possibly zero) As. Roughly speaking, !A means something
like 1 & A & (A ⊗ A) & (A ⊗ A ⊗ A) & . . . , while ?A means something like
⊥ ⊕ A ⊕ (A ` A) ⊕ (A ` A ` A) ⊕ . . .—except that such a hypothetical “in-
finitary &” would presumably allow different implementations for each choice
of how many As, while duplicates of an !A value are guaranteed to produce the
same A.

We will start with the term constructors and typing rules for ?, because they
are more straightforward. We can build a ?A in one of three ways:

1. We can take an existing t from A and “put it into ?”, which is written ?t
and called “dereliction”. This is a subject which eliminates an !(A⊥) by
requesting only one A⊥, and feeding it to t.

2. We can write _, which is called “weakening”. This is a subject which
discards its object.

3. If we have two interdependent ?As, t and u, we can combine them into
one, which is written t @ u and called “contraction”. This is a subject
which eliminates an !(A⊥) by duplicating it and feeding the copies to t
and u.

Here are the actual typing rules:

` Θ; Γ, t : A
(Dereliction)

` Θ; Γ, ?t : ?A

` Θ; Γ
(Weakening)

` Θ; Γ, _ : ?A

` Θ; Γ, t : ?A, u : ?A
(Contraction)

` Θ; Γ, t@ u : ?A

! has only one kind of term and only one typing rule, but it’s more com-
plicated, so we’ll start with an approximation. The underlying reason why
duplication of arbitrary values is unsafe is that they may have dependencies; so
we could, say, define a kind of term !t and require that for !t to be well-typed,
it must not have any dependencies:

` ; t : A
(Fake Of Course)

` ; !t : !A

This works, but it is more limiting than it needs to be. The critical observation
is that duplication of something with dependencies is still safe if the dependen-
cies are duplicated too; so rather than restricting to no dependencies, we restrict
to only copyable dependencies. This is achieved through the same kind of indi-
rection as in & (which also introduces some laziness): an !-term is of the form

21

x1 . . . xn(P), where the program P has n + 1 terms in its main body in any
well-typed case. As with &, the final term is the “result”: in this case, it will
be the A the !-term is obligated to be able to manufacture. Then, by requiring
P to be self-contained and having all dependencies in the surrounding program
proxied through the first n terms via the “forward reference” variables (again
as in &), we can regulate what kind of dependencies are allowed. In particular:
anything xi eventually gets cut against will have to have a type dual to the ith
term of P ’s main body. So if we restrict the non-result terms of P ’s main body
to have ? types, the external dependencies of the !-term will have to have ! types,
and hence be themselves copyable! The fact that the non-result terms need to
have ? types rather than ! types may make more sense if they are thought of as
subjects that eliminate the dependencies of the result term.

The typing rule for ! is (where ?A means ?A1, . . . , ?An):

` Θ; t : ?A, t : A
(Of Course)

` ; x : ?A, x(Θ; t, t) : !A

This is subject to most of the same notes as (With): t, A, and x should be lists
of terms, types, and variables, respectively, all of the same length; none of x
should already appear in the program; and x : ?A means x1 : ?A1, . . . , xn : ?An.

The first reduction rule is fairly straightforward and analogous to (Case
Left/Right):

x(Θ; t, t) ⊥?u −→ Θ, x ⊥ t, t ⊥ u (Read)

The next one, for _, is a bit subtler. One might expect t ⊥ _ −→, but this is
incorrect! It is not safe to simply discard t; its dependencies must be discarded
as well, and transitively. So we have:

x(P) ⊥ _ −→ x1 ⊥ _, . . . , xn ⊥ _ (Discard)

The new coequations replace the “forward reference to P ’s dependency elimina-
tors” meaning of the xs with a “immediate reference to a deletion eliminator”
meaning.

Finally, we must give a rule for contraction. This is trickier still, especially
since it must involve variable freshening, because it involves duplicating a term,
and that term may involve variables—we do not have the luxury of simply
declaring that freshening is a convention when we are giving actual reduction
rules!

In order to accommodate the need for freshening, one approach we can
take—and (nearly) the one Abramsky takes—is to first say that each variable
name can be split into a base name and a suffix, where the suffix consists of any
trailing αs and βs; for example, x3ααβα has base name x3 and suffix ααβα.13

13Abramsky uses ls and rs rather than αs and βs; but he also fixes some bijection between
variable names and pairs rather than talking about trailing symbols, so his scheme does not
have an issue in the event that he uses variable names l and r, while I do—and I have used
variable names l and r above!

