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Introduction

This presentation is about symmetric powers in symmetric monoidal Q+-linear
categories.

We provide a characterization of symmetric powers in terms of an algebraic
structure that we call binomial graded bialgebras.

It provides some nice string diagrams.

We present various results in this framework.
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Definition
A symmetric monoidal Q+-linear category is a symmetric monoidal category
(C, ⊗, I) such that every hom-set C[A, B] is a Q+-module1, and moreover:
▶ − ⊗ − : C[A, B] × C[C , D] → C[A ⊗ C , B ⊗ D] is bilinear
▶ −; − : C[A, B] × C[B, C ] → C[A, C ] is bilinear

Example
▶ ModR for R any Q+-algebra (ie. a semiring2 R together with a semiring

morphism Q+ → R)
▶ Rel the category of set and relations
▶ FVeck the category of finite-dimensional vector spaces over a field k of

characteristic 0
▶ FRel the category of finite set and relations
▶ ...

In all the reset of the presentation C will be a symmetric monoidal Q+-linear
category.

1 Q+ = rational numbers ≥ 0
2 semiring = ring without requiring negative numbers
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For any object A ∈ C and every n ≥ 1, we can form the nth tensor power A⊗n.

The nth symmetric power is a symmetrization of this tensor power. It can be
interpreted in different ways which are all equivalents in this framework:3

An equalizer of A⊗n A⊗n
σ

... (1)

A coequalizer of A⊗n A⊗n
σ

... (2)

A splitting of the idempotent 1
n!

∑
σ∈Sn

σ : A⊗n → A⊗n (3)

Such a splitting is given by two maps rn : A⊗n → An and sn : An → A⊗n such
that rn; sn = 1

n!
∑

σ∈Sn

σ and sn; rn = IdAn .

3 below, there is one arrow for every permutation σ ∈ Sn
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Proposition
Given objects A and An ∈ C, there are bijections between: an equalizer
rn : A⊗n → An, a coequalizer sn : An → A⊗n and a splitting
A⊗n rn−→ An

sn−→ A⊗n of 1
n!

∑
σ∈Sn

σ : A⊗n → A⊗n.

Example
▶ In ModR (R a Q+-algebra), the nth symmetric power can be seen

equivalently as the subspace (A⊗n)Sn of vectors invariants by permutation
or as the quotient (A⊗n)Sn of A⊗n by the n! permutations.

▶ In Rel, the nth symmetric power of A is the set Mn(A) of multisets of n
elements in A. rn sends any tuple (a1, ..., an) to the multiset [a1, ..., an], sn
relates any multiset [a1, ..., an] to all the tuples (aσ(1), ..., aσ(n)) for every
σ ∈ Sn. rn; sn relates any tuple (a1, ..., an) to all the tuples (aσ(1), ..., aσ(n))
for every σ ∈ Sn. 4

4 In Rel[A, B], + is the union of relations, and n.1 = 1
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It provides our first definition of a family (An)n≥1 of symmetric powers:

Definition
In a symmetric monoidal Q+-linear category, a permutation splitting is given
by:
▶ a family (An)n≥1 of objects
▶ a family (rn : A⊗n

1 → An)n≥1 of morphisms
▶ a family (sn : An → A⊗n

1 )n≥1 of morphisms
such that:
▶ rn; sn = 1

n!
∑

σ∈Sn

σ : A⊗n → A⊗n

▶ sn; rn = IdAn
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Definition
A morphism of permutation splittings (An)n≥1 → (Bn)n≥1 is given by a family
(fn : An → Bn)n≥1 such that any of the three equivalent conditions are verified:

A⊗n
1 B⊗n

1

An Bn

f ⊗n
1

rA
n rB

n

fn

(4)

fn = rA
n ; f ⊗n

1 ; sB
n (5)

An A⊗n
1

Bn B⊗n
1

sA
n

fn f ⊗n
1

sB
n

(6)

