Functorial Language Games for Question Answering

<u>Giovanni de Felice</u>[†], Elena Di Lavore^{*}, Mario Román^{*}, Alexis Toumi[†]

† Department of Computer Science, University of Oxford. * Department of Software Science, Tallinn University of Technology.

July 2020

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Syntax with free monoidal categories (e.g. Categorial grammars, CFGs, Lambek, pregroups)
- Semantics with monoidal functors. (Bob Coecke, Mernoosh Sadrzadeh et al. 2008¹).

¹Clark, Coecke, and Sadrzadeh, "A Compositional Distributional Model of Meaning", 2008.

- Syntax with free monoidal categories (e.g. Categorial grammars, CFGs, Lambek, pregroups)
- Semantics with monoidal functors. (Bob Coecke, Mernoosh Sadrzadeh et al. 2008¹).
- Pragmatics: meaning depends on context. The same utterance "Water!" can be a request for help, the answer to a question or the lyrics of a song.

¹Clark, Coecke, and Sadrzadeh, "A Compositional Distributional Model of Meaning", 2008.

Pragmatics with Wittgenstein's language games

- In the Philosophical Investigations (1953), Wittgenstein analysed the pragmatical aspect of language using the concept of language-game. He defines it by example: "asking, thanking, cursing, greeting, praying".
- \blacktriangleright Idea²: Categorical linguistics \otimes Compositional game theory³
- In this work we propose two ways of making these theories interact, with applications to game-theoretic pragmatics and question answering.

²Hedges and Lewis, "Towards Functorial Language-Games", 2018. ³Ghani et al., "Compositional game theory", 2018.

Open games

Definition

An open game $\mathcal{G}: \begin{pmatrix} X \\ S \end{pmatrix} \xrightarrow{\Sigma} \begin{pmatrix} Y \\ \not \rightarrow \end{pmatrix}$ that takes observations on X, produces moves on Y, receives utilities on R, and returns coutilities on S, is given by:

- $\Sigma_{\mathcal{G}}$ is the set of *strategy profiles*,
- $\pi_{\mathcal{G}} \colon \Sigma_{\mathcal{G}} \times X \to Y$ is the *play function*,
- $\kappa_{\mathcal{G}}: \Sigma_{\mathcal{G}} \times X \times R \to S$ is the *coplay function*,
- $E_{\mathcal{G}}: X \times (Y \to R) \to \mathcal{P}(\Sigma_{\mathcal{G}})$ is the equilibrium function.

うして ふゆう ふほう ふほう うらつ

Example (Question Answering)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Syntax: pregroup grammar

Definition

A pregroup grammar is a tuple G = (V, B, D, s) where:

- ► V the vocabulary
- *B* the *basic types* with $s \in B$ the *sentence type*
- D ⊆ V × P_B the dictionary entries where P_B the free pregroup generated by B.
- $\mathbf{G} = \mathbf{RC}(D)$ is the free rigid category generated by the dictionary.

 $\mathsf{Model}:\mathsf{Grammar}\longrightarrow\mathsf{Semantics}$

Definition (DisCo model)

A DisCo model for a pregroup grammar G = (V, B, D, s) is a rigid monoidal functor $F : \mathbf{G} \to \mathbf{S}$ for \mathbf{S} a rigid monoidal category. The semantics of a list of words $u \in V^*$ with grammatical structure $g : u \to t$ is given by the state $F(g) : 1 \to F(t)$.

Example

 $\begin{array}{l} \mbox{Distributional models } {\bf G} \rightarrow {\bf Vect}. \\ \mbox{Relational models } {\bf G} \rightarrow {\bf Rel } \mbox{(Databases)}^4 \\ \mbox{Quantum models } {\bf G} \rightarrow {\bf FHilb } \mbox{(QNLP)}. \end{array}$

⁴de Felice, Meichanetzidis, and Toumi, "Functorial Question Answering", 2019.

Can we build functors from **G** to **Game**? **Game** is not a rigid category! To build non-trivial games we use the free completion of open games as a rigid monoidal category.

Proposition

⁵ There is a free completion \mathcal{A} : Moncat \rightarrow RigidCat, (freely adding cups and caps) such that the embedding $C \rightarrow \mathcal{A}(C)$ is full.

Solution: build functors $F : \mathbf{G} \to \mathcal{A}(\mathbf{Game})$ with $F(s) \in \mathbf{Game}$, then for any $g : u \to s$, $F(g) \in \mathbf{Game}$.

⁵Delpeuch, "Autonomization of Monoidal Categories", 2014. () () () ()

Remove snakes from a sentence.

The language is meant to serve for communication between a builder A and an assistant B. A is building with building-stones: there are blocks, pillars, slabs and beams. B has to pass the stones, in the order in which A needs them. For this purpose they use a language consisting of the words "block", "pillar", "slab", "beam". A calls them out; — B brings the stone which he has learnt to bring at such-and-such a call.

(ロ) (型) (E) (E) (E) (O)

Conceive this as a complete primitive language.

Philosophical Investigations, Ludwig Wittgenstein

Pragmatics with functorial language games

Encode the language game as a functor $F : \mathbf{G} \to \mathcal{A}(\mathbf{Game})$. The imperative "Bring" models the intention of the builder. The apprentice $k : O \to A$ turns orders into actions.

 $E_{F(\text{Bring large slabs})}(k) = \begin{cases} 1 & k(\text{Bring large slabs}) = \text{bring}(\text{large slabs}) \\ 0 & \text{otherwise} \end{cases}$

うして ふゆう ふほう ふほう うらつ

This gives the pragmatics of orders. Similar treatment for questions.

Instantiating the Q&A game with DisCo models

f is a list of question-answer pairs (q, a) for $q : u \to z$ and $a \in A$. Student's strategies: $\Sigma_S \subseteq \{\sigma : \mathbf{G} \to \operatorname{Rel} : \sigma(z) = A\}$. Teacher strategies: $\Sigma_T = \{0, 1, \dots, n\}$. Utilities as in an adversarial game.

・ロッ ・雪 ・ ・ ヨ ・ ・

We can analyse the possible outcomes of this game.

- 1. There is a pair (q_i, a_i) in C that the student cannot answer correctly. Teacher wins.
- 2. The corpus is consistent and the student has access to the model σ that answers all the questions correctly. Student wins.
- 3. For any choice *i* of the teacher, the student has a model σ_i that answers q_i correctly. And viceversa, for any strategy σ of the student there is a choice *j* of the teacher such that $\sigma(q_j) \neq a_j$. There is no Nash equilibrium.

うして ふゆう ふほう ふほう うらつ

Language-games as NLP tasks

- 1. Word sense disambiguation as a collaborative game where the players are words and their strategies are word-senses $^{\rm 6}$
- 2. GANs⁷ for Question Answering. (DisCoPy? Catlab?)
- 3. Quantum supremacy as a language game.