
COENDS OF HIGHER ARITY

THÉO DE OLIVEIRA SANTOS‡ AND FOSCO LOREGIAN§

Abstract. We specialise a recently introduced notion of generalised dinaturality for functors) : (Cop)? ×
C@ → D to the case where the domain (resp., codomain) is constant, thus obtaining notions of ends (resp.,
coends) of higher arity, which we dub (?,@)-ends (resp., (?,@)-coends). Higher arity co/ends reduce to a certain
kind of classical co/ends (that can be recovered as (1, 1)-co/ends), but it proves to be useful to describe some
new phenomena.

The theory so determined paves the way to two interesting developments: 1) weighted ends and weighted
Kan extensions, standing to ends and Kan extensions in the same relation as weighted limits stand to limits,
and 2) diagonal constructions, where, in analogy to the passage from limits to ends, one replaces naturality by
dinaturality in categorical concepts besides that of a limit; as a result, we obtain a rich theory with notions
such as diagonal Kan extensions, similarly standing to ordinary Kan extensions as ends stand to limits.
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1. Introduction
A functor ) : Cop × C → D can be thought as a generalised form of pairing de�ned on objects of C,

thanks to its action on morphisms, once covariantly and once contravariantly; the ‘generalised quantity’
) (�,� ′) can then be ‘integrated’ to yield two distinct objects having dual universal properties:

c1) a coend, resulting by the symmetrisation along the diagonal of) , i.e. by modding out the coproduct∐
�∈C ) (�,�) by the equivalence relation generated by the arrow functions) (−,� ′) : Cop (-,. ) →
D()-,). ) and ) (�,−) : C(-,. ) → D()-,). );

c2) an end, i.e. an object
∫
�
) (�,�) arising as an ‘object of invariants’ of ‘�xed points’ for the same

action of) on arrows; by dualisation, if a coend is a quotient of
∐
�∈C ) (�,�), an end is a subobject

of the product
∏
�∈C ) (�,�).

The fact that given ) : Bop × B × Cop × C → D this operation satis�es the commutativity rule∫ �∫ �

) (�, �;�,�) �
∫ �∫ �

) (�, �;�,�)

(called the ‘Fubini rule’) motivated N. Yoneda [Yon60] to adopt for them an integral-like notation and
terminology.

Since, given a functor ) as above, the co/end of ) can be computed as a certain co/equaliser, co/ends
can be regarded as just particular co/limits, associated to functors of particular variance type. Central to
this reduction rule of co/ends to co/limits is the twisted arrow category of C, i.e. the category of elements of
the hom functor homC : Cop × C → Set.

The intuition of co/ends as �xed points and orbit spaces of suitable actions lends itself to many fruitful
interpretation: such a functor ) : Cop × C → D can be regarded as some sort of “module” that testify a
two-sided action of the category C on the codomain D: in fact, this is what ) is, in the case where C is a
monoid (i.e. a category with a single object) and D is the category of sets; ) is nothing but a set with both
a left and a right action of C, i.e. a bimodule.

Taken to an extreme this de�nition works for A-B-bimodules and yields the 1-cells of the bicategory
Prof of profunctors, introduced in [BS00] and studied in [CP89; Lor15]).

Given two bimodules ( ∈ �Mod� and ) ∈ �Mod� over rings �, �,� their classical tensor product
�(� ⊗� �)� is de�ned by the cokernel ⊕

1∈�
( ⊗Z )

1⊗1−1⊗1−−−−−−−→ ( ⊗Z )

of a map that renders the action of � on both sides bilinear; for functors ( : Aop × B → Set and
) : Bop × C → Set, such universal quotient that renders the action of morphisms D : - → . in B bilinear
is an instance of a coend.

Coend calculus, i.e. the set of rules allowing to formally manipulate integrals of the above kind in order to
prove statements in category theory, has applications in as di�erent �elds as homotopy theory, functional
programming, the foundations of combinatorics, and category theory.

The particular variance ) is forced to have now begs the question of whether there is an analogue of
the above picture (a universal property ), for more general functors

) : Cop × · · · × Cop︸              ︷︷              ︸
? times

×C × · · · × C︸        ︷︷        ︸
@ times

→ D
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taking ? ≥ 1 contravariant arguments, and @ ≥ 1 covariant arguments, admitting the possibility that ? ≠ @

(mimicking a nomenclature of Kelly, introduced in [Kel72a], we shortly refer to these functors as having
“type”

[
?
@

]
).

The present paper’s aim is to answer this question in the positive.

Such generalised (or “(?, @)”-)co/ends exist and can be characterised as suitable particular cases of classical
(“(1, 1)”-)co/ends. Moreover, they yield a similarly rich calculus.

Knowing that all (?, @)-coends are suitable (1, 1)-coends one might expect that they do not provide
much new examples. This is not the case: our Section 4 are entirely devoted to providing examples. In
particular, we focus on two natural frameworks harbouring “higher arity” co/ends:
or1) The possibility to de�ne a higher arity analogue of the Day convolution monoidal structure of

[Day70a; Day70b; IK86], on the presheaf category Cat(Cop, Set) over a monoidal category (C, ⊗);
classically, the Day convolution of two presheaves F,G : Cop → Set is de�ned by

F ~ G :
∫ -,. ∈C

F(- ) ×G(. ) × C(−, - ⊗ . ).

We generalise this notion into De�nition 4.30: given = presheaves F1, . . . ,F= their =-ary Day
convolution is the (=, =)-coend

(F1 ~= · · · ~= F=) (�)
def
=

(=, =)∫ �∈C
F1 (�) × · · · ×F= (�) × C

(
−, �⊗=

)
.

The sets of various =-ary Day convolutions, together with the convolution of order : ≤ =, organise
into an operad that we dub the Day operad in Example 4.31.

or2) The object of dinatural transformations between two functors �,� : (C? )op ×C@ → D organise as
a (?, @)-end; in the case (?, @) = (1, 1) this result was �rst noted by [DS70]; however, we generalise
even further this picture, by providing a canonical way to appropriately “resolve” a functor� of
type

[
?
@

]
into a functor Γ?,@ (�) of type

[
@
?

]
in such a way that the isomorphism

Nat
( Γ?,@ (� ),�

)
� DiNat(?,@) (�,�)

holds, i.e. in such a way that a dinatural transformation between � and � amounts exactly to
a natural transformation from Γ?,@ (� ) to � . The object so determined has a certain universal
property: we study this construction in detail along Section 5, where moreover we also discover
that

Nat
(
�, Γ?,@ (�)

)
� DiNat(?,@) (�,�)

for a certain functor Γ?,@ that is thus a right adjoint to Γ?,@ .
From this, a number of future directions can be taken:

(1) Weighted category theory (beyond co/limits), [dLb]. The notion of weighted co/limit arises as the
solution to a representability problem. Computing the ‘conical’ colimit of a diagram � : C → D,
we aim to �nd an object colim(�) that represents the functor sending - ∈ D to the set of cocones
for � , i.e. natural transformations between the ‘constant at the point’ functor ∗ and the functor
D(�−, - ). In a similar fashion, when we want to compute the weighted colimit of � we try to
represent the functor

- ↦→ Cat(Cop, Set) (,,D(�−, - )) .
Now, what if we try to do the same for the other usual categorical constructions besides co/limits,
such as adjunctions, Kan extensions, monads, or co/ends? For instance, what if, instead of trying to
represent the functor that sends ) : Cop × C → D to the set of its co/wedges, we try to represent
the functor that sends - to DiNat(,,D(),- ))?
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We dub weighted category theory the piece of technology that addresses this problem.
(2) Diagonal category theory, [dLa]. In diagonal category theory, a di�erent but still related path is

taken: in analogy to the passage from limits (universal cones) to ends (universal wedges), we seek a
general framework, for other categorical constructions, in which the passage from cones to wedges
is meaningful. Thus, we aim to replace naturality requests with dinaturality in categorical concepts
besides that of a limit, obtaining, as a result, a very rich theory with notions such as diagonal Kan
extensions, adjunctions and monads, all standing to their classical counterparts as co/ends stand to
co/limits.

Despite the intrinsic obstruction to compose dinatural transformations, the theory so obtained is
non-trivial: it sheds light on a number of aspects of classical category theory, such as the disparity
between limits and colimits assorting themselves into a triple adjunction

(colim a Δ(−) a lim) : Cat(C,D) D

whilst no such no such result exists for ends and coends: instead we have diagonally adjoint functors,
of which ends and coends are a fundamental example, assembling into a triple

∫ � aX Δ(−) aX
∫
�

.

1.1. Structure of the paper
In Section 1.2, we motivate higher arity dinaturality, showing how such a notion arises geometrically

as a “diagonal” version of natural transformations between functors with domain a product category.
All the material is very well-known, and this is only meant to �x notation at the outset. We borrow an
intuitive explanation of what dinaturality is about from [BS10, pp. 48–50] (see also [Gav19] for a similar
presentation), �rst recalling it in Remark 1.2 and then generalising the argument to the higher arity case in
Remark 1.3.

In Section 2, we review and specialise the notion of dinaturality introduced in [San19; MS20] to the
appropriate setting for considering “universal generalised dinaturality”. In detail, we �rst recall the notion
of a (?, @)-dinatural transformation and study its properties, generalising results of Street–Dubuc ([DS70])
to functors of arbitrary arity. We then proceed to discuss (?, @)-dinatural transformations from constant
functors, which we dub (?, @)-wedges, in analogy with the classical case.

In Section 3, we formulate the notion of a higher arity co/end. Just as ends are universal wedges, higher
arity ends are universal (?, @)-wedges. After introducing them in De�nition 3.1, we discuss some of their
basic properties (Proposition 3.5). Then, in Section 3.2, we state and prove a Fubini rule for higher arity
co/ends, generalising the classical Fubini rule for co/ends.

In Section 4, we illustrate the theory developed so far by working out a large number of examples.
We study naturally-appearing instances of higher arity co/ends in category theory as well as in related
areas. The machinery employed here is elementary, but provides insightful examples when applied to
laying down the rules of a ‘calculus of weighted ends’, and to ‘diagonal’ category theory (see Sections 4.2.1
and 4.2.3 for reference).

In Section 5, we introduce the notion of co/kusarigamas. These are fundamental constructions in higher
arity co/end calculus allowing us to reduce the study of (?, @)-dinaturality to that of (ordinary) naturality.
Co/kusarigamas also provide us with a way to express higher arity co/ends as weighted co/limits, as well
as with a higher arity version of the twisted arrow category (Section 5.3).

1.2. Geometric motivation for higher arity dinaturality
Notation 1.1 ((?, @)-products, tensor calculus notation). The entire paper deals with categories that are
the product of @ copies of a (small) category C, and ? copies of the opposite category Cop, for ?, @ two
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non-negative integers: throughout the entire discussion we will denote

C (?,@) def
= Cop × · · · × Cop︸              ︷︷              ︸

? times

×C × · · · × C︸        ︷︷        ︸
@ times

.

An alternative, short notation for the category (Cop)? = (C? )op is C−? × C@ , but this has to be used cum
grano salis, as some of the usual sign convention do not apply (for example, exponent of discordant sign do
not add: C−1 × C1 is ‘irreducible’).

A functor having domain C (?,@) will be called a functor of type
[
?
@

]
.

To denote the action of a functor of type
[
?
@

]
on objects we write

�
�′′

�′
def
= �

�1,...,�?

�1,...,�@

def
= �

(
�′′1 , . . . , �

′′
? , �

′
1, . . . , �

′
@

)
for (tuples of) objects �′ def

= �′1, . . . , �
′
@ ∈ C@ and �′′ def

= �′′1 , . . . , �
′′
? ∈ C−? . (See Section 1.3 below for

variations and specialisations of this notation.)
This is reminding of the way in which one writes the coordinates of a tensor of type

[
?
@

]
.

We start this introductory section by recalling the notion of dinatural transformation; we borrow an
argument from [BS10, pp. 48–50] that shows how dinaturality is, if not unavoidable, at least motivated by
elementary considerations.

In short, one may in fact arrive at de�ning dinaturality by considering a ‘naturality cube’ and then
removing its “non-diagonal” pieces.

Baez–Stay’s argument can be adapted to motivate our notion of (?, @)-dinaturality De�nition 2.1 as
similarly unavoidable (see Remark 1.3).

Remark 1.2 (From Naturality Cubes to Dinaturality Hexagons). Let C be a category, and consider the
product category Cop × C. This is the category whose
cc1) Objects are pairs (�, �) with � ∈ Cop

> = C> and � ∈ C> ;
cc2) Morphisms (�, �) → (�′, �′) are pairs

( [
�′
6 ↓
�

]
,

[
�

5 ↓
�′

] )
of morphisms of C.

Now, each morphism 5 : �→ � of C, gives rise to a commutative square in Cop × C of the form

(�,�) (�, �)

(�,�) (�, �),

(5 ,�)

(�,5 )

(5 ,�)

(�,5 )

to which we can apply functors �,� : Cop × C D, obtaining two naturality squares

��
�

��
�

��
�

��
�

��
5

�
5

�
�
5

�

��
5

��
�

��
�

��
�

��
�
,

��
5

�
5

�
�
5

�

��
5

from which we derive that � 5
�
◦ ��

5
= ��

5
◦ � 5

�
, and similarly for � .

A natural transformation from � to � is then a collection

{U�� : �
�
� → ��� | (�, �) ∈ (C

op × C)> }
of morphisms of D making the diagram
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��
�

��
′

�′

��
�

��
′

�′

�
6

5

U�
�

U�
′

�′

�
6

5

commute for every
[
�′
6 ↓
�

]
and

[
�

5 ↓
�′

]
. When 6 = 5 , this reduces to

��
�

��
�

��
�

��
�
,

�
5

5

U�
�

U�
�

�
5

5

which we may rewrite as the following commutative cube, using that (5 , 5 ) = (id�, 5 ) ◦ (5 , id�) in Cop ×C:

��
�

��
�

��
�

��
�

��
�

��
�

��
�

=

��
�

��
�

��
�

��
�

��
�

��
�

��
�

(in all arrows the action of � on its covariant or contravariant component is taken into account).
A notion of “diagonal transformation” between � and � is then a collection of morphisms of D from

��
�

to ��
�

; to obtain it, we should remove the “non-diagonal pieces” U�
�

and U�
�

from this cube, arriving at
the diagram

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�
.

��
5

�
5

�

U�
�

�
5

�

U�
�

��
5

Writing U� (resp. U�) for U�
�

(resp. U�
�

) and ‘�attening’ the resulting diagram, we get the dinaturality
hexagon

��
�

��
�

��
�

��
�

��
�

��
�

U�

��
5�

5

�

��
5

U�

�
5

�
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for U : � � .