22

Then, if we have a variable name, term, or program z, we write zα to mean the
result of appending a α to the suffix of every variable name in it, and zβ to mean
the result of appending a β to the suffix of every variable name in it. Finally, we
must redefine our recurring (†) condition to the following strengthened version:
no variable in either premise of a rule with the condition can occur in the
other premise, or become a variable in the other premise by means of some
applications of these freshening operations. If we don’t do this strengthening,
then putting freshening in the reduction rule for contraction could cause the
creation of variable names that already existed. One easy way of satisfying this
condition is to simply ensure that no one base name appears in both premises,
although this is only sufficient, not necessary. In any case, every example shown
thus far that has satisfied the old version of (†) has also satisfied the new version,
since we have not used α or β in our variable names, and hence having distinct
names has implied having distinct base names.

With this obtuse diversion out of the way, we can finally give a reduction
rule for contraction.

x(P) ⊥ u@ v −→ x ⊥ (xα @ xβ), x(P)α ⊥ u, x(P)β ⊥ v (Copy)

Here x ⊥ (xα @ xβ) means x1 ⊥ (xα
1 @ xβ

1), . . . , xn ⊥ (xα
n @ xβ

n).
There are two main parts to the right-hand side of this rule. The easier

part is x(P)α ⊥ u, x(P)β ⊥ v. We simply make two copies of the !-term,
freshen the variables in both of them to avoid conflicts, and then cut each of
them against their corresponding eliminator. The other part, x ⊥ (xα @ xβ),
is trickier. This is the part that ensures duplication of x(P)’s dependencies. It
functions somewhat similarly to the rule for weakening: each coequation changes
the meaning of xi from “forward reference to a dependency eliminator of P” to
“immediate reference to a ‘duplicate and then cut against forward references to
dependency eliminators of Pα and P β ’ eliminator”. Of course, that duplication
may introduce coequations like this too, so the duplication process will continue
to propagate upward through the dependency tree as necessary until it reaches
!-terms that are self-contained.

Let’s look at some examples. Just as some types A may support A ⊸ A⊗A,
some types may support A ⊸ !A. This means, intuitively, that it is possible to
consume all of the information from an A in one go and then repackage it into
a copyable format. Types for which this may be impossible include things like
most &s, because it is only possible to get one of the components out.

(One)
` ; ∗ : 1

(Of Course)
` ; (; ∗) : !1

(Bottom)
` ; (; ∗) : !1, ∗⃝ : ⊥

(Xchg (ii))
` ; ∗⃝ : ⊥, (; ∗) : !1

(Par)
` ; ∗⃝ ` (; ∗) : 1 ⊸ !1

23

(known)
` ; tt : 2

(Of Course)
` ; (; tt) : !2

(Bottom)
` ; (; tt) : !2, ∗⃝ : ⊥

(known)
` ; ff : 2

(Of Course)
` ; (; ff) : !2

(Bottom)
` ; (; ff) : !2, ∗⃝ : ⊥

(With)
` ; o : !2, o(; (; tt), ∗⃝ ; (; ff), ∗⃝) : ⊥&⊥

(Xchg (ii))
` ; o(; (; tt), ∗⃝ ; (; ff), ∗⃝) : ⊥&⊥, o : !2

(Par)
` ; o(; (; tt), ∗⃝ ; (; ff), ∗⃝)` o : 2 ⊸ !2

The exponentials are called “exponentials” because they “turn additives into
multiplicatives”: we can convert between !(A & B) and !A ⊗ !B, and between
?(A⊕B) and ?A` ?B.

····
` ; ?inl(a) : ?(α⊥ ⊕ β⊥), a : α

(Of Course)
` ; w1 : ?(α⊥ ⊕ β⊥), w1(; ?inl(a), a) : !α

····
` ; w2 : ?(α⊥ ⊕ β⊥), w2(; ?inr(b), b) : !β

(Tensor)
` ; w1 : ?(α⊥ ⊕ β⊥), w2 : ?(α⊥ ⊕ β⊥), w1(; ?inl(a), a)⊗ w2(; ?inr(b), b) : !α⊗ !β

···· (Xchg (ii), Xchg (ii), Contraction)
` ; w1(; ?inl(a), a)⊗ w2(; ?inr(b), b) : !α⊗ !β, w1 @ w2 : ?(α⊥ ⊕ β⊥)

···· (Xchg (ii), Par, All, All)
` ; (w1 @ w2)` (w1(; ?inl(a), a)⊗ w2(; ?inr(b), b)) : ∀α.∀β.!(α& β) ⊸ !α⊗ !β

And:

` ; (a`b)`ab(; a′, b′, a′b′(; ?a′′, _, a′′ ; _, ?b′′, b′′)) : ∀α.∀β.!α⊗!β ⊸ !(α&β)

The cases for ? and ` are essentially the same, but with the sides of the `
swapped.

24

