
A limit lifting theorem for fibrations between bicategories

Introduction
If 𝑝 : 𝔼 → 𝔹 is a Grothendieck fibration, then 𝔼 has limits of shape 𝒥 if 𝔹 has limits of shape 𝒥, the
fibers of 𝔼 have limits of shape 𝒥, and the reindexing functors preserve these limits. This research
note states and proves a generalization of this theorem for fibrations between bicategories.

Notation
In a bicategory 𝔹, we write both vertical and horizontal composition in diagrammatic order, so that
if 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑧 are 1-cells, then 𝑓 ⋅ 𝑔 : 𝑥 → 𝑧. We use the notation (− ⋅ −) to refer to
horizontal composition of both 1-cells and 2-cells, and left and right whiskering. Vertical
composition of 2-cells 𝛼 : 𝑓 ⇒ 𝑔, 𝛽 : 𝑔 ⇒ ℎ is denoted 𝛼 | 𝛽.

For a 1-cell 𝑓 : 𝑥 → 𝑦, we write ℓ𝑓  for the left unitor 1𝑥 ⋅ 𝑓 ≅ 𝑓  and 𝑟𝑓  for the right unitor 𝑓 ⋅ 1𝑦;
note that the terms “left” and “right” are opposite to what is usually written, in order to be
consistent with the diagrammatic order of composition. For 𝑓 : 𝑤 → 𝑥, 𝑔 : 𝑥 → 𝑦, ℎ : 𝑦 → 𝑧 we
write 𝑎𝑓,𝑔,ℎ for the associator (𝑓 ⋅ 𝑔) ⋅ ℎ ⇒ 𝑓 ⋅ (𝑔 ⋅ ℎ).

If 𝑝 : 𝔼 → 𝔹 is a lax functor or pseudofunctor between bicategories, then the lax functoriality
constraint 𝑝(𝑓 ⋅ 𝑔) ⇒ 𝑝(𝑓) ⋅ 𝑝(𝑔) is denoted 𝑝2𝑓,𝑔 and the lax unity constraint 1𝑝(𝑥) ⇒ 𝑝(1𝑥) is
denoted 𝑝0𝑥. If 𝑥, 𝑦 are 0-cells in 𝔹, 𝑝𝑥,𝑦 : 𝔼(𝑥, 𝑦) → 𝔹(𝑝𝑥, 𝑝𝑦) is the 1-functor component of 𝑝
between these hom-categories.

Quasi-raris
If 𝐹 : 𝐶 → 𝐷 is a functor between categories, and for every 𝑑 in 𝐷 there exists a universal arrow
(𝐺(𝑑), 𝜀 : 𝐹 (𝐺(𝑑)) → 𝑑) - i.e., a terminal object in the slice category 𝐹 ↓ 𝑑 - then the function 𝑑 ↦
𝐺(𝑑) extends to a functor 𝐺 : 𝐷 → 𝐶 which is right adjoint to 𝐹 . In particular, if one can choose
𝐺(𝑑) so that 𝐹(𝐺(𝑑)) = 𝑑 and 𝜀 is the identity, then there exists a functor 𝐺 : 𝐷 → 𝐶 which is a
right adjoint right inverse to 𝐹 , or a rari. In this section we establish one generalization of this
theorem to bicategories and pseudofunctors. The theory of quasi-adjunctions is complicated and is
more general than is necessary for what follows, so we develop a specialized theory of quasi-raris.

Let 𝐹 : 𝐶 → 𝐷 be a functor between categories. Given 𝑑 in 𝐷, 𝑐 is called a rari-universal lift of 𝑑
along 𝐹  if 𝐹(𝑐) = 𝑑 and (𝐹(𝑐), id𝑐) is a universal arrow 𝐹 ↓ 𝑑. We can omit 𝑑 and simply say “𝑐 is
rari-universal with respect to 𝐹 ” if 𝑐 is a rari-universal lift of 𝐹(𝑐) along 𝐹 , and if 𝐹  is evident from
the context then we will simply say 𝑐 is rari-universal.