Given functors �,� : C (?,@) → D we seek a similar intuitive explanation for an analogue notion
of (?, @)-dinaturality. Of course, as the sum ? + @ grows bigger, it is harder and harder to visualise the
underlying geometry, since we have to work in dimension ? + @ + 1 ≥ 4.

Before giving the general de�nition in De�nition 2.1, we illustrate in detail the case (?, @) = (2, 1).
Remember that we write C (2,1) for the category Cop × Cop × C.

Remark 1.3 (From a naturality hypercubes to (2, 1)-Dinaturality). In a similar fashion, a morphism
5 : �→ � induces a commutative cube in C (2,1) which, under the action of two functors �,� : C (2,1) D,
yields two commutative cubes

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

in D. Now, a natural transformation U from � to � is a collection

{U�,�
�

: ��,�
�
→ �

�,�

�
| (�, �) ∈ C (2,1)> }

of morphisms of D such that the hypercube diagram below-left is commutative:

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

Remove “non-
diagonal” pieces

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

�
�,�
�

(vermillion: the � cube; blue: the � cube). Again deleting the nodes �.,/
-

, �.,/
-

for which -,., / are
not all equal, we get the above-right diagram. Flattening the result, this gives us the octagonal diagram
below-left, which becomes the “(2, 1)-dinaturality hexagon” below-right upon using that � 5 ,5

�
= �

�,5

�
◦ � 5 ,�

�

and � 5 ,5

�
= �

�,5

�
◦� 5 ,�

�
:
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�
�,�

�

�
�,�

�

�
�,�

�

�
�,�

�

�
�,�

�

�
�,�

�

�
�,�

�

�
�,�

�

�
�,�

�

�
�,�

�

�
�,�

�

�
�,�

�

�
�,�

�

�
�,�

�

Notation 1.4. The reader might have noticed, at this point, that in order not to clutter the page with too
many unwanted apices and pedices, we have to establish a nifty notation to represent how functors act on
tuples.

This will become even more evident as the discussion goes on: no argument in this work is more
elaborate than elementary category theory. Yet, it is literally impossible to follow any intuition without a
clever way to represent the action of functors of type

[
?
@

]
on objects, as well as functors having domain

the functor category Cat(C (?,@) ,D).

1.3. Notation and preliminaries
All the basic notation for categories and functors used in this paper follows standard practice. Apart

from this, and apart from what we already introduced in Notation 1.1, we need notation for:
n1) A generic tuple of objects,

�
def
= (�1, . . . , �=)

often split as the juxtaposition �′;�′′ of two subtuples of length ?, @,

�′
def
= (�1, . . . , �@), �′′

def
= (�?+1, . . . , �?+@)

n2) As already said, the image of a split tuple �′;�′′ under a functor of type
[
?
@

]
, � : C (?,@) → D is

denoted ��
′

�′′ : the contravariant components come �rst, and the covariant component second. So:
contravariant components are always left in the typing

� : C (?,@) → D
of a functor, and up in its action on objects.

n3) Denoting a functor � of type
[
?
@

]
evaluated at a diagonal tuple: we write

�GG
def
= �

�,...,�

�,...,�
,

where the superscript has ? elements, and the subscript has @ elements.
n4) Substitution of an object at a prescribed index

�[-/8] def
= (�1, . . . �8−1, -,�8+1, . . . , �=).

n5) Substitution of a tuple at a prescribed tuple of indices

�[-1, . . . , -A/81, . . . , 8A ]
def
= ((�[-1/81]) [-2/82] · · · ) [-A/8A ] .

De�nition 1.5. The (?, @)-diagonal functor is the functor Δ?,@ : Cop × C → C (?,@) de�ned by

Δ?,@
def
= Δop × · · · × Δop︸             ︷︷             ︸

? times

×Δ × · · · × Δ︸        ︷︷        ︸
@ times

.

Remark 1.6 (Unwinding De�nition 1.5). Explicitly, Δ?,@ : Cop × C → C (?,@) is the functor sending
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ud1) An object (�, �) of Cop × C to the object (G,H) def
= (�, . . . , �, �, . . . , �) of C (?,@) , and

ud2) A morphism (5 , 6) : (�, �) → (�′, �′) of Cop × C to the morphism (f ,g) def
= (5 , . . . , 5 , 6, . . . , 6) of

C (?,@) ,
where in the expression (G,H) we have ? repeated copies of � and @ repeated copies of �, and similarly
for (f ,g).

Notation 1.7 (Mixed Products and Coproduts). Let C be a category with �nite products and coproducts.
Given tuples �1, . . . , �? , �1, . . . , �@ , we write

W?,@ (�, �)
def
=

(
?∏
8=1

�8 ,

@∐
9=1

� 9

)
,

M?,@ (�, �)
def
=

(
?∐
8=1

�8 ,

@∏
9=1

� 9

)
.

Proposition 1.8 (Adjoints to the (?, @)-Diagonal Functor). If C has products and coproducts, then we
have a triple adjunction

(
W?,@ a Δ?,@ a M?,@

)
: C (?,@) Cop × C.

W?,@

M?,@

Δ?,@

a
a

Proof. The proposition follows from the universal property of the co/product, as we have a string of
bijections

homC (?,@)
(
(G,H),Δ?,@ (�, �)

) def
=

(
?∏
8=1

homCop (�8 ,�)
)
×

(
@∏
9=1

homC (� 9 , �)
)

def
=

(
?∏
8=1

homC (�,�8 )
)
×

(
@∏
9=1

homC (� 9 , �)
)

� homC

(
�,

?∏
8=1

�8

)
× homC

(
@∐
9=1

� 9 , �

)
def
= homCop

(
?∏
8=1

�8 ,�

)
× homC

(
@∐
9=1

� 9 , �

)
def
= homCop×C

((
?∏
8=1

�8 ,

@∐
9=1

� 9

)
, (�, �)

)
,

def
= homCop×C

(
W?,@ (�8 , � 9 ), (�, �)

)
,

natural in�1, . . . , �? , �1, . . . , �@,�, � ∈ C> . The proof that Δ?,@ admits a right adjoint is dual to this one. �

We also collect a couple of standard results on generating strings of adjunctions by left/right Kan extending
a given adjunction:

Lemma 1.9 (Applying Kan Extensions to an Adjunction). Every adjunction

! : C � D : '



10 THÉO DE OLIVEIRA SANTOS‡ AND FOSCO LOREGIAN§

induces a quadruple adjunction Lan a  ∗ a !∗ a Ran! such that

Lan � !∗, Ran! �  ∗ .

Proof. Both ! and  induce triple adjunctions between Cat(C, E) and Cat(D, E). Proving that Lan � !∗
and Ran! �  ∗ would show that these are actually parts of a single quadruple adjunction, which is the
stated one. That this is indeed so follows from the string of isomorphisms

!∗ (� ) def
= � ◦ !

�

∫
-

C (!(−), - ) � � (- )

�

∫
-

D(−,  (- )) � � (- )

� Ran �
natural in � . Hence  ∗ � Lan! . By a similar argument,  ∗ � Ran! , �nishing the proof. �

Combining two applications of Proposition 1.8 as well as uniqueness of adjoint functors with Lemma 1.9,
we get the following corollary:

Corollary 1.10. We have a quintuple adjunction(
LanM?,@

a M∗?,@ a Δ∗?,@ aW∗?,@ a RanW?,@

)
: Cat(C (?,@) ,D) Cat(Cop × C,D),

with natural isomorphisms

LanΔ?,@ � M∗?,@,
RanΔ?,@ � W∗?,@ .

2. Higher Arity Wedges
This section formalises completely the notion that we dubbed “(2,1)-dinaturality” above and presents it

for general ?, @ ≥ 0.
The de�nition of dinaturality given below is not new: it was recently introduced in Santamaria’s PhD

thesis [MS20; San19], building on previous work by M. Kelly [Kel72b; Kel72a] in fair more generality than
the one we need.

In [MS20; San19], however, an “unbiased” arrangement of the factors in C (?,@) is considered, in the
sense that [MS20, De�nition 2.4] takes into account functors CU → B, where U is a “binary multi-index”,
i.e. an element in the free monoid over the set {⊕, 	}, and the convention is that C∅ def

= pt, the terminal
category, C⊕ def

= C, C	 def
= Cop, and CU]U′ def

= CU × CU′ .
Here instead, we adopt a di�erent convention: a generic power CU is always “reshu�ed” in order for

all its minus and plus signs to appear on the same side, respectively on the left and on the right. The
categories CU and C (?,@) so obtained are, of course, canonically isomorphic, and the tuple U is equivalent
to the reshu�ed tuple (	1, . . . , 	? , ⊕1, . . . , ⊕@).

2.1. Higher arity dinaturality
Let ?, @ ∈ N and C be a category. The de�nition of a (?, @)-dinatural transformation from a functor

� : C (?,@) → D of type
[
?
@

]
to a functor � : C (@,?) → D of type

[
@
?

]
can be shortly stated as the condi-

tion that a dinaturality hexagon commutes, when �lled with the conjoint action of � (resp. �) in all its
contravariant and covariant components separately.
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The choice of joining with a transformation just functors of opposite types deserves a bit of explanations.
As stated in 2.1, the de�nition could be dubbed “(?, @)-to-(@, ?)” dinaturality. It sits in the middle

between a rigid one (a “(?, @)-to-(?, @)” dinaturality, where �,� below have the same type) and a loose one
(a “(?, @)-to-(A, B)” dinaturality, where �,� below have possibly completely di�erent types: this is the path
chosen by [San19], recalled in De�nition 2.18 below).

We could have stuck with the tighter notion, but some of the characterisations we give would have
become false: for example, the set of (?, @)-dinatural transformations between �,� is a (?, @)-end only
with our convention (see Example 4.7).

We could have stuck with the looser one; but the de�nition of co/wedge given in De�nition 2.10 wouldn’t
have changed (a constant functor can be “dummi�ed”, in the sense of Notation 3.4, to have whatever type
is needed).

It must be noted that both notions allow for dinatural transformations to be composed (but, as it is
well-known, the composition isn’t always dinatural). On the contrary, (?, @)-to-(@, ?) dinaturality does not
allow to speak about composition; the reason is, again, that the de�nition isn’t engineered to speak about
composition, but instead about (co/wedges and) co/ends.

De�nition 2.1. A (?, @)-dinatural transformation U : � � is a collection

{
U� : �

? times
�,...,�

�,...,�
@ times

→ �

@ times
�,...,�

�,...,�
? times

| � ∈ C>
}

of morphisms of D indexed by the objects of C such that, for each morphism 5 : �→ � of C, the diagram

�
G?
G@

�
G@
G?

�
H?
G@

�
G@
H?

�
H?
H@

�
H@
H?

U�

U�

�
f?
G@

�
H?
f@

�
f@
H?

�
G@
f?

commutes.

Example 2.2. For (?, @)=(2, 1), a (2, 1)-dinatural transformation is a collection

{
U� : ��,�

�
→ ���,�

��� � ∈ C> }
of morphisms of D such that, for each morphism 5 : � → � of C, the following hexagonal diagram
commutes:
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�
�,�

�
��
�,�

�
�,�

�
��
�,�

�
�,�

�
��
�,�
.

U�

U�

�
5 ,5

�

�
�,�

5 �
5

�,�

��
5 ,5

Notation 2.3. We write DiNat(?,@) (�,�) for the set of (?, @)-dinatural transformations from � to � .

Remark 2.4. The same convention of Section 1.3 applies to morphisms as well as to objects: �H
f

def
= �

�,...,�

5 ,...,5

is the morphism �
�,...,�

�,...,�
→ �

�,...,�

�,...,�
induced by the conjoint action of 5 in all the covariant components of � ,

and similarly for � �G,�
G
f

, etc.

Dinatural transformations can always be composed with natural ones of the appropriate arity, on the
left and on the right.

De�nition 2.5 (Composing dinaturals with naturals). Let � and � be a functors of type
[
?
@

]
, let � and  

be functors of type
[
@
?

]
, let U : � → � and V : � →  be natural transformations, and let \ : � � be a

(?, @)-dinatural transformation.
dc1) The vertical composition of \ with U is the (?, @)-dinatural transformation

\ ◦ U : � �

de�ned as the collection {
(\ ◦ U)� : �GG → �G

G | � ∈ C>
}
,

where (\ ◦ U)� = \� ◦ UGG ;
dc2) The vertical composition of V with \ is the (?, @)-dinatural transformation

V ◦ \ : �  

de�ned as the collection {
(V ◦ \ )� : �G

G →  G
G | � ∈ C>

}
,

where (V ◦ \ )� = VGG ◦ \�.

Remark 2.6. Note that the dinaturality in De�nition 2.1, does not allow us to conclude that a natural
transformation U�

�
between functors induces a dinatural family of maps by ‘complete symmetrisation’

U
�

�
↦→ UGH ; in fact, this request does not even make sense, as natural transformations are de�ned only

between functors of the same type: given � and� of variance (?, @) with ? ≠ @ (say (?, @) = (1, 2)), we have

U�� : �
�
�,� → ���,�,

rather than something of the form
U�� : �

�
�,� → �

�,�

�
,

as required per De�nition 2.1. More formally, this lack of a rule yielding a dinatural transformation from a
natural transformation between functors of type

[
?
@

]
for ? ≠ @ boils down to the absence of an identity

dinatural transformation.
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Proposition 2.7. \ ◦ U and V ◦ \ are (?, @)-dinatural transformations.

Proof. The (?, @)-dinaturality condition for \ ◦ U is the requirement that the boundary of the diagram

�GG �G
G �G

G

�HG �H
G �G

H

�HH �H
H �H

H

UG
G \�

UH
G

UH
H

\�

(1)

(2)

(3)

commutes. Since
(1) Sub-diagrams (1) and (2) commute by the naturality of U , and
(2) Sub-diagram (3) commutes by the (?, @)-dinaturality of \ ,

so does the boundary diagram, and \ ◦ U is indeed a (?, @)-dinatural transformation.
Similarly for V ◦ \ : one considers instead

• • •

• • •,

• • •

(1)
(2)

(3)

where again each sub-diagram commutes by either the dinaturality of \ or the naturality of V . �

For the next proposition, recall the de�nition of the (?, @)-diagonal functor Δ?,@ : Cop × C → C (?,@) of
C introduced in De�nition 1.5.