Proposition
The category of permutation splittings is isomorphic to the category of
permutations splittings ((An)n≥1, (rn)n≥1, (sn)n≥1) and morphisms f1 : A1 → B1
(= the reduced category of permutation splittings).
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Given a permutation splitting ((An)n≥1, (rn)n≥1, (sn)n≥1), we can define
(∇n,p : An ⊗ Ap → An+p)n,p≥1,(∆n,p : An+p → An ⊗ Ap)n,p≥1 by:

n p

n+p

:= 1 1

rn+p

n+p

...

sn

n

1 1...

sp

p

n p

n+p

:=
(n+p

n

)
1 1

sn+p

n+p

...

rn

n

1 1...

rp

p

These equations are then verified: 5 6

n p

q r

=
∑

a,b,c,d≥0
a+b=n
c+d=p
a+c=q
b+d=r

n p

q r

a b c d

n+p

n+p

n p =
(n+p

n

) n+p

n+p

5 first one for every n, p, q, r ≥ 1 such that n + p = q + r , second one for every n, p ≥ 1
6 where we note:

n0

n

:=

n

n0n

n

=

0n

n

=

0 n

n

=
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It provides our second definition of a family (An)n≥1 of symmetric powers:

Definition
In a symmetric monoidal Q+-linear category7, a binomial graded bialgebra is
given by:
▶ a family (An)n≥1 of objects
▶ a family (∇n,p : An ⊗ Ap → An+p)n,p≥1 of morphisms
▶ a family (∆n,p : An+p → An ⊗ Ap)n,p≥1 of morphisms

such that:
n p

q r

=
∑

a,b,c,d≥0
a+b=n
c+d=p
a+c=q
b+d=r

n p

q r

a b c d

n+p

n+p

n p =
(n+p

n

) n+p

n+p

Proposition
Every binomial graded bialgebra is biassociative and bicommutative.

7 Remark that it is sufficient that the hom-sets are commutative monoids to define a binomial
graded bialgebra, but we will not go into this today.
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Given a binomial graded bialgebra, we can define:

...1 1

rn

n

:=

1 1 1

2

... 1

...3

n − 1

n
...

1 1

sn

n

:= 1
n!

n

1 1 1

2

... 1

...
3

n − 1

Proposition
Given a family (An)n≥1 of objects, the constructions between the families
(rn)n≥1, (sn)n≥1 which define a permutation splitting and the families
(∇n,p : An ⊗ Ap → An+p)n,p≥1,(∆n,p : An+p → An ⊗ Ap)n,p≥1 which define a
binomial graded bialgebra provide a bijection between splitting idempotents
with underlying objects (An)n≥1 and binomial graded bialgebras with underlying
object (An)n≥1.

Corollary
In a symmetric monoidal Q+-linear category, a family (An)n≥1 verifies that An
is the nth symmetric power of A1 iff it can be equipped with a structure of
binomial graded bialgebra.
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Proposition
If (fn : An → Bn)n≥1 is a family of morphisms between two binomial graded
biagebras, these conditions are equivalent:8

An ⊗ Ap An+p

Bn ⊗ Bp Bn+p

fn⊗fp

∇A
n,p

fn+p

∇B
n,p

(7)

fn = rA
n ; f ⊗n

1 ; sB
n (8)

An+p An ⊗ Ap

Bn+p Bn ⊗ Bp

fn+p

∆A
n,p

fn⊗fp

∆B
n,p

(9)

If any of these conditions is verified, we say that (fn)n≥1 is a morphism of
binomial graded bialgebras.

8 where rn, sn are defined as before
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Corollary
If R is a Q+-module, if f : R[Y1, ..., Yn] → R[X1, ..., Xp] is a linear map which
preserves the degree of homogeneous polynomials, then it is a morphism of
bialgebras iff it is a morphism of algebras iff it is a morphism of coalgebras and
there is exactly one such map for every linear map
R.Y1 ⊕ ... ⊕ R.Yn → R.X1 ⊕ ... ⊕ R.Xp.

Example
For every σ ∈ Sn, the linear map fσ : R[X1, ..., Xn] → R[X1, ..., Xn] which sends
X1 7→ Xσ(1), ..., Xn 7→ Xσ(n) is such a map. A polynomial P ∈ R[X1, ..., Xn] is
called symmetric iff it is invariant by fσ for every σ ∈ Sn.
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Proposition
The category of binomial graded bialgebras is isomorphic to the category of
permutation splittings, to the reduced category of binomial graded bialgebras
and to the reduced category of binomial graded bialgebras.
▶ Between the category of binomial graded bialgebras and of permutation

splittings, the isomorphism sends (fn)n≥1 to (fn)n≥1

▶ from a non-reduced category to a reduced one, it sends (fn)n≥1 to f1

▶ from a reduced category to a non-reduced one, it sends f1 to (fn)n≥1 where
fn : An → Bn is defined by fn = rA

n ; f ⊗n
1 ; sB

n .
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A sketch of proof
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How to prove that in a binomial graded bialgebra, An is the nth symmetric
power of A1?

We must show that if we define

...1 1

rn

n

:=

1 1 1

2

... 1

...3

n − 1

n
...

1 1

sn

n

:= 1
n!

n

1 1 1

2

... 1

...
3

n − 1

then
...1 1

rn

n

...
1 1

sn

= 1
n!

∑
σ∈Sn

...1 1

...
1 1

σ
...1 1

rn

n

...

sn

n

=

n

n
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ie. we must prove that:

1
n!

1 1 1

2

... 1

...3

n − 1

n

1 1 1

2

... 1

...
3

n − 1

= 1
n!

∑
σ∈Sn

...1 1

...
1 1

σ
1
n!

2

...3

n − 1

n

1 1 1

2

... 1

...
3

n − 1

n

=

n

n
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The second equality is not very difficult to prove. One of our axiom is that

k+1

k+1

k 1 =
(k+1

k

) k+1

k+1

= (k + 1)

k+1

k+1

It then follows by using this for every 1 ≤ k ≤ n − 1.

The first one is a bit more difficult. Define
n1

n1 + · · · + nq

. . .
nq

=

n1 n2 n3

n1 + n2

... nq

...

n1 + ... + nq n1

n1 + · · · + nq

. . .
nq

=

n1 + ... + nq

n1 n2 n3

n1 + n2

... nq

...
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We can then prove by induction on (q, r) ∈ N×2
≥2 that

p1
. . .

pr

n1
. . .

nq

=
∑∑

α

iβα = pβ∑
β

iβα = nα

n1 nq

p1

. . .

i1
1

. . .

i r
1 i1

q

. . .

i r
q

pr

. . .

. . .

. . .

where the sum is indexed by the matrices (iβ
α)1≤α≤q

1≤β≤r
such that for every

1 ≤ β ≤ r , the sum
∑

1≤α≤q
iβ
α of the terms in the βth line is equal to pβ and for

every 1 ≤ α ≤ q, the sum
∑

1≤β≤q
iβ
α of the terms in the αth column is equal to

nα for some weigths (n1, ..., nq) ∈ Nq and (p1, ..., pr ) ∈ Nr .
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We then put q = r := n and deduce that

1
. . .

1

1
. . .

1

=
∑∑

α

iβα = 1∑
β

iβα = 1

1 1

1

. . .

i1
1

. . .

in
1 i1

n

. . .

in
n

1

. . .

. . .

. . .

where the sum is indexed by the matrices (iβ
α)1≤α,β≤n such that the sum of the

terms in every column and the sum of the terms in every line is equal to 1.

For every such matrix, every input is related to exactly one output in the RHS.
The αth input is related to exactly one output by a path which contains a 1 and
not a 0 which is the only output β such that iβ

α = 1.

By definition of the multiplications and comultiplications, we can then for every
entry 1 ≤ α ≤ q keep only a link to this output β. We have thus replaced the
RHS by a permutation. And every such matrix corresponds to exactly one
permutation σ ∈ Sn.
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We have proved that

1
. . .

1

1
. . .

1

=
∑

σ∈Sn

1
. . .

1

1
. . .

1

σ

we then multiply each side by 1
n! to obtain the desired equality.
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Thank you for your attention!
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	A sketch of proof