In what follows, we will frequently make use of the fact that if 𝑐 is rari-universal, then 𝐹𝑐′,𝑐 :
𝐇𝐨𝐦𝐶(𝑐′, 𝑐) → 𝐇𝐨𝐦𝐷(𝐹(𝑐′), 𝐹 (𝑐)) is a bijection for all 𝑐′.

Definition 0.1 (2-rari-universal lift for bicategories) :  Let 𝑝 : 𝔼 → 𝔹 be a strict functor
between bicategories. Let 𝑏 be an object in 𝔹.

Then 𝑒 in 𝔼 is a 2-rari-universal lift of 𝑏 if 𝑝(𝑒) = 𝑏 and, for each 𝑒′ in 𝔼, the local hom
functor 𝑝𝑒′,𝑒 has a right adjoint right inverse.



Theorem 0.1 : Let 𝑝 : 𝔼 → 𝔹 be a strict functor between bicategories. If for each 𝑏 in 𝔹 there
is a 2-rari-universal lift 𝑒 of 𝑏 along 𝑝, then there is a lax functor 𝑠 : 𝔹 → 𝔼 which is a section
of 𝑝.

Proof :  For each 𝑏 in 𝔹, choose a universal lift 𝑒 of 𝑏; this determines the behavior of 𝑠 on
objects.

For 𝑏, 𝑏′ in 𝔹, let 𝑠𝑏,𝑏′  be defined as the assumed right adjoint to the projection functor
𝑝𝑠(𝑏),𝑠(𝑏′).

Let us construct the lax unit constraint 1𝑠(𝑏) ⇒ 𝑠(1𝑏). Because 𝑠𝑏,𝑏 is right adjoint to the
projection functor, it suffices to give a 2-cell 𝑝(1𝑠(𝑏)) ⇒ 1𝑏; we take the identity 2-cell.

Let us construct the lax functoriality constraint 𝑠(𝑓) ⋅ 𝑠(𝑔) ⇒ 𝑠(𝑓 ⋅ 𝑔), for 𝑓 : 𝑎 → 𝑏, 𝑔 : 𝑏 → 𝑐.
Because 𝑠𝑎,𝑐 is right adjoint to the projection functor, it suffices to give a map 𝑝(𝑠(𝑓) ⋅ 𝑠(𝑔)) ⇒
𝑓 ⋅ 𝑔. We take the identity 2-cell.

To verify that the lax functoriality constraint is natural in 𝑓  and 𝑔, so let 𝑓, 𝑓 ′ : 𝑎 → 𝑏 and
𝑔, 𝑔′ : 𝑏 → 𝑐 with 𝛼 : 𝑓 ⇒ 𝑓 ′, 𝛽 : 𝑔 ⇒ 𝑔′, one uses that for any 1-cell 𝑦, 𝑝𝑠(𝑎),𝑠(𝑏)(𝑠(𝑓 ⋅ 𝑔), 𝑦) is
bijective between sets of 2-cells.

The coherence conditions for associativity and left/right unitors are easy to prove, given that 𝑝
is strict. ∎

Theorem 0.2 :  Let 𝑝 : 𝔼 → 𝔹 be a strict functor between bicategories.

Call the identity condition the following property: for each 𝑏 in 𝔹 and each 2-rari-universal
lift 𝑒 of 𝑏, 1𝑒 is a rari-universal lift of 1𝑏 along 𝑝𝑒,𝑒.

Call the composition condition the condition that for each 𝑥, 𝑦, 𝑧 in 𝔼 and 𝑓 : 𝑥 → 𝑦, 𝑔 :
𝑦 → 𝑧, if 𝑓  is rari-universal over 𝑝(𝑓) and 𝑔 is rari-universal over 𝑝(𝑔), then 𝑓 ⋅ 𝑔 is rari-
universal over 𝑝(𝑓) ⋅ 𝑝(𝑔).