Proposition 2.8 (Higher arity dinaturality via ordinary dinaturality). Let � : C (?,@) → D and� : C (@,?) →
D be functors. We have a natural bijection

DiNat(?,@) (�,�) � DiNat(1,1)
(
Δ∗?,@ (� ),Δ∗@,? (�)

)
. (2.9)

Proof. This is simply a matter of unwinding the de�nitions: since
(
� ◦ Δ?,@

)
�
�

def
= �GH (and similarly for

morphisms and for �), it follows that a (?, @)-dinatural transformation � � is precisely a dinatural
transformation Δ∗?,@ (� ) Δ∗@,? (�). �

2.2. Higher arity wedges
The notion of wedge (resp., cowedge) for a diagram � : Cop × C → D arises when assuming that the

domain (resp., codomain) of a dinatural transformation to/from � is constant; similarly, a (?, @)-wedge
(resp., (?, @)-cowedge) for a diagram � : C (?,@) → D consists of a (?, @)-dinatural transformation whose
domain (resp., codomain) is a constant functor - : C (@,?) → D of type

[
@
?

]
.

De�nition 2.10. Let � : C (?,@) → D be a functor and let - ∈ D> .
cw1) A (?, @)-wedge for � under - is a (?, @)-dinatural transformation \ : Δ- � from the constant

functor of type
[
@
?

]
with value - to � ;

cw2) A (?, @)-cowedge for � over - is a (?, @)-dinatural transformation Z : � Δ- from � to the
constant functor of type

[
@
?

]
with value - .

Remark 2.11 (Unwinding De�nition 2.10).
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cwu1) A (?, @)-wedge \ : Δ- � is a collection{
\� : - → �G

G : � ∈ C>
}

of morphisms of C such that, for each morphism 5 : �→ � of C, the diagram

- �H
H

�G
G �G

H

\�

\� �
f
H

�G
f

commutes.
cwu2) A (?, @)-cowedge Z : � Δ- is a collection{

Z� : �G
G → - : � ∈ C>

}
of morphisms of C such that, for each morphism 5 : �→ � of C, the diagram

- �H
H

�G
G �G

H

Z�

Z� �
f
H

�G
f

commutes.

Remark 2.12. For the sake of clarity, we remind the reader that in our notation, the commutativity of the
diagram in Item cwu1 of Remark 2.11 above means that, for every 5 ∈ Mor(C),

�
51,...,5?

�1,...,�@
◦ \� = \� ◦ �

�1,...,�?

51,...,5@

where 58 ≡ 5 , �8 ≡ src 5 , �8 ≡ trg 5 are the domain and codomain of 5 , for every index in the relevant
range, and \� : - → �

�,...,�

�,...,�
is a morphism in D.

Notation 2.13. We write Wd(?,@)
-
(�) for the set of (?, @)-wedges of - over � , and similarly, CWd(?,@)

-
(�)

for (?, @)-cowedges.

Proposition 2.14. Let � : C (?,@) → D be a functor.

wdf1) The assignment - ↦→Wd(?,@)
-
(�) de�nes a presheaf

Wd(?,@)(−) (�) : C
op → Set.

wdf2) The assignment - ↦→ CWd(?,@)
-
(�) de�nes a functor

CWd(?,@)(−) (�) : C → Set.

Proof. Item wdf1: Let 5 : - → . be a morphism of C. We have a map

Wd(?,@)
5
(�) : Wd(?,@)

.
(�) Wd(?,@)

-
(�)

(. �)
(
- .

5
�

)
,
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where we have used Proposition 2.7. As it is clear that this construction preserves composition and
identities, we get our desired presheaf.

Item wdf2: This is dual to Item wdf1. �

Proposition 2.15. Let � : C (?,@) → D be a functor.1

wdf’1) The assignment � ↦→Wd(?,@)
-
(�) de�nes a functor

Wd(?,@)
-

: Cat(C (?,@) ,D) → D .

wdf’2) The assignment � ↦→ CWd(?,@)
-
(�) de�nes a functor

CWd(?,@)
-

: Cat(C (?,@) ,D) → D .

Proof. Let U : � → � ′ be a natural transformation. We have a map

Wd(?,@)
-
(U) :Wd(?,@)

-
(�) Wd(?,@)

-
(� ′)

(- �)
(
- � � ′U

)
,

where we have used Proposition 2.7. As it is clear that this construction preserves composition and
identities, we get our desired functor. �

De�nition 2.16. Let \ : - � be a (?, @)-wedge, and Z : � . be a (?, @)-cowedge;
pc1) The (?, @)-wedge post-composition natural transformation associated to a (?, @)-wedge \ : - �

is the natural transformation
\∗ : ℎ- →Wd(?,@)(−) (�)

consisting of the collection{
\∗,� : ℎ- (�) →Wd(?,@)

�
(�) : � ∈ C>

}
,

where \∗,� is the map

C(-,�) Wd(?,@)
�
(�)[

�
5 ↓
-

] (
Δ�

5
−→ Δ- �

)
.

pc2) The (?, @)-cowedge precomposition natural transformation associated to a (?, @)-cowedge Z : �
. is the natural transformation

Z ∗ : ℎ. → CWd(?,@)(−) (�)
consisting of the collection{

Z ∗� : ℎ. (�) → CWd(?,@)
�
(�) : � ∈ C>

}
,

where Z ∗
�

is the map

1More generally, the assignments �,� ↦→ DiNat(?,@) (�,�) de�ne functors

DiNat(?,@) (−,−) : Cat(C (?,@) ,D)op × Cat(C (?,@) ,D) → Set,

DiNat(?,@) (�,−) : Cat(C (?,@) ,D) → Set,

DiNat(?,@) (−,�) : Cat(C (?,@) ,D)op → Set.
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C(.,�) CWd(?,@)
�
(�)[

.
5 ↓
�

] (
� Δ.

5
−→ Δ�

)
.

The notion of dinaturality introduced in [MS20] is in fact more general, as [MS20, De�nition 2.4]
introduces what would be called here a (?, @)-to-(A, B)-dinatural transformation. Recall that in the setting
of [MS20], the tuple of powers of C is unbiased. Their de�nition is as follows:

De�nition 2.17. Let U, V be two multi-indices, and let � : CU → D, � : CV → D be functors. A
transformation q : � → � of type |U | = |V |f g (with = = |G| a positive integer) is a family of morphisms
in D (

qG : � (Gf) → � (Gg)
)
G∈C= .

This translates into a family q�1,...,�= : � (�f1, . . . , �f |U |) → � (�g1, . . . , �g |V |)).
Notice that U and V are di�erent multi-indices in this de�nition, and f, g need not be injective or

surjective, so we may have repeated or unused variables.

De�nition 2.18. Let q = (q�1,...,�= ) : � → � be a transformation. For 8 ∈ {1, . . . , =}, we say that q is
dinatural in�8 (or, more precisely, dinatural in its 8-th variable) if and only if for all�1, . . . , �8−1, �8+1, . . . , �=
objects of C and for all 5 : �→ � in C the following hexagon commutes:

� (G[�/8 ]f) � (G[�/8 ]g)

� (G[�,�/8 ]f) � (G[�, �/8 ]g)

� (G[�/8 ]f) � (G[�/8 ]g)

� (G[5 ,�/8 ]f )

qG[�/8 ]

� (G[�,5 /8 ]g )

� (G[�,5 /8 ]f )

qG[�/8 ]

� (G[5 ,�/8 ]g )

where G is the =-tuple (�1, . . . , �=) of the objects above with an additional (unused in this de�nition)
object �8 of C.

As far as higher arity co/wedges (i.e. higher arity dinatural transformations from/to a constant functor)
are concerned, however, the notions of (?, @)-dinaturality and (?, @)-to-(A, B)-dinaturality agree and yield
the same theory of higher arity co/ends.

3. Higher Arity Ends

3.1. Basic de�nitions

De�nition 3.1. Let � : C (?,@) → D be a functor.
pq1) The (?, @)-end of � is, if it exists, the pair

(
(?, @)

∫
�∈C �

�

�
, l

)
formed by an object

(?, @)

∫
�∈C

�
�

�

of D, and a (?, @)-wedge

l :
(?, @)

∫
�∈C

�
�

�
�
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for (?, @)
∫
�∈C �

�

�
over � , such that the (?, @)-wedge post-composition natural transformation

l∗ : h
(
−,
(?, @)

∫
�∈C

�
�

�

)
=⇒Wd(?,@)(−) (�)

is a natural isomorphism.

pq2) The (?, @)-coend of � is, if it exists, the pair
(
(?, @)∫ �∈C

�
�

�
, b

)
formed by an object

(?, @)∫ �∈C
�
�

�

of D, and a (?, @)-cowedge

b : �
(?, @)∫ �∈C

�
�

�

for (?, @)
∫ �

�
�

�
under � , such that the (?, @)-cowedge post-composition natural transformation

b∗ : h
(
(?, @)∫ �∈C

�
�

�
,−

)
=⇒ CWd(?,@)(−) (�)

is a natural isomorphism.

We follow the customary abuse of notation of denoting the (?, @)-end of � as just the tip (?, @)
∫
�∈C �

�

�
of

the terminal (?, @)-wedge l . The object (?, @)
∫
�∈C �

�

�
can also be shortly denoted as (?, @)

∫
�
� , or (?, @)

∫
� .

Remark 3.2. The co/representability conditions of De�nition 3.1 unwind as the following universal
properties:

upq1) The (?, @)-end of � consists of a pair
(
(?, @)

∫
�∈C �

�

�
, l

)
with

1) (?, @)
∫
�∈C �

�

�
an object of D, and

2) l a natural isomorphism with components

l� : D
(
�,
(?, @)

∫
�∈C

�
�

�

)
� Wd(?,@)

�
(�).

The family of such morphisms of D is such that evaluating the isomorphism l� at the identity of
� = (?, @)

∫
�∈C �

�

�
gives a (?, @)-wedge{

l� :
(?, @)

∫
�∈C

�
�

�
→ �

�

�
: � ∈ C>

}
indexed by the objects of C. This (?, @)-wedge has the following universal property:
(★) Given another such pair (�, \ ), there exists a unique morphism �

∃!
(?, @)

∫
�
�
�

�
�lling the

diagram
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�

(?, @)
∫
�
�
�

�
�
�

�

�
�

�
�
�

�

\�

�
5

�

\�

�
�

5

∃!

l�

l�

upq2) The (?, @)-coend of � consists of a pair
(
(?, @)∫ �∈C

�
�

�
, b

)
with

1) (?, @)
∫ �∈C

�
�

�
an object of D, and

2) b a natural isomorphism with components

b� : D
(
�,
(?, @)

∫
�∈C

�
�

�

)
� CWd(?,@)

�
(�).

The family of such morphisms of D is such that evaluating the isomorphism b� at the identity of
� =

(?, @)∫ �∈C
�
�

�
gives a (?, @)-cowedge{

b� : �
�

�
→
(?, @)∫ �∈C

�
�

�
: � ∈ C>

}
indexed by the objects of C. This (?, @)-cowedge has the following universal property:
(★) Given another such pair (�, Z ), there exists a unique morphism (?, @)∫ �

�
�

�

∃!
� �lling the

diagram

�

(?, @)∫ �
�
�

�
�
�

�

�
�

�
�
�

�

Z�

�
5

�

Z�

�
�

5

∃!

b�

b�

Remark 3.3. This means that the (?, @)-end of � is the terminal object of the category of wedges of � ,
whose morphisms ℎ : (U : Δ- �) → (V : Δ. �) are de�ned as the morphisms ℎ : - → . of D
such that for every � ∈ C> one has V� ◦ ℎ = U�:

- .

�
�

�
.

ℎ

U� V�
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Remark 3.3 can be dualised to de�ne (?, @)-coends as initial (?, @)-cowedges. This is straightforward,
and we leave it to the reader to spell out.

In the following proposition, we will make use of the (?, @)-diagonal functor Δ?,@ introduced in De�ni-
tion 1.5, and duplicated in the following

Notation 3.4. We say that

• A functor � : C (?+A,@+B) → D is (A, B)-dummy if it factors through the canonical projection
cA,B : C (?+A,@+B) → C (?,@) that cancels the last A contravariant components, and the last B covariant
components.
• Given a functor � : C (?,@) → D we de�ne its (A, B)-dummi�cation to be the composition ðAB � :

C (?+A,@+B)
cA,B−−−→ C (?,@) �−→ D; this promotes every functor of type

[
?
@

]
to an (A, B)-dummy one.

It’s immediate that every functor that is mute in some of its variables can be made into an (A, B)-dummy
one by suitably reshu�ing its arguments.

Proposition 3.5 (Properties of (?, @)-ends and (?, @)-coends). Let � : C (?,@) → D be a functor.

pe1) Functoriality. Let � : C (?,@) → D be a functor. The assignments � ↦→ (?, @)
∫
�
�
�

�
,
(?, @)∫ �

�
�

�
de�ne

functors

(?, @)

∫
�∈C

: Cat
(
C (?,@) ,D

)
→ D,

(?, @)∫ �∈C
: Cat

(
C (?,@) ,D

)
→ D

with domain the category of functors from C of type
[
?
@

]
toD and natural transformations between

them.
pe2) (?, @)-Wedges and (?, @)-diagonals. For each - ∈ C> we have natural bijections

Wd(?,@)(−) (�) � Wd(−)
(
Δ
(?,@)
∗ (�)

)
,

CWd(?,@)(−) (�) � CWd(−)
(
Δ
(?,@)
∗ (�)

)
.

where Δ?,@ is the functor introduced in De�nition 1.5.
pe3) (?, @)-Ends as ordinary ends. We have natural isomorphisms

(?, @)

∫
�∈C

�G
G �

∫
�∈C

Δ
(?,@)
∗ (�)��,

(?, @)∫ �∈C
�G
G �

∫ �∈C
Δ
(?,@)
∗ (�)�� .

where Δ?,@ is the functor introduced in De�nition 1.5. In other words, the (?, @)-end functor factors
as a composition

Cat(C (?,@) ,D) Cat(Cop × C,D) D,Δ
(?,@)
∗

∫
�

and similarly so do (?, @)-coends.
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pe4) (?, @)-Ends as limits. The (?, @)-end and (?, @)-coend of � �t respectively into an equaliser and
into a coequaliser diagram

(?, @)
∫
�∈C �

G
G

∏
�∈C>

�G
G

∏
D : �→�

�G
H∐

D : �→�
�G
H

∐
�∈C>

�G
G

(?, @)∫ �∈C
�G
G

_

d

_′

d′

for suitable maps _, d, _′, d ′, induced by the morphisms �G
u , �

u
H .

pe5) (?, @)-Ends as limits, again. We have natural isomorphisms

(?, @)

∫
�∈C

�G
G � lim

(
Tw(C)

Σ?,@ C (?,@) � D
)
,

(?, @)∫ �∈C
�G
G � colim

(
Tw(C)

Σ?,@ C (?,@) � D
)
,

where Σ?,@ : Tw(C) → C (?,@) is the composition Δ(?,@) ◦ Σ, with Σ the usual forgetful functor from
Tw(C) to Cop × C. Explicitly, Σ(?,@) is the functor

Tw(C) C (?,@) ,[
�
5 ↓
�

]
(G,H),[

�
5−→ �

q ↑ ↓k
� −→

6
�

]
(5, 7).

pe6) (?, @)-Ends as limits, yet again. There exists a category Tw(?,@) (C) together with a universal
�bration

Σ : Tw(?,@) (C) C (?,@)

inducing natural isomorphisms

(?, @)

∫
�∈C

�G
G � lim

(
Tw(?,@) (C) Σ C (?,@) � D

)
,

(?, @)∫ �∈C
�G
G � colim

(
Tw(?,@) (C) Σ C (?,@) � D

)
.

pe7) (?, @)-Ends as (? + A, @ + B)-ends. we have

(?, @)

∫
�∈C

�G
G � (? + A, @ + B)

∫
�∈C

ðAB (�)GG,

(?, @)∫ �∈C
�G
G �

(? + A, @ + B)∫ �∈C
ðAB (�)GG,

where ðAB (−) is the (A, B)-dummi�cation introduced in Notation 3.4.
pe8) Commutativity of (?, @)-ends with homs. We have natural isomorphisms

D
(
−,
(?, @)

∫
�∈C

�G
G

)
�
(?, @)

∫
�∈C
D

(
−, �G

G

)
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D
(
(?, @)∫ �∈C

�G
G ,−

)
�
(@, ?)

∫
�∈C
D

(
�G
G ,−

)
.

Proof. We provide proofs of the above statements for (?, @)-ends only; the case of (?, @)-coends is dual.
Item pe1: Let U : � =⇒ � ′ be a natural transformation and consider the composition

h
(
−, (?, @)

∫
�
�G
G

)
Wd(?,@)

-
(�) Wd(?,@)

-
(� ′) h

(
−, (?, @)

∫
�
(� ′)GG

)
,

(l� )∗ Wd(?,@)
-
(U) (l�′ )∗

where we have used Proposition 2.7. This gives us a morphism between the representable functors
associated to the (?, @)-ends of � and � ′. The Yoneda lemma now yields a morphism

(?, @)

∫
�

�G
G → (?, @)

∫
�

(� ′)GG .

between the (?, @)-ends. Since all constructions involved are functorial, it follows that (?, @)-ends preserve
composition and identities, and hence de�ne a functor.

Item pe2: This is the special case of Proposition 2.8 where � = Δ(−) .
Item pe3: We have

h
(
−,
(?, @)

∫
�∈C

�G
G

)
� Wd(?,@)(−) (�) � Wd(−)

(
Δ
(?,@)
∗ (�)

)
� h

(
−,

∫
�∈C

Δ
(?,@)
∗ (�)GG

)
,

from which the result follows from the Yoneda lemma.
Item pe4: This is again a combination of Item pe3 with the “products-and-equalisers” formula for ends.
Item pe5: This is just a combination of Item pe3 with the usual formula computing ends as limits of

diagrams from the twisted arrow category.
Item pe6: This problem is studied in Section 5.3, with the statement of Item pe6 being proved in

Proposition 5.18.
Item pe7: We have

h
(
−,
(?, @)

∫
�∈C

�G
G

)
� Wd(?,@)(−) (�) � Wd(?+A,@+B)(−) (ðAB (�)) � h

(
−,
(? + A, @ + B)

∫
�∈C

ðAB (�)GG
)
,

from which the result follows from the Yoneda lemma.
Item pe8: This follows from Item pe3 and the fact that co/ends commute with homs. �

3.2. Adjoints and the Fubini rule
The scope of this section is to prove that (?, @)-ends are right adjoints (and, dually, that (?, @)-coends are

left adjoints), and from this to derive a Fubini rule. Although the proofs are elementary, these properties of
(?, @)-ends are more subtle to assess and require a certain amount of new terminology. Thus we separate
them from the above list. Let’s start with a simple de�nition:

De�nition 3.6 (The homΠ functor). Let ?, @ ≥ 1 be natural numbers; let’s de�ne a functor

homΠ,?,@ : C (?,@) → Set
by sending a pair of tuples (�, �) to the product

∏?,@

8, 9=1 homC (�8 , � 9 ), namely to the iterated product∏?

8=1

∏@

9=1 (�8 , � 9 ).
Remark 3.7. If C has �nite products and �nite coproducts, then we have a canonical factorisation

C (?,@) Cop × C Set.
M?,@

homΠ,?,@

hom
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where M?,@ is the functor of Notation 1.7.

Theorem 3.8. Let � : C (?,@) → Set be a functor. There is an isomorphism, natural in � ,

DiNat(?,@) (pt,�) � Nat(homΠ,?,@,�)

The proof of Theorem 3.8 requires several lemmas (Lemmas 3.9, 3.10 and 3.14), which we now discuss.

Lemma 3.9. Let �,� : Cop × C → Set be functors. We have a natural isomorphism

DiNat(�,�) � Nat(h, [�,�]).

Proof. The proof is a formal derivation and mimics Example 4.6:

DiNat(�,�) �
∫
�∈C

homD
(
��� ,�

�
�

)
�

∫
�,�∈C

[
homC (�, �), homD

(
��� ,�

�
�

) ]
� Nat

(
homC (−1,−2), homD

(
�−2−1 ,�

−1
−2

) )
. �

Lemma 3.10. Let � : C (@,?) → D be a functor. If D is cocomplete, then

DiNat(?,@)
(
Δpt,�

)
� Nat

(
LanΔ@,?h,�

)
.

Proof. We have

DiNat(?,@)
(
Δpt,�

)
� DiNat

(
Δ∗?,@Δpt,Δ

∗
@,?�

)
,

� Nat
(
h,

[
Δ∗?,@Δpt,Δ

∗
@,?�

] )
.

� Nat
(
h,

[
Δ′pt,Δ

∗
@,?�

] )
� Nat

(
h,Δ∗@,?�

)
� Nat

(
LanΔ@,?h,�

)
. �

Remark 3.11 (Computing LanΔ@,?h). We have

LanΔ@,?h �
∫ �,�∈C

homC (@,? )
(
Δ@,? ((�, �)); (−,−)

)
� h��

�

∫ �,�∈C
homC (@,? ) ((G,H); (−,−)) � h��

�

∫ �∈C
homC (@,? ) ((G,G); (−,−))

def
=

∫ �∈C
h−1
�
× · · · × h−@

�
× h�−1 × · · · × h�−? , (3.12)

meaning the end of
(�, �) ↦→ h−1

�
× · · · × h−@

�
× h�−1 × · · · × h�−? . (3.13)

Lemma 3.14. There is an isomorphism of functors

LanΔ@,?h � homΠ,?,@ . (3.15)
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Proof. We shall prove the case (?, @) = (2, 1), as the general case is analogous. Namely, we claim that∫ - ∈C
h−1
-
× h-−2 × h-−3

(Remark 3.11)
� LanΔ1,2h

� homΠ,2,1

def
= h−1−2 × h−1−3 .

Fix �, �,� ∈ Obj(C). We will show that the diagram∐
D : -→.

h�- × h.� × h.�
∐
- ∈C

h�- × h-� × h-� h�
�
× h�

�
,

_

d

f

where _ and d are the maps induced by the maps given by

_

( [
-
D ↓
.

]
;
[
�
5 ↓
-

]
,

[
.
6↓
�

]
,

[
.
ℎ ↓
�

] )
= (5 , 6 ◦ D,ℎ ◦ D),

d

( [
-
D ↓
.

]
;
[
�
5 ↓
-

]
,

[
.
6↓
�

]
,

[
.
ℎ ↓
�

] )
= (D ◦ 5 , 6, ℎ),

and f is the map induced by the maps

f-,-,-

( [
�
5 ↓
-

]
,

[
-
6 ↓
�

]
,

[
-
ℎ ↓
�

] )
def
= (6 ◦ 5 , ℎ ◦ 5 ),

is a coequaliser diagram. Firstly, note that f indeed coequalises _ and d , as
f (_(D, 5 , 6, ℎ)) = f (5 , 6 ◦ D,ℎ ◦ D)

= ((6 ◦ D) ◦ 5 , (ℎ ◦ D) ◦ 5 )
= (6 ◦ (D ◦ 5 ), ℎ ◦ (D ◦ 5 ))
= f (D ◦ 5 , 6, ℎ)
= f (d (D, 5 , 6, ℎ)) .

Now, given another morphism ∐
- ∈C

h�- × h-� × h-� �,
Z

coequalising (_, d), i.e. such that
Z (5 , 6 ◦ D,ℎ ◦ D) = Z (D ◦ 5 , 6, ℎ), (3.16)

we claim that there exists a unique morphism Z : h�
�
× h�

�

∃!
� making the diagram∐

D : -→.
h�- × h.� × h.�

∐
- ∈C

h�- × h-� × h-� h�
�
× h�

�
,

�,

_

d

f

Z

Z
(3.17)

commute. Indeed:
trp1) Existence. For each pair

( [
�
5 ↓
�

]
,

[
�
6↓
�

] )
in h�

�
× h�

�
, we de�ne2

Z (5 , 6) def
= Z (id�, 5 , 6).

2Note that in writing Z (id�, 5 , 6) we are applying Z to the triple (id�, 5 , 6) in the component h�
�
×h�

�
×h�

�
of

∐
- ∈C

h�- ×h-� ×h-� .
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trp2) Uniqueness. Let Z̃ : h�
�
× h�

�
→ � be another morphism making Diagram 3.17 commute. Then, for

each pair
( [

�
5 ↓
�

]
,

[
�
6↓
�

] )
in h�

�
× h�

�
, we have

Z̃ (5 , 6) = Z̃ (5 ◦ id�, 6 ◦ id�)
def
= Z̃ (f (id�, 5 , 6))
= Z (id�, 5 , 6) by the commutativity of Diagram 3.17,
def
= Z (5 , 6).

trp3) Diagram 3.17 commutes. For each triple
( [

�
5 ↓
-

]
,

[
-
6 ↓
�

]
,

[
-
ℎ ↓
�

] )
in

∐
- ∈C

h�- × h-� × h-� , we have

Z (f (5 , 6, ℎ)) = Z (6 ◦ 5 , ℎ ◦ 5 )
def
= Z (id�, 6 ◦ 5 , ℎ ◦ 5 )

(Equation (3.16)) = Z (id� ◦ 5 , 6, ℎ)
= Z (5 , 6, ℎ). �

Taken all together, Lemma 3.9, Lemma 3.10, and Lemma 3.14 yield Theorem 3.8.
Corollary 3.18 ((?, @)-co/ends as weighted co/limits). Let � : C (?,@) → Set be a functor. We have
functorial isomorphisms3

(?, @)

∫
G∈C

�G
G � limhomΠ,?,@�,

(?, @)∫ G∈C
�G
G � colimhomΠ,?,@�,

Proof. We have isomorphisms, natural in � ∈ D

D
(
�,
(?, @)

∫
�

�G
G

)
def
= DiNat(?,@) (pt,D(�,�))

Theorem 3.8 � Nat
(
homΠ,?,@,D(�,�)

)
def
= D(�, limhomΠ,?,@�).

The result then follows from the Yoneda lemma. A dual argument yields the second identity. �

From Corollary 3.18, a general fact about weighted limits ([Lor15, Lemma 4.3.1]) yields
Corollary 3.19. There is an adjunction

Cat(C (?,@) ,D) D,
(?,@)

∫
C

⊥
homΠ,?,@ �−

where the left adjoint homΠ,?,@ �− is de�ned by � ↦→
(
(�, �) ↦→ homΠ,?,@ (�, �) � �

)
.

Dually, there is an adjunction

Cat(C (?,@) ,D) D,
(?,@)∫ C
⊥

homΠ,?,@t−

where the left adjoint homΠ,?,@ �− is de�ned by � ↦→
(
(�, �) ↦→ homΠ,?,@ (�, �) ��

)
, and the right adjoint

homΠ,?,@ t − is de�ned by � ↦→
(
(�, �) ↦→ homΠ,?,@ (�, �) t �

)
.

3For (?,@) = (1, 1) , this amounts to the well-known statement that the co/end of) : Cop × C is the weighted co/limit of) by
the hom functor homC (−,−) : Cop × C → Set; see [Kel05, Section 3.10].
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Lemma 3.20 (Shishido identity, �rst form). The product-hom functor of De�nition 3.6 satis�es the Shishido
identity:4

homΠ,?,@ × homΠ,A ,B � homΠ,A ,B × homΠ,?,@ �

?+A∏
8=1

@+B∏
9=1

h(−8 ,−8 )(−9 ,−9 ) .

Proof. The �rst isomorphism is clear. For the second one, let (�, �) ∈ C (?,@) and �′, �′ ∈ C (A,B) ; we then
have natural isomorphisms

homΠ,?,@ × homΠ,A ,B ((�;�′), (�;�′)) =
?,@∏
8, 9=1

homC
(
�8 , � 9

)
×

A,B∏
ℎ,:=1

homC
(
�′
ℎ
, �′
:

)
�

?,@∏
8, 9=1

A,B∏
ℎ,B

homC
(
�8 , � 9

)
× homC

(
�′
ℎ
, �′
:

)
�

?+A,@+B∏
8, 9=1

homC
(
(�;�′)8 , (�;�′) 9

)
.

where the tuple �;�′ is the juxtaposition of �,�′. �

Theorem 3.21 (The Fubini Rule). Let � : A (?,@) × B (A,B) → D be a functor. Then

(? + A, @ + B)

∫
(�,�)

�
G,H
G,H � (?, @)

∫
� (A, B)

∫
�

�
G,H
G,H � (A, B)

∫
� (?, @)

∫
�

�
G,H
G,H , (3.22)

(? + A, @ + B)∫ (�,�)
�

G,H
G,H �

(?, @)∫ � (A, B)∫ �

�
G,H
G,H �

(A, B)∫ � (?, @)∫ �

�
G,H
G,H (3.23)

as objects of D, meaning that any of these expressions exist if and only if the others do, and, if so, they are
are all canonically isomorphic.
Proof. To prove that three expressions in Equation (3.22) are isomorphic, it su�ces to show their adjoints
(Corollary 3.19) (

homΠ,?,@ t homΠ,A ,B
)
t (−)(

homΠ,A ,B t homΠ,?,@
)
t (−)(

?+A∏
8=1

@+B∏
9=1

h(−8 ,−8 )(−9 ,−9 )

)
t (−)

are isomorphic, since adjoints are unique. As (� t �) t � � (� × �) t � , this follows from Lemma 3.20.
A suitably dualised argument yields the result for higher arity coends. �

Remark 3.24 (Fubini does not reduce arity). Note that ?, @, A, B can’t be broken further: given a functor �
of type

[
?
@

]
, its (?, @)-end isn’t in general expressible in terms of (? − A, @ − B)-ends for suitable A, B ≥ 1.

This con�rms the fact that iterated ends are not higher arity ends. Instead, higher arity ends are particular
ends.

That is, Theorem 3.21 does not allow us to reduce the arity of a higher arity co/end when A = B:

(?, @)

∫
� (A, B)

∫
�

�
G,H
G,H �

(? + A, @ + B)

∫
(�,�) ∈A×A

�
G,H
G,H � (? + A, @ + B)

∫
�∈C

�G
G .

4Shishido Baiken is the name of a Japanese swordsman (his existence is attested in the Nitenki written in 1776, but the reliability
of the text is currently object of debate). Baiken was a skilled master of kusarigama-jutsu and, according to the legend, lost a duel
(and his life) with Miyamoto Musashi.
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This is already apparent from the classical Fubini rule, where, given a functor ) : Cop × C × Eop × E → D
with C = E, we have once again∫

(�,�) ∈C×C
) ((�, �), (�, �)) �

∫
�∈C

) (�,�,�,�).

The main point in both cases is that we are “integrating” over a pair (�, �), and not over a single variable
�.

From the point of view of adjoints, we have in (e.g.) the (?, @) = (1, 1) case

(−) �
(
h−1−3 × h−1−4 × h−2−3 × h−2−4

)
a
(2, 2)∫ �∈C

�
�,�

�,�

(−) � h(−1,−2)(−3,−4)︸  ︷︷  ︸
h−1−3×h−2−4

a
∫ (�,�) ∈C×C

�
(�,�)
(�,�) ,

and of course
h−1−3 × h−1−4 × h−2−3 × h−2−4 ≠ h(−1,−2)(−3,−4) = h−1−3 × h−2−4 ,

so
∫ �∈C

�
�,�

�,�
and

∫ (�,�) ∈C×C
�
(�,�)
(�,�) are di�erent as well.

4. Examples: a session of callisthenics

4.1. Examples arranged by dimension
The �rst roundup of examples is a series of sanity checks:

Example 4.1 ((0, 0)-co/ends). For the case where ? = @ = 0, we look at functors of the form � : pt→ D,
where pt is the terminal category. It is evident that such a functor corresponds precisely to an object of D,
a (0, 0)-wedge corresponds to the identity on that object, and the (0, 0)-end of � is precisely that object.

Example 4.2 ((1, 0)- and (0, 1)-co/ends). When (?, @) = (1, 0), we consider functors of the form� : Cop →
D, and we see from the universal property of (?, @)-ends that the (1, 0)-end of � is the limit of � . Similarly,
the (0, 1)-end of a functor � : C → D is again the limit of � .

In particular, starting with a functor � : C → D and passing to the opposite functor �op : Cop → Dop,
we get isomorphisms

(0, 1)

∫
�∈C

� = lim(�),

(1, 0)

∫
�∈C

�op = colim(�).

Example 4.3 ((1, 1)-co/ends). Let (?, @) = (1, 1) and consider a diagram inD of the form� : Cop×C → D.
Again from the universal property of (?, @)-ends, we see that (1, 1)-ends are nothing but ordinary ends.
That is:

(1, 1)

∫
�∈C

��� =

∫
�∈C

��� .

Furthermore, (=, 0)-co/ends and (0, =)-co/ends are just suitable co/limits:

Example 4.4 ((2, 0)-, (0, 2)-co/ends; (=, 0)- and (0, =)-co/ends). Given a diagram � : C2 → D, we have

(0, 2)

∫
�∈C

��,� = lim (� ◦ ΔC) ,
(0, 2)∫ �∈C

��,� = colim (� ◦ ΔC) ,
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where ΔC : C → C × C is the diagonal functor of C in the Cartesian monoidal structure of Cat.
A similar argument yields, for a diagram � : C= → D:

(0, =)

∫
�∈C

�G = lim
(
� ◦ Δ=C

)
,

(0, =)∫ �∈C
�G = colim

(
� ◦ Δ=C

)
.

We consider next the �rst nontrivial example:

Example 4.5 ((2, 1)- and (1, 2)-co/ends). Given a functor ) : C−2 × C → D let’s �esh out what a
(2, 1)-wedge is: it consists of an object - endowed with maps

l� : - ) (��;�)

with the property that, for every 5 : �→ � in C, the square

- ) (��;�)

) (��;�) ) (��;�)

l

l ) (115 )

) (5 5 1)

The (2, 1)-end of ) is the terminal object in the category Wd(2,1) () ) of wedges for ) .
As a particular example, let C be a Cartesian category. Let us consider the functor

) = hom(_1 × _2, _3) : Cop × Cop × C Set
(�, �;�) C(� × �,�)

What is a (2, 1)-wedge for ) ? It consists of a set - , and a family of functions l� : - → C(� ×�,�) with
the property that for each 5 : �→ �, the square

- C(� ×�,�)

C(� × �, �) C(� ×�, �)

5∗

(5 ×5 )∗

commutes. In other words, each l� (G) is a morphism � × � → � in C with the property that each
5 : �→ � is a “homomorphism” with respect to l� (G), l� (G):

� ×� �

� × � �

5 ×5

l� (G)

5

l� (G)

This structure is easy to determine: let 1 : 1→ � be a point of� (e.g., let C = Set). Then the commutativity
of

1 1

� × � �

5 ×5

l� (G)

5

l� (G)

tells that l� (G) : � × � → � is a section of the diagonal Δ� (this means: l� (G) (1, 1) = 1 for every 1 ∈ �).
Moreover, the family l� : � ×�→ � is natural in �, i.e. it is a natural transformation

× ◦ Δ idl
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that is a section of the natural transformation in the opposite direction, unit of the adjunction constant-
product.

There are few such transformations. First, observe that the functor × ◦ Δ coincides with the functor
- ↦→ - 2, so corresponds to the cotensoring with 2 = {0, 1} in an abstract category, and it is just the
corepresentable presheaf on 2 in the category of sets. Similarly, the identity is the corepresentable over the
point in the category of sets. All in all, in the category of sets

(2, 1)

∫
�

hom(� ×�,�) � [Set, Set] (Set(2, _), Set(1, _))

� Set(1, 2) � 2

by Yoneda.
Similarly, in a category C with Set-cotensors,

(2, 1)

∫
�

C(� ×�,�) � [C, Set] ((2 t _), (1 t _))

where the functor (= t _) coincides with the =-fold iterated product - ↦→ -= = - × · · · × - . A similar
argument shows that (=, 1)

∫
�
C(�=, �) � [C, Set] ((= t _), (1 t _)).

Example 4.6 (Dinatural transformations as a (2, 2)-end). This example was �rst discovered in [DS70,
Theorem 1]. We give an account of it in our language.

Let �,� : Cop × C → D be functors. Then

DiNat(�,�) �
∫
�∈C

homD
(
��� ,�

�
�

)
,

�
(2, 2)

∫
�∈C

homD
(
��� ,�

�
�

)
.

Proof. The proof of the �rst isomorphism is divided in two steps:
dep1) First, consider the functor

homD
(
�−2−1 ,�

−1
−2

)
: Cop × C → Set

sending
(a) An object (�,- ) of Cop × C to the set D

(
�-
�
,��

-

)
;

(b) A morphism
(
�

5
−→ �,-

6
−→ .

)
of Cop × C to the map

D
(
�
6

5
,�

5
6

)
: D

(
�-� ,�

�
-

)
→ D

(
�.� ,�

�
.

)
de�ned as the composition

D
(
�-
�
,��

-

)
D

(
�-
�
,��

.

)
D

(
�.
�
,��

.

)
D

(
�.
�
,��

.

)
D

(
�.
�
,��

.

)
.

D
(
�-
�
,��
5

)
D
(
�
6

5
,�
5
6

)
D

(
�
5

�
,��
.

)
D

(
�.
�
,�
5

.

)
D

(
�.
5
,��
.

)
By functoriality of homs, the assignment (�,- ) ↦→ D

(
�-
�
,��

-

)
preserves identities and composi-

tion, de�ning therefore a functor.
dep2) Second, we compute the end

∫
�∈C homD

(
��
�
,��

�

)
; this is given by the equaliser of the pair of maps∏

�∈C> D
(
��
�
,��

�

) ∏
5 :�→� Set

(
C(�, �),D

(
��
�
,��

�

) )_

d



COENDS OF HIGHER ARITY 29

where _ and d are the morphisms induced by the universal property of the product by the morphisms

_�,� :
∏
�D

(
��
�
,��

�

)
→ Set

( (
C

(
�, �

)
,D

(
��
�
,��

�

) )
,

d�,� :
∏
�D

(
��
�
,��

�

)
→ Set

( (
C

(
�, �

)
,D

(
��
�
,��

�

) )
acting on elements as(

U� : �
�
� → ���

)
↦→

( [
�
5 ↓
�

]
↦→

(
�

id�
5
◦ U� ◦ � 5id�

))
,(

U� : �
�
� → ���

)
↦→

( [
�
5 ↓
�

]
↦→

(
�
5

id�
◦ U� ◦ � id�

5

))
,

and hence asking for _ and d to be equal is precisely the dinaturality condition for a family{
U� : �

�
� → ���

}
�∈C>

of morphisms ofD. As an element of the end
∫
�∈C D

(
��
�
,��

�

)
is precisely such a family equalising

_ and d , the result follows.
As for the second isomorphism, we de�ne a functor

D(�↑,�↓) : C (2,2) → Set
in a similar manner as we did above and then invoke Item pe3 of Proposition 3.5. The universal property of
the (2, 2)-end of D(�↑,�↓) is the same as the universal property of the equaliser de�ning DiNat(�,�). �

Generalising Example 4.6, we have the following.

Example 4.7 ((?, @)-Dinatural transformations as a (@, ?)-end). Let � and � be functors of type
[
?
@

]
and[

@
?

]
, respectively. Then

DiNat(?,@) (�,�) �
(@, ?)

∫
�∈C

homD
(
�
�

�
,�

�

�

)
,

where the “integrand” is the functor

C (@,?) D

(�, �) homD
(
�
�1,...,�?

�1,...,�@
,�

�1,...,�@

�1,...,�?

)
.

Proof. This is a combination of Proposition 2.8, Example 4.6, and Item pe3 of Proposition 3.5. �

4.2. Classes of higher arity coends

4.2.1. A glance at weighted co/ends

We now introduce a natural factory of examples for higher arity co/ends. In a nutshell, weighted co/ends
are to co/ends as weighted co/limits are to co/limits.

De�nition 4.8 (Weighted co/end). Let C and D be V-enriched categories and � : Cop ⊗V C → D a
V-functor, and, : Cop × C → V aV-presheaf.
we1) The end of � weighted by, is, if it exists, the object

∫,
�∈C �

�
�

of D with the property that

homD
(
−,

∫ ,

�∈C
���

)
� DiNatV (,,homC (−, �)) .

we2) The coend of � weighted by, is, if it exists, the object
∫ �∈C
,

��
�

of D with the property that

homD
(∫ �∈C

,

���,−
)
� DiNatV (,,homC (�,−)) .
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Example 4.9 (Weighted co/ends are (2, 2)-co/ends). A quick argument (to be discussed in future work
[dLb]) gives (2, 2)-co/end formulas for weighted co/ends:∫ [, ]

�∈C
��� � (2, 2)

∫
�∈C

, �
� t �

�
�,∫ �∈C

[, ]
��� �

(2, 2)∫ �∈C
, �
� � �

�
� .

Example 4.10 (Weighting Increases Arity). Let �,� : C → D and, : Cop × C → V beV-functors. In
analogy with

NatV (�,�)
def
=

∫
�∈C

homD (��,��),

we de�ne the object Nat[, ] (�,�) of natural transformations from � to � weighted by, by

Nat[, ] (�,�) def
=

∫ [, ]

�∈C
homD (��,��). (4.11)

Taking, to be mute in its contravariant variable, we can give a reformulation of the universal property of
weighted limits:

h
(
−, lim, (�)

)
� Nat[, ]

(
Δ(−) , �

)
.

De�ning DiNat[, ]V (�,�) by a similar formula, we also obtain the following isomorphism in the case of
weighted ends:

h
(
−,

∫ [, ]

�∈C
���

)
� DiNat[, ]V

(
Δ(−) , �

)
.

This naturally suggests a de�nition of “doubly-weighted ends”:

h
(
−,

∫ [,1,,2 ]

�∈C
���

)
� DiNat[,1 ]

V (,2, �).

Repeating this process give you ends weighted by a collection of = functors,1, . . . ,,= . These however,
can be actually computed as (= + 1, = + 1)-ends ([dLb]):∫ [,1,...,,= ]

�∈C
��� � (= + 1, = + 1)

∫
�∈C

(
(,1)�� × · · · × (,=)��

)
� ��� .

As such, we see that weighting an end increases its arity by (1, 1).

4.2.2. Weighted Kan extensions

Another source of examples comes from “weighing” left and right Kan extensions. While the most
general such weight is a profunctor, having type

[
1
1

]
, weights of type

[
1
0

]
or

[
0
1

]
are specially interesting,

as they give a more direct parallel with the classical theory of weighted co/limits (see Example 4.16).
For De�nitions 4.12 and 4.14 below, recall from Equation (4.11) the de�nition of the object Nat[, ] (�,�)

of weighted natural transformations.

De�nition 4.12. The left Kan extension of � along  weighted by, is, if it exists, theV-functor

(
Lan[, ]

 
� : D → E

)
:

D

C E,

Lan[, ]
 

�
 

,
�
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for which we have aV-natural isomorphism

NatV
(
Lan[, ]

 
�,�

)
� Nat[, ]V (�,� ◦  ) , (4.13)

natural in � .

One de�nes weighted right Kan extensions in a dual manner:

De�nition 4.14. The right Kan extension of � along  weighted by, is, if it exists, theV-functor

(
Ran[, ]

 
� : D → E

)
:

D

C E,

Ran[, ]
 

�
 

,
�

for which we have aV-natural isomorphism

NatV
(
�,Ran[, ]

 
�

)
� Nat[, ]V (� ◦  , � ) , (4.15)

natural in � .

Example 4.16 (Weighted co/limits as weighted Kan extensions). Let � : C → D be a diagram on a
category D. Then we may canonically identify the left Kan extension of � along the terminal functor with
its colimit:

Lan!� � dcolim(�)e
pt

C D .

dcolim(�) e!

�

Similarly, given a weight, : Cop → Set, we have

Lan[, ]! � � dcolim, (�)e
pt

C D .

dcolim, (�) e!

,
�

One can also prove that the following formulas hold ([dLb]):

Lan[, ]
 

� �

∫ �∈C

[, ]
homC ( �,−) � �� �

(2, 2)∫ �∈C (
, �
� × homC ( �,−)

)
� ��, (4.17)

Ran[, ]
 

� �

∫ [, ]

�∈C
homC (−,  �) t �� �

(2, 2)

∫
�∈C

(
, �
� × homC (−,  �)

)
t �� . (4.18)

Equipped with these, we now proceed to compute a few weighted Kan extensions.

Example 4.19. Consider the functor [0]op : ptop → Δop; the left and right Kan extensions of a set
-• : pt→ Set along [0]op are given by

Lan[0]op (- ) � - •
Ran[0]op (- ) � Č• (- ).
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Now take a weight, : ptop × pt→ Set:

�
op

ptop Set.

Lan[, ][0]op-
[0]op

,
-

Then

Lan[, ][0]op (- ) �, × - •
Ran[, ][0]op (- ) � Č• (, × - ) .

Example 4.20. The above example has a more interesting counterpart, in which we consider the functor

top : �op ptop

[=] ★.

The left and right Kan extensions of a simplicial set -• : �op → Set along top are given by

Lantop (-•) � c0 (-•)

Rantop (-•) � ev0 (-•)
def
= -0.

There is a great deal of �exibility in the choice of weight, as we may choose as such any cosimplicial space
, •• : �

op × �→ Set:
ptop

�
op Set.

Lan[, ]
top -•

top

,
-•

For instance, taking, = Δ• almost gives the geometric realisation of -•:

Lan[Δ
• ]

top (-•) �
∫ [=] ∈�

Δ= × -=,

with the caveat that the geometric realisation involves |Δ= |, rather than Δ= itself. Dually, taking again
, = Δ• but now for a cosimplicial object - • : �→ Set, we have

Ran[Δ
• ]

t (- •) = Tot(-•).

Example 4.21 (Stalks of a sheaf ([SGAIV, Paragraph 6.8 and Section 7.1])). Let 8? : {?} - be the
inclusion of a point into a topological space - . We get an induced functor

Op(8? ) : Op(- ) Op({?})

* 8−1? (* ).

Considering now left Kan extensions along the opposite of Op(8? ),

Op({?})op

Op(- )op Set,

LanOp(8? )opF
Op(8? )op

F
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we obtain a functor LanOp(8? )op : PSh(- ) → PSh({?}), whose image at F is written dF?e for simplicity.
The restriction of this functor to Shv(- ) can be identi�ed with the stalk functor (−)? : Shv(- ) → Set: we
have Op({?}) = {∅ {?}} and computing the images of ∅ and {?} under dF?e via the usual colimit
formula for left Kan extensions gives

dF?e ({?}) � colim
((

Op(d?e) ↓ {?}
)op prop

Op(- )op F Set
)
,

� colim
* 3?
(F(* )),

� F?

dF?e (∅) � colim
( (

Op(d?e) ↓ ∅
)op prop

Op(- )op F Set
)
,

� colim
* ↩→∅

(F(* )),

� F(∅).

(in case F is a sheaf, F(∅) is the singleton set.) Consider the same situation, but now with a weight
, : Op(- ) × Op(- )op → Set (a “diagonal presheaf on - ”; see Section 4.2.3 below):

Op({?})op

Op(- )op Set.

Lan[, ]Op(8? )opF
Op(8? )op

,
F

Using Equation (4.17), we may compute Lan[, ]Op(8? )opF
def
= dF [, ]? e as the weighted coend

dF [, ]? e def
=

∫ * ∈Op(- )

[, ]
homOp(- )op

(
Op

(
8
op
?

)
(* ),−

)
� F(* )

�

∫ * ∈Op(- )
,*
* × homOp(- )

(
j? (* ),−)

)
×F(* ),

where

j? (* ) =
{
∅ if ? ∉ * ,
* otherwise.

For instance, taking, to be a sheaf G on - gives

F
[G]
?

def
= dF [G]? e ({?}) �

(
F ×G

)
?
.

4.2.3. A glance at diagonality

In a nutshell, “diagonal” category theory arises when, instead of considering a natural transformation
�lling a higher-dimensional cell, we consider a dinatural one. Transformations that are more general than
natural ones notoriously do not compose (see [Kel72b; Kel72a] and mostly [San19] for a modern account);
yet, the category theory arising from this generalisation is interesting.

For the purposes of our exposition here, left/right Kan extensions are the most interesting categorical
gadget to “diagonalise”; when this is done, they provide examples of higher arity co/ends.
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De�nition 4.22 (Diagonal left Kan extensions). The diagonal left Kan extension of a functor � : Cop×C →
D along a functor  : Cop × C → D is, if it exists the functor DiLan � : D → E such that we have an
isomorphism

Nat(DiLan �,�) � DiNat(�,� ◦  ),

D

Cop × C E

DiLan �
 

�

natural in � .

Example 4.23. Standard examples of diagonal left Kan extensions are ends: Generalising the fact that the
left Kan extension of a functor � : C → D along the terminal functor t : C pt can be identi�ed with
the colimit of D, the diagonal left Kan extension of a functor � : Cop × C → D along the terminal functor
t : Cop × C pt can be identi�ed with the coend of D.

pt

C D,

dcolim(�) et

�

pt

Cop × C D .

d
∫ �

��
�
et

�

Now, while ordinary Kan extensions can be computed via co/end formulas, diagonal Kan extensions
admit (2, 2)-co/end formulas ([dLa]):

DiLan � �
(2, 2)∫ �∈C

D
(
 �� ,−

)
� ��� , (4.24)

DiRan � �
(2, 2)

∫
�∈C
D

(
−,  ��

)
t ��� , (4.25)

where the pairing in Equation (4.24) is such that DiLan � is the coend of

(�, �) ↦→ D
(
 �� ,−

)
� ��� .

Alternatively, we may compute diagonal Kan extensions as hom-weighted Kan extensions ([dLb; dLa]):

DiLan � �
∫ �,�∈C

[homC (−,−) ]
D

(
 �� ,−

)
� ��� ,

DiRan � �
∫ [homC (−,−) ]

�,�∈C
D

(
−,  ��

)
t ��� .

This is a generalisation, as per Example 4.23, of the fact that ends are hom-weighted limits. A forthcoming
work [dLa] will address the topic of this remark in its entirety, studying the category theory arising from
the notion of a weighted co/end (De�nition 4.8).

Example 4.26. As a very special case, we note that diagonal left and right Kan extensions of identity
functors are very important: with a universal property of the form

Nat(DiLanid�,�) � DiNat(?,@) (�,�),
Nat(�,DiRanid�) � DiNat(?,@) (�,�),

they allow us to study (?, @)-dinatural transformations from � to � in terms of ordinary natural transfor-
mations. These will play a fundamental role in Section 5.
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Example 4.27. Let C be a closed monoidal category and � : Cop × C → D be a diagram on D. What is
DiLan[−,−]� and DiRan[−,−]�?

C

Cop × C D .

DiLan[−,−]�
[−,−]

�

DiLan[−,−]� �
∫ �∈C

homC ( [�,�],−) � ��� .

Example 4.28. Let � : Cop × C → D be a diagram on D. What is DiLanよ� and DiRanよ�?

PSh(Cop × C)

Cop × C D .

DiLanよ�
よ

�

DiLanよ� �
∫ �,�∈C

homC (−,−)
homPSh(Cop×C)

(
よ

�

�,−
)
� ��� ,

�

∫ �∈C
homPSh(Cop×C)

(
よ
�

�,−
)
� ��� ,

�
(2, 2)∫ �∈C

homPSh(Cop×C)
(
よ
�

�,−
)
� ��� ,

def
=

(2, 2)∫ �∈C
homPSh(Cop×C) (homCop×C (−, (�,�)),−) � ��� ,

def
=

(2, 2)∫ �∈C
homPSh(Cop×C)

(
h� × h�,−

)
� ��� .

In order to introduce the next example, we recall the following notation: we have an adjunction

(t a [0]) : pt �,
[0]

ta

where
• [0] : pt � is the functor choosing the terminal object;
• t : � pt is the terminal functor;

This induces a quadruple adjunction(
c0 a (−)• a ev0 a Č•

)
: Set sSet

c0

(see [Gra80, §3]).
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Example 4.29. Let (•• : �
op × �→ Set be a cosimplicial space. What is DiLantop×t ((••)?

ptop × pt

�
op × � Set.

DiLantop×t ((•• )
top×t

(••

It is just the end of (•• (btw do you know what this is?):

DiLantop×t ((••) �
∫ [=] ∈�

hompt (★,★) � (== ,

�

∫ [=] ∈�
(== .

Similarly, given a set - : ptop × pt→ Set, we have

�
op × �

ptop × pt Set.

DiLan[0]op×[0] (- )
[0]op×[0]

-

DiLan[0]op×[0] (- ) �
∫ ★∈pt

hom
�

op×� (( [0], [0]), (−1,−2)) � -,

� hom
�

op×� (( [0], [0]), (−1,−2)) � -
� hom� ( [0],−2) � -
� Δ−2 [0] � - .

Similarly, let - •• : �
op × �→ Set be a cosimplicial space again. What is DiLanΔ (- •• )?

Set

�
op × � Set.

DiLanΔ (- •• )
Δ−2 [−1 ]

- ••

DiLanΔ (- •• ) �
∫ [=] ∈�

Set(Δ= [=],−) � -== .
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4.2.4. Weighted diagonal Kan extensions

In the same spirit, one can de�ne weighted diagonal Kan extensions, mixing the two perspectives in
De�nitions 4.8 and 4.22, and considering now the diagram

D

Cop × C E,

DiLan �

,

 

�

just to discover that these are actually computed as (4, 4)-co/ends:

DiLan[, ]
 

� �
(4, 4)∫ �∈C (

,
�,�

�,�
× homC

(
 �� ,−

))
� ��� ,

DiRan[, ]
 

� �
(4, 4)

∫
�∈C

(
,

�,�

�,�
× homC

(
−,  ��

))
t ��� .

At this point, the reader shall be convinced that the list of examples is virtually endless. We defer a thorough
study of the topic to separate works [dLa; dLb].

4.2.5. Daydreaming About Operads

Day convolution was introduced by B. Day in [Day70a; Day70b], in order to classify monoidal structures
on the category PSh(C) of presheaves on C. Day proved that PSh(C) can be turned into a monoidal
category in as many ways as C can be turned into a pseudomonoid in the bicategory Prof of profunctors.5

We now propose a generalisation of this framework based on higher arity coends: let (C, ⊗, 1) be a
monoidal category, and let K def

= PSh(C). Higher arity Day convolution is de�ned as a family of functors
~= : K= → K :

De�nition 4.30. The Day (=, =)-convolution of an =-tuple of presheaves F1, . . . ,F= is the presheaf

~= (F1, . . . ,F=) : Cop → Set
de�ned at � ∈ C> as the (=, =)-coend

~= (F1, . . . ,F=)
def
= � ↦→

(=, =)∫ �∈C
F1 (�) × · · · ×F= (�) × C

(
−, �⊗=

)
,

where �⊗= is shorthand for the =-fold tensor product of � with itself.

Example 4.31 (Day convolution operad). The Day convolution operad associated to (C, ⊗, 1) is the
free symmetric operad Day whose set of generating operations (see [Fre17, Section 1.2.5]) is given by
{id, ~2, ~3, . . . , ~=, . . .}.

Remark 4.32 (Unwinding Example 4.31). We spell out in detail the �rst four sets of =-ary operations of
Day:

Day1 = {id}
Day2 = {~2 (−,−)}

5More formally, let ( : Cat→ Cat be the 2-monad of pseudomonoids; let (̃ : Prof → Prof be the lifting of ( to the bicategory
of profunctors (i.e. to the Kleisli bicategory of the presheaf construction PSh); then, given an object C of Cat, there is a bijection
between pseudo-(-algebra structures on PSh(C) and pseudo-(̃-algebras on C, as an object of Prof .
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Day3 = {~3 (−,−,−), ~2 (~2 (−,−),−), ~2 (−, ~2 (−,−))}
Day4 = {~4 (−,−,−,−), ~2 (~3 (−,−,−),−), ~2 (−, ~3 (−,−,−)), ~2 (~2 (−,−), ~2 (−,−)),

~3 (~2 (−,−),−,−), ~3 (−, ~2 (−,−),−), ~3 (−,−, ~2 (−,−))}

All in all, the set Day= can be succinctly described as

Day= = {~=} ∪
∑
?+@==

Day? × Day@

The operadic composition of Day is now de�ned via ‘grafting’ in the usual way:

Day= × Day:1 × · · · × Day:= Day∑
:8

(\ ;\1, . . . , \: ) \ (\1 (−1, . . . ,−:1 ), . . . , \: (−1, . . . ,−:= )).

5. Kusarigamas and twisted arrow categories
The aim of this section is to introduce and study a fundamental computational tool that will endow

higher arity coends with a fairly rich calculus. Generalising a construction of Street–Dubuc introduced in
[DS70, Theorem 2], we introduce in De�nition 5.1 functors

Γ?,@ : Cat
(
C (?,@) ,D

)
→ Cat

(
C (@,?) ,D

)
,

Γ@,? : Cat
(
C (@,?) ,D

)
→ Cat

(
C (?,@) ,D

)
,

dubbed co/kusarigamas, which generalise the product-hom functor of De�nition 3.6, in the sense that

homΠ,?,@ (�, �) �

Γ?,@ (pt)�
�
,

where pt is the terminal functor. These constructions allow us to pass from dinaturality to naturality and
underpin a number of results in the theory of higher arity co/ends, such as the construction of higher arity
twisted arrow categories.

Overall, the entire structure of the section concentrates on studying the properties of the functors
Γ@,? (�), Γ?,@ (� ), regarded as

• Universal objects among (?, @)-dinatural transformations, through which all other (?, @)-dinaturals
factor (De�nition 5.1 and Remark 5.3):

DiNat(?,@) (�,�) � Nat
(
�, Γ?,@ (�)

)
� Nat

( Γ?,@ (� ),�
)
;

• Functors that can be inductively de�ned through suitable Kan extensions (Item pk5), starting from
the case

[
1
1

]
:

Γ?,@ (� ) � LanΔ@,?
( Γ(

Δ∗?,@ (� )
) )
, Γ?,@ (�) � RanΔ?,@

(
Γ
(
Δ∗@,? (�)

) )
.

• “Twisted versions” of � and � , which may be computed by use of a similar formula as the one
computing co/ends as co/limits via the twisted arrow category (Section 5.4).

Finally, the paramount property of the co/kusarigama functors is that given a category C, the category of
elements of Γ?,@ (pt), where pt : C (?,@) → Set is the terminal presheaf, is the universal �bration needed
to build a higher-arity version of the twisted arrow category (i.e., the category of elements of homC): we
study this construction in Section 5.3. This makes it possible to express the (?, @)-co/end of a diagram
� : C (?,@) → D as a co/limit over the (?, @)-twisted arrow category of C.