Suppose that 𝑝 satisfies the identity and composition conditions. Then if 𝑒 and 𝑒′ are 2-rari-
universal lifts of 𝑏, 𝑏′ respectively, an equivalence between 𝑏 and 𝑏′ lifts to an equivalence
between 𝑒 and 𝑒′. In particular, 2-rari-universal lifts are unique up to equivalence when they
exist.

Furthermore, under the hypotheses of Theorem 0.1, the section 𝑠 thus constructed is a
pseudofunctor, and is unique up to an an equivalence which lives over the identity equivalence
of 1𝔹 with itself, that is, given two pseudofunctors 𝑠, 𝑠′ where 𝑠(𝑥), 𝑠′(𝑥) are 2-lari-universal
over 𝑥 and 𝑠(𝑓), 𝑠′(𝑓) are rari-universal over 𝑓 , 𝑠, 𝑠′ are equivalent by an equivalence 𝜏  such
that 𝜏 ⋅ 𝑝 = 11𝔹 .

Proof :  Let 𝑒, 𝑒′ be 2-rari-universal lifts of 𝑏, 𝑏′ respectively, with an equivalence 𝑓 : 𝑏 → 𝑏′, 𝑔 :
𝑏′ → 𝑏, 𝜂 : 1𝑏 ≅ 𝑓 ⋅ 𝑔, 𝜀 : 𝑔 ⋅ 𝑓 ≅ 1𝑏′ .

Let 𝑓, 𝑔 be rari-universal lifts of 𝑓, 𝑔 respectively, then 𝑓 ⋅ 𝑔 is rari-universal over 𝑓 ⋅ 𝑔 and 1𝑒
is rari-universal over 1𝑏. Thus the isomorphism 𝜂 lifts to a unique isomorphism 1𝑒 ≅ 𝑓 ⋅ 𝑔.
Similarly there is a unique lift of 𝜀 to an isomorphism 𝑔 ⋅ 𝑓 ≅ 1𝑒′ .



Given 𝑓 : 𝑥 → 𝑦, 𝑔 : 𝑦 → 𝑧 in 𝔹, since 𝑠(𝑓) ⋅ 𝑠(𝑔) and 𝑠(𝑓 ⋅ 𝑔) are both rari-universal over 𝑓 ⋅
𝑔, they are isomorphic by a unique vertical isomorphism, i.e., the lax functoriality constraint
map constructed in the proof of Theorem 0.1 is an isomorphism. The same is true for the left
and right unitor.

Let 𝑠, 𝑠′ be pseudofunctors satisfying the conditions of the theorem. We define a 1-cell 𝜏𝑏 :
𝑠(𝑏) → 𝑠′(𝑏) for each 𝑏 as the rari-universal lift of 1𝑏. The pseudonatural transformation 2-cell
𝜏(𝑓) : 𝑠(𝑓) ⋅ 𝜏𝑏′ ⇒ 𝜏𝑏 ⋅ 𝑠(𝑓 ′) is the unique lift of the canonical isomorphism 𝑓 ⋅ 1𝑏′ ⇒ 1𝑏 ⋅ 𝑓 .

It is straightforward to verify that 𝜏𝑓  is natural in 𝑓 , and that the lax unity and lax naturality
conditions are satisfied; each argument is by appeal to the fact that 𝑝𝑒,𝑒′(𝑓, 𝑓 ′) is bijective
when 𝑓 ′ is rari-universal.

If 𝜏, 𝜏 ′ are two such transformations constructed according to the specification above so that
𝜏𝑏 and 𝜏 ′𝑏  are both rari-universal then by their universal property 𝜏𝑏 ≅ 𝜏 ′𝑏  by a unique vertical
isomorphism, and this extends to a unique vertical modification. Thus, 𝑠 is unique up to
equivalence. ∎

If 𝐹 : ℂ → 𝔻 satisfies the conditions of Theorem 0.1 and Theorem 0.2, we call the essentially unique
section 𝑠 a quasi-rari for 𝐹 .