COENDS OF HIGHER ARITY 39

5.1. Co/kusarigamas: basic de�nitions
Let C and D be categories.

De�nition 5.1. Let � and � be functor from C to D of types
[
?
@

]
and

[
@
?

]
.

ck1) The kusarigama6 of � is, if it exists, the object

Γ@,? (�) : C (?,@) → D

of Cat(C (?,@) ,D) representing the functor

DiNat(?,@) (−,�) : Cat(C (?,@) ,D) → Set.

ck2) The cokusarigama of � is, if it exists, the object

Γ?,@ (� ) : C (@,?) → D

of Cat(C (?,@) ,D) corepresenting the functor

DiNat(?,@) (�,−) : Cat(C (@,?) ,D) → Set.

Remark 5.2. Thus, co/kusarigamas are de�ned by the following relations:

Nat
( Γ?,@ (� ),−

)
� DiNat(?,@) (�,−),

Nat
(
−, Γ?,@ (�)

)
� DiNat(?,@) (−,�).

It is crucial to focus on the exact way in which the types of �,� , and of Γ?,@ (� ), Γ?,@ (�) interchange: ask-
ing that �,� be of type of types

[
?
@

]
and

[
@
?

]
is the only possible choice for the three objects Nat( Γ?,@ (� ),�),

Nat(�, Γ?,@ (�)) and DiNat(?,@) (�,�) to exist, according to our De�nition 2.1.
This means that Γ?,@, Γ?,@ are candidates to be functors

Γ?,@ : Cat(C (?,@) ,D) → Cat(C (@,?) ,D) Γ?,@ : Cat(C (@,?) ,D) → Cat(C (?,@) ,D)

Among many other properties, we prove in Proposition 5.9 that these correspondences are indeed functors.

Remark 5.3 (Unwinding De�nition 5.1). The co/representability conditions de�ning co/kusarigamas
unwind as the following universal properties:
uk1) The cokusarigama of a functor � : C (?,@) → D is, if it exists, the pair ( Γ?,@ (� ), [) with

Γ@,? (� ) : C (@,?) → D

a functor of type
[
?
@

]
, and

[ : �

Γ?,@ (� )
a (?, @)-dinatural transformation satisfying the following universal property:

6A kusarigama (鎖鎌) is a Japanese compound weapon made of a sickle (kama) and a blunt weight (fundo) attached to the opposite
ends of a chain (kusari). The weight was used to disarm the opponent by entangling their sword in the chain, or as a single weapon;
disarmed or damaged the opponent, the sickle was then used to deliver the �nal, fatal strike. Kusarigamas were probably adapted
from an old farming tool, and �rst adopted by Koga ninjas as a fast, compact weapon; its use then spread to tactic-oriented esoteric
weaponry schools like Shinkage-ryū and Suiō-ryū. See [Ino98] for more information.

For us, the chain consists of the tuple of hom-functors, at the end of which the “weight”� is attached:

Γ@,? (�) def
=

∫
�∈C

h� × · · · × h� × h� × · · · × h� t ��� .
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(★) Given a (?, @)-dinatural transformation \ : � � , there exists a unique natural
transformation Γ?,@ (� ) =⇒ � making the diagram

Γ?,@ (� )

� �

∃!

\

[

commute.
uk2) The kusarigama of a functor � : C (@,?) → D is, if it exists, the pair (Γ@,? (�), n) with

Γ@,? (�) : C (?,@) → D
a functor of type

[
?
@

]
, and

n : Γ@,? (�) �

a (?, @)-dinatural transformation satisfying the following universal property:
(★) Given a (?, @)-dinatural transformation \ : � � , there exists a unique natural
transformation � =⇒ Γ@,? (�) making the diagram

Γ@,? (�)

� �

n

\

∃!

commute.

Notation 5.4. Given tuples G, I ∈ C−? = (C? )op,H,J ∈ C@ we make use of the notation

homC (?,@) ((G,H), (I,J))
def
= h(G,H)(I,J) ,

as well as of the equalities

h(G,H)(I,J)
def
= hI

G × hHJ = h�1
�1
× · · · × h�?

�?
× h�1

�1
× · · · × h�@

�@
.

Construction 5.5 (Constructing cokusarigamas). Suppose that D is cocomplete. Then
(?, @)∫ �∈C (

h−G@ × hG?−
)
� �G?G@

meaning the (?, @)-coend of

C (?,@) Cat(C (@,?) ,D)

(�, �) homC (@,? )
(
(�,�); (−,−)

)
� ��

�
,

satis�es the universal property in Item ck2.

Proof. The proof is merely a formal manipulation:

DiNat(?,@) (�,�) �
(@, ?)

∫
- ∈C

homD
(
�^^ ,�

^
^

)



COENDS OF HIGHER ARITY 41

�
(@, ?)

∫
- ∈C

homD

(
�^^ ,

∫
�,�∈C

(
h�^ × h^�

)
t �

�

�

)
�
(@, ?)

∫
- ∈C

∫
�,�∈C

homD
(
�^^ ,

(
h�^ × h^�

)
t �

�

�

)
�
(@, ?)

∫
- ∈C

∫
�,�∈C

homD
((

h�^ × h^�
)
� �^^ ,�

�

�

)
�

∫
�,�∈C (@, ?)

∫
- ∈C

homD
((

h�^ × h^�
)
� �^^ ,�

�

�

)
�

∫
�,�∈C

homD

(
(?, @)∫ - ∈C (

h�^ × h^�
)
� �^^ ,�

�

�

)
def
=

∫
�,�∈C

homD
( Γ?,@ (� )�

�
,�

�

�

)
� Nat

( Γ?,@ (� ),�
)
. �

Construction 5.6 (Constructing Kusarigamas). Suppose that D is complete. Then

(@, ?)

∫
�∈C

(
hG?− × h−G@

)
t �

G@
G?
,

meaning the (@, ?)-coend of

C (@,?) Cat(C (?,@) ,D)

(�, �) homC (@,? )
(
(�, �); (−,−)

)
t �

�

�
,

(5.7)

satis�es the universal property in Item ck2.

Proof. While this is dual to Construction 5.5, we register its derivation below for the sake of completeness.

DiNat(?,@) (�,�) �
(@, ?)

∫
- ∈C

homD
(
�_^ ,�

^
_

)
�
(@, ?)

∫
- ∈C

homD
(∫ �,�∈C (

h_� × h�^
)
� ��

�
,�^

_

)
�
(@, ?)

∫
- ∈C

∫
�,�∈C

homD
((

h_� × h�^
)
� ��

�
,�^

_

)
�
(@, ?)

∫
- ∈C

∫
�,�∈C

homD
(
�
�

�
,

(
h_� × h�^

)
t �^

_

)
�

∫
�,�∈C (@, ?)

∫
- ∈C

homD
(
�
�

�
,

(
h_� × h�^

)
t �^

_

)
�

∫
�,�∈C

homD
(
�
�

�
,
(@, ?)

∫
- ∈C

(
h_� × h�^

)
t �^

_

)
def
=

∫
�,�∈C

homD
(
�
�

�
, Γ?,@ (�)�

�

)
� Nat(�, Γ?,@ (�)) . �
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Notation 5.8 ((1, 1)-kusarigamas). For the sake of brevity, we often write Γ(�) and Γ(�) for Γ1,1 (�) and

Γ1,1 (�), respectively.

Proposition 5.9 (Properties of co/kusarigamas). Let �, �,� : C (?,@) ⇒ D be functors, where D is a
bicomplete category.
pk1) Functoriality. The assignments � ↦→ Γ(�), Γ(�) de�ne functors

Γ?,@ : Cat
(
C (?,@) ,D

)
→ Cat

(
C (@,?) ,D

)
,

Γ?,@ : Cat
(
C (?,@) ,D

)
→ Cat

(
C (@,?) ,D

)
.

pk2) Adjointness. We have an adjunction

Cat
(
C (?,@) ,D

)
Cat

(
C (@,?) ,D

)
.

Γ?,@

Γ@,?

a
pk3) Commutativity with homs. Let � : C (?,@) → D be a functor, and let us consider the functors

D(�, 1) : D → Cat(C (@,?) , Set), � ↦→
(
(�, �) ↦→ D

(
�
�

�
, �

) )
,

D(1, � ) : Dop → Cat(C (?,@) , Set), � ↦→
(
(�, �) ↦→ D

(
�, �

�

�

) )
,

then the diagrams
D

Cat(C (@,?) , Set) Cat(C (?,@) , Set)

D(�,1)D ( Γ?,@ (� ),1)

Γ@,?

D

Cat(C (?,@) , Set) Cat(C (@,?) , Set)

D(1,� )D (1,Γ?,@ (� ))

Γ?,@

commute:

D( Γ?,@ (� ), 1) � Γ@,? (D(�, 1)) D(1, Γ?,@ (� )) � Γ?,@ (D(1, � )).
pk4) Limits of kusarigamas. Let � : C (?,@) → D be a functor; we have functorial isomorphisms

(?, @)

∫
�∈C

�GG � lim
(
Γ?,@ (� )

)
,

(?, @)∫ �∈C
�GG � colim

( Γ@,? (� )
)
.

pk5) Higher arity co/kusarigamas from (1, 1)-co/kusarigamas. The cokusarigama

Γ?,@ (� ) : C (@,?) → D
of a functor � : C (?,@) → D is the left Kan extension of the (1, 1)-cokusarigama of Δ∗?,@ (� ) along
Δ@,? :

Γ?,@ (� ) = LanΔ@,?
( Γ(

Δ∗?,@ (� )
) ) C (@,?)

Cop × C D .

Γ?,@ (� )
Δ@,?

Γ(
Δ∗?,@ (� )

)
Moreover, if C has �nite products and �nite coproducts, then Γ?,@ (−) factors as

Cat
(
C (?,@) ,D

)
Cat (Cop × C,D) Cat (Cop × C,D) Cat

(
C (?,@) ,D

)
.

Δ∗?,@ Γ

(
W@,?

8,9

)∗
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Dually, the kusarigama
Γ@,? (�) : C (?,@) → D

of � : C (@,?) → D is the right Kan extension of the (1, 1)-kusarigama of Δ∗@,? (�) along Δ?,@ :

Γ@,? (�) = RanΔ?,@
(
Γ
(
Δ∗@,? (�)

) ) C (?,@)

Cop × C D .

Γ@,? (�)
Δ?,@

Γ
(
Δ∗@,? (�)

)
Moreover, if C has �nite products and �nite coproducts, then Γ@,? (−) factors as

Cat
(
C (?,@) ,D

)
Cat (Cop × C,D) Cat (Cop × C,D) Cat

(
C (?,@) ,D

)
.

Δ∗@,? Γ (M?,@ )∗

In fact, the adjunction yielding Γ?,@ a Γ?,@ can be extended as in the following diagram of adjunc-
tions:

[
C (?,@) ,D

]
[Cop × C,D] [Cop × C,D]

[
C (@,?) ,D

]
;

LanW?,@

W∗?,@

Δ∗?,@

M∗?,@

RanM?,@

Γ

Γ

LanW@,?

W∗@,?

Δ∗@,?

M∗@,?

RanM@,?

a
a
a
a

a

a
a
a
a

see Corollary 1.10.

Proof. We often prove the statements for cokusarigamas only, as the ones for kusarigamas follow by an
easy dualisation.

Item pk1: This follows from [Mac98, Theorems IX.7.2 and IX.7.3].
Item pk2: This follows straight from the de�nition of co/kusarigamas.
Item pk3: For the �rst statement, we have

D
(
1,
(@, ?)

∫
�∈C

h(�,...,�) t �GG
)
�
(@, ?)

∫
�∈C
D

(
−, h(�,...,�) t �GG

)
�
(@, ?)

∫
�∈C

h(�,...,�) t D
(
−, �GG

)
def
= Γ?,@ (D(1, � )) .

Item pk4: We just prove the �rst statement, the other being a straightforward dualisation. We have

D
(
−,
(?, @)

∫
�

�G
G

)
def
= DiNat(?,@)

(
Δpt, ℎ�

)
� Nat

(
Δpt, Γ

?,@ (ℎ� )
)

by Remark 5.2,
� Nat

(
Δpt, ℎΓ?,@ (�)

)
by Item pk3,

def
= ℎlim(Γ?,@ (�)) .

The result then follows from the Yoneda lemma.
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Item pk5: We have

Nat
(
LanΔ@,?

Γ(
Δ∗?,@ (� )

)
,�

)
def
= Nat

( Γ(
Δ∗?,@ (� )

)
,Δ∗@,? (�)

)
� DiNat

(
Δ∗?,@ (� ),Δ∗@,? (�)

)
by Remark 5.2,

� DiNat(?,@) (�,�) by Proposition 2.8,
� Nat

( Γ?,@ (� ),�
)

by Remark 5.2 again.

The stated factorisation follows from the isomorphism LanΔ@,? �
(
W@,?

8, 9

)∗
of Corollary 1.10. �

5.2. Examples of co/kusarigamas
Example 5.10 (Cokusarigamas of hom functors). The computation given in the proof of Lemma 3.14
generalises to show that, given (�, �) ∈ C (?,@)> , the cokusarigama of the functor h(�,�) : C (@,?) → Set,
which may be written as

homC (?,@) ((−,−); (�, �))
def
= homC? (�,−) × homC@ (−, �)
def
= h�1
−@+1 × · · · × h�?−@+? × h−1

�1
× · · · × h−@

�@
,

is given by

Γ@,? (h(�,�) )
def
=

∫ - ∈C
h-−?+1 × · · · × h-−?+@ × h−1

-
× · · · × h−?

-
× h�1

-
× · · · × h�?

-
× h-�1 × · · · × h-�@

�
(
h�1
�1
× · · · × h�1

�@
× · · · × h�?

�1
× · · · × h�?

�@

)
×

(
h�1
−?+1 × · · · × h�1

−?+@ × · · · × h�?−?+1 × · · · × h�?−?+@
)

×
(
h−1
�1
× · · · × h−1

�@
× · · · × h−?

�1
× · · · × h−?

�@

)
×

(
h−1−?+1 × · · · × h−1−?+@ × · · · × h−?−?+1 × · · · × h−?−?+@

)
Example 5.11 (Co/kusarigamas of constant functors). Let � be a set and let’s equally denote � : C (?,@) →
Set the constant functor on �; assume C has �nite products and coproducts; then, we can compute the
kusarigama of � as the integral

Γ(�) �
∫
�

(
C[_ |�] × C[�|^ ]

)
t �

�

∫
�

Set
(
C(�,∏-8 ), Set

(
C(∐.9 , �), �

) )
� Cat(C (?,@) , Set)

(
C(−,∏-8 ), Set

(
C(∐.9 ,−), �

) )
� Set

(
C(.,- ), �

)
,

where - def
=

∏
-8 , .

def
=

∐
.9 .

In particular, when D = Set:

Γ(pt) =
∫
�∈C

[
h� × h�, pt

]
� pt.

This is in accordance with the fact that dinatural transformations to Δpt coincide with natural transforma-
tions to Δpt.
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Dually,

Γ(�)_^ =

∫ �

(h�)? × (h�)@ × �

�

∫ �

C[_ |�] × C[�|^ ] × �

�
( ∫ �

C(.,�) × C(�,- )
)
× �

� C
(
.,-

)
× �, (5.12)

where - def
=

∏
-8 and . def

=
∐
.9 .

Example 5.13 (The co/kusarigama of the identity functor). Let C be a complete and cocomplete category
(so that the co/ends in Construction 5.5 and Construction 5.6 exist).

We want to compute the co/kusarigama of the identity functor idC (?,@) : C (?,@) → C (?,@) . By virtue of
the universal property of the product category C (?,@) , it is then enough to determine the functor

C (?,@) C (@,?) C±

Γ?,@ (id) c 9

where the functor c 9 projects to the factor C for 1 ≤ 9 ≤ @, and to Cop for ? + 1 ≤ 9 ≤ @ + ? .
In case (?, @) = (2, 1) one sees that for objects (-1, -2, . ) the diagram∐

5 :�→� C(-1, �) × C(-2, �) × C(�,. ) � �

∐
�∈C C(-1, �) × C(-2, �) × C(�,. ) � �

( [
-1
D ↓
�

]
,

[
-2
E ↓
�

]
,

[
�

F ↓
.

]
, 0

)
C(-1, . ) × C(-2, . ) � . (FD,FE,F0)

UV

2

commutes and in fact that it is a coequaliser: every other Z :
∐
�∈C C(-1, �) ×C(-2, �) ×C(�,. ) ��→ �

coequalising the pair (U, V) must factor through C(-1, . ) × C(-2, . ) � . with a uniquely determined map.
A standard argument, carried over the general case, to �nd the coequaliser de�ning the end and coend

in Construction 5.5 and Construction 5.6 now yields

Γ?,@ (id) (-,. ) = homΠ,?,@ (.,- ) � (.,- ), Γ?,@ (id) (-,. ) = homΠ,?,@ (-,. ) t (.,- ).

Remark 5.14. The previous argument hides a technical point. It holds by virtue of the following fact: if
two categories A,B are co/tensored over Set, then so is their product A × B, with the component-wise
action of a functor � : Set × A × B → A × B.

A similar result does not hold for a generic base of enrichment.

5.3. Higher arity twisted arrow categories
Classically, it is possible to compute the co/end of a diagram � : Cop × C −→ D as the co/limit of �

over the twisted arrow category Tw(C) of C, i.e. over the category of elements of the hom functor of C.
The purpose of this section is to formulate and prove an analogous description for higher arity co/ends.

In this section, we abbreviate Γ?,@ (Δpt) as Γ?,@ (pt).

De�nition 5.15. The (?, @)-twisted arrow category of C is the category Tw(?,@) (C) de�ned as the category
of elements of Γ?,@ (pt):



46 THÉO DE OLIVEIRA SANTOS‡ AND FOSCO LOREGIAN§

Tw(?,@) (C) C (?,@)

pt Set.

Σ (?,@)

Γ?,@ (pt)

dpte

Remark 5.16 (Unwinding De�nition 5.15). By the calculation in the proof of Lemma 3.14, we have

Γ?,@ (pt) � homΠ,?,@ . As a result, we see that Tw(?,@) (C) may be described as the category whose

kcc1) Objects are collections
{
58 9 : �8 −→ � 9

}
of morphisms of D with 0 ≤ 8 ≤ ? and 0 ≤ 9 ≤ @;

kcc2) Morphisms are collections of factorisations of the codomain through the domain, of the form

�8 � 9

�′8 �′9 ,

5

k 9q8

6

one for each 0 ≤ 8 ≤ ? and each 0 ≤ 9 ≤ @.

Lemma 5.17. Let � : C (?,@) −→ D be a diagram. We have natural isomorphisms

(?, @)∫ �∈C
�G
G � colim

Γ?,@ (pt) (�)
(?, @)

∫
�∈C

�G
G � lim

Γ?,@ (pt) (�),

generalising the well-known isomorphisms∫ �∈C
��� � colimhomC (�)

∫
�∈C

��� � limhomC (�),

valid for (?, @) = (1, 1).

Proof. We have

h
(
−,
(?, @)

∫
�∈C

�G
G

)
� DiNat(Δpt, h� )

� Nat( Γ?,@ (pt), h� )
� ℎlim

Γ?,@ (pt) (�) .

The proof of the remaining isomorphism is formally dual to the above one. �

Proposition 5.18 ((?, @)-ends as limits, yet again). Let � : C (?,@) −→ D be a functor. We have isomor-
phisms

(?, @)

∫
�∈C

�
�

�
� lim

(
Tw(?,@) (C)

Σ (?,@) C (?,@) � D
)
,

(?, @)∫ �∈C
�
�

�
� colim

(
Tw(?,@) (Cop)op Σ (?,@) C (?,@) � D

)
.

Proof. This result follows from Lemma 5.17 and the classical description of weighted colimits as conical
ones [Kel05, Section 3.4, Equation 3.33]. �
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5.4. Twisted arrow categories associated to cokusarigamas
In this short section, we give a co/comma category formula for computing co/kusarigamas. These

generalise the construction in Section 5.3 and work for arbitrary (?, @). However, these turn out to be too
complicated for ?, @ ≥ 2 as to be practically useful7, so we restrict our attention to the case (?, @) = (1, 1)
below. Let � : Cop × C → D be a functor and �x �, � ∈ C> .

De�nition 5.19. The twisted arrow category of C for (1, 1)-cokusarigamas at (�, �) is the category
Tw�,�Γ (C) de�ned as the category of elements of h�

�
× h�−2 × h−1

�
× h−1−2 .

Remark 5.20. Concretely, Tw�,�Γ (C) may be described as the category whose
kcc1) Objects are squares of the form

- �

. �

q

5

k

6

with -,. ∈ C> and 5 , 6, q,k ∈ Mor(C);
kcc2) Morphisms are twisted commutative cubes

- �

- ′ �

. �

. ′ �

q

5

6

q′

b1 b3

b2

k

b4

5 ′

k ′

6′

Remark 5.21 (Tw�,�Γ (C) as a generalisation of the twisted arrow category). The twisted arrow category
of C naturally �ts inside Tw�,�Γ (C):

, -

. /

5

?

6

@

, •

. •

- •

/ •.

5

?

@

6

This comes from the identity Γ(pt) � hom.
7Similarly to how a morphism of Tw(?,@) (C) turned out to involve ?@ arrows of C, unravelling the construction given in this

section for arbitrary (?,@) gives a category Tw(?,@) (C) whose morphisms now consist of 4?@ morphisms of C. Additionally, each of
these points now in a di�erent directions (i.e. they cannot anymore be arranged as morphisms in product categories). Together, these
two points make Tw(?,@) (C) unusable in practice when ? and @ are too large. As a compromise, we work out the case (?,@) = (1, 1) ,
which is both the simplest case as well as the most useful one.
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Proposition 5.22 (Co/kusarigamas as limits). Given a functor � : Cop × C → D, we have isomorphisms

Γ(�)�� � colim
(
Tw�,�Γ (C) pr Cop × C � D

)
,

Γ(�)�� � lim
(
Tw�,�Γ (C) pr Cop × C � D

)
.

Proof. Firstly, observe that we may compute Γ(�) as the following weighted coend:∫ - ∈C

[h�−2×h−1
�
]
�-- �

∫ - ∈C (
h�- × h-�

)
� �--

�

Γ(�)�� .

Now, weighted coends corepresent functors of the form DiNat(,, h� ), but since DiNat(,, h� ) � Nat( Γ(, ), h� ),
we see that the above weighted coend is the weighted colimit of � by Γ(h�−2 × h−1

�
). From the computation

in the proof of Lemma 3.14, we have Γ(h�−2 × h−1
�
) � h�

�
× h�−2 × h−1

�
× h−1−2 . The result then follows from the

classical description of weighted colimits as conical ones [Kel05, Section 3.4, Equation 3.33].
The second formula is proved in a dual fashion. �

References
[BS00] J. Bénabou and T. Streicher. “Distributors at work”. Lecture notes written by Thomas Streicher.

2000 (cit. on p. 2).
[BS10] J. Baez and M. Stay. “Physics, topology, logic and computation: a Rosetta Stone”. In: New

structures for physics. Springer, 2010, pp. 95–172 (cit. on pp. 4, 5).
[CP89] J.-M. Cordier and T. Porter. Shape theory: Categorical methods of approximation. Ellis Horwood

(Chichester, West Sussex, England and New York), 1989 (cit. on p. 2).
[Day70a] B.J. Day. “Construction of Biclosed Categories”. PhD thesis. University of New South Wales,

1970, p. 148 (cit. on pp. 3, 37).
[Day70b] B.J. Day. “On Closed Categories of Functors”. In: Reports of the Midwest Category Seminar, IV.

Lecture Notes in Mathematics, Vol. 137. Springer, Berlin, 1970, pp. 1–38 (cit. on pp. 3, 37).
[dLa] T. de Oliveira Santos and F. Loregian. “Diagonal category theory”. In preparation (cit. on pp. 4,

34, 37).
[dLb] T. de Oliveira Santos and F. Loregian. “Weighted co/ends”. In preparation (cit. on pp. 3, 30, 31,

34, 37).
[DS70] E.J. Dubuc and R. Street. “Dinatural Transformations”. In: Reports of the Midwest Category

Seminar, IV. Lecture Notes in Mathematics, Vol. 137. Springer, Berlin, 1970, pp. 126–137 (cit. on
pp. 3, 4, 28, 38).

[Fre17] B. Fresse. Homotopy of operads and Grothendieck-Teichmüller groups. Part 1. Vol. 217. Mathemat-
ical Surveys and Monographs. The algebraic theory and its topological background. American
Mathematical Society, Providence, RI, 2017, pp. xlvi+532. isbn: 978-1-4704-3481-6 (cit. on p. 37).

[Gav19] B. Gavranović. Dinatural Transformations. 2019. url: https://www.brunogavranovic.com/
posts/2019-09-12-dinatural-transformations.html (cit. on p. 4).

[Gra80] J.W. Gray. “Closed categories, lax limits and homotopy limits”. In: Journal of Pure and Applied
Algebra 19 (1980), pp. 127–158. issn: 0022-4049. doi: https://doi.org/10.1016/0022-
4049(80)90098-5 (cit. on p. 35).

[IK86] G.B. Im and G.M. Kelly. “A universal property of the convolution monoidal structure”. In:
Journal of Pure and Applied Algebra 43.1 (1986), pp. 75–88. issn: 0022-4049. doi: http://dx.
doi.org/10.1016/0022-4049(86)90005-8 (cit. on p. 3).

[Ino98] T. Inoue. “Vagabond”. In: Weekly Morning 12, Chapter 112 (1998) (cit. on p. 39).

https://www.brunogavranovic.com/posts/2019-09-12-dinatural-transformations.html
https://www.brunogavranovic.com/posts/2019-09-12-dinatural-transformations.html
https://doi.org/https://doi.org/10.1016/0022-4049(80)90098-5
https://doi.org/https://doi.org/10.1016/0022-4049(80)90098-5
https://doi.org/http://dx.doi.org/10.1016/0022-4049(86)90005-8
https://doi.org/http://dx.doi.org/10.1016/0022-4049(86)90005-8


REFERENCES 49

[Kel05] G.M. Kelly. “Basic Concepts of Enriched Category Theory”. In: Repr. Theory Appl. Categ. 10
(2005). Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714], pp. vi+137
(cit. on pp. 24, 46, 48).

[Kel72a] G Maxwell Kelly. “Many-variable functorial calculus. I.” In: Coherence in categories. Springer,
1972, pp. 66–105 (cit. on pp. 3, 10, 33).

[Kel72b] G.M. Kelly. “An abstract approach to coherence”. In: Coherence in categories. Springer, 1972,
pp. 106–147 (cit. on pp. 10, 33).

[Lor15] F. Loregian. Coend calculus. 2015. eprint: arXiv:1501.02503 (cit. on pp. 2, 24).
[Mac98] S. Mac Lane. Categories for the Working Mathematician. Second. Vol. 5. Graduate Texts in

Mathematics. Springer-Verlag, New York, 1998, pp. xii+314. isbn: 0-387-98403-8 (cit. on p. 43).
[MS20] G. McCusker and A. Santamaria. A Calculus of Substitution for Dinatural Transformations, I.

2020. arXiv: 2007.07576 (cit. on pp. 4, 10, 16).
[San19] A. Santamaria. “Towards a Godement Calculus for Dinatural Transformations”. PhD thesis.

University of Bath, 2019, p. 158 (cit. on pp. 4, 10, 11, 33).
[San20] A. Santamaria. Towards a Calculus of Substitution for Dinatural Transformations. Youtube. 2020.

url: https://www.youtube.com/watch?v=uMK92t4rblY (cit. on p. 1).
[SGAIV] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Lecture Notes in

Mathematics, Vol. 269. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4).
Springer-Verlag, Berlin-New York, 1972, pp. xix+525 (cit. on p. 32).

[Yon60] N. Yoneda. “On Ext and exact sequences”. In: J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 507–576
(1960). issn: 0040-8980 (cit. on p. 2).

‡Universidade de São Paulo,
Instituto de Ciências Matemáticas e de Computação,
Av. Trab. São Carlense, 400,
13566-590 São Carlos, Brasil
theo.de.oliveira.santos@usp.br

§Tallinn University of Technology,
Institute of Cybernetics, Akadeemia tee 15/2,
12618 Tallinn, Estonia
fosco.loregian@taltech.ee

arXiv:1501.02503
https://arxiv.org/abs/2007.07576
https://www.youtube.com/watch?v=uMK92t4rblY
theo.de.oliveira.santos@usp.br
fosco.loregian@taltech.ee

	Introduction
	Structure of the paper
	Geometric motivation for higher arity dinaturality
	Notation and preliminaries

	Higher Arity Wedges
	Higher arity dinaturality
	Higher arity wedges

	Higher Arity Ends
	Basic definitions
	Adjoints and the Fubini rule

	Examples: a session of callisthenics
	Examples arranged by dimension
	Classes of higher arity coends

	Kusarigamas and twisted arrow categories
	Co/kusarigamas: basic definitions
	Examples of co/kusarigamas
	Higher arity twisted arrow categories
	Twisted arrow categories associated to cokusarigamas