It is outside the scope of this paper to fully relate these quasi-raris to quasi-adjunctions. However,
we will establish a basic link to the existing literature, relating our notion to the presentation in
sections 7.2 and 7.3 of [1]. This theorem is not used in the remainder of the paper.

Let 𝐹 : ℂ → 𝔻 be a pseudofunctor between bicategories. Let 𝔻(𝐹 , 1) be the bicategory whose
objects are triples (𝑐, 𝑑, 𝑓 : 𝐹 (𝑐) → 𝑑), whose 1-cells (𝑐, 𝑑, 𝑓) → (𝑐′, 𝑑′, 𝑓 ′) are lax squares (𝑔 : 𝑐 →
𝑐′, ℎ : 𝑑 → 𝑑′, 𝛼 : 𝐹(𝑔) ⋅ 𝑓 ′ ⇒ 𝑓 ⋅ ℎ, and whose 2-cells (𝑔, ℎ, 𝛼) ⇒ (𝑔′, ℎ′, 𝛼′) are pairs (𝜎 : 𝑔 ⇒
𝑔′, 𝜌 : ℎ ⇒ ℎ′) making everything commute. Then 𝔻(𝐹 , 1) is equipped with a strict projection
functor 𝜋 : 𝔻(𝐹 , 1) → 𝔻 and it is of interest to elaborate the conditions described in Theorem 0.1
and Theorem 0.2 in this setting. Actually, we will consider the 2-cell dualization of 𝜋, 𝜋co :
𝔻(𝐹 , 1)co → 𝔻co to better fit the conventions of [1].

Suppose that each 𝑑 in 𝔻co has a rari-universal lift along 𝜋co, as in the assumption of Theorem 0.1,
so that for every 𝑑 there is given a pair (𝑐, 𝑓 : 𝐹 (𝑐) → 𝑐) such that for every object (𝑐′, 𝑑′, 𝑓 ′) in 𝔻,
the associated functor 𝜋(𝑐′,𝑑′,𝑓′),(𝑐,𝑑,𝑓) has a lari. Then every lax slice bicategory 𝐹 ↓ 𝑑 is equipped
with an inc-lax transformation of the identity pseudofunctor to the constant pseudofunctor at
(𝑐, 𝑓) (see [1], 7.2).

If a rari-universal lift (𝑐, 𝑓 : 𝐹 (𝑐) → 𝑑) of 𝑑 along 𝜋co additionally has the property specified in
Theorem 0.2 that (1𝑐, 1𝑑) is rari-universal, then (𝑐, 𝑓) is an inc-lax terminal object in 𝐹 ↓ 𝑑 (see
[1], 7.2).

Last, if rari-universal 1-cells are closed under composition, then the change-of slice functors 𝐹 ↓ 𝑢 :
𝐹 ↓ 𝑑 → 𝐹 ↓ 𝑑′ associated to a 1-cell 𝑢 : 𝑑 → 𝑑′ preserve inc-lax terminal objects (see [1], 7.2).

This amounts to the following theorem:

Theorem 0.3 :  Let 𝐹 : ℂ → 𝔻 be a pseudofunctor between bicategories. Suppose that the
functor 𝜋co : 𝔻(𝐹 , 1)co → 𝔻co satisfies the hypotheses of Theorem 0.1 and Theorem 0.2. Then
𝐹  satisfies the hypotheses of the Bicategorical Quillen Theorem A from 7.3 of [1].



Fibrations between bicategories
Fibrations of bicategories have been studied in [2] and [3]. We will follow [2] and recapitulate some
of the definitions.

Definition 0.2 (Cartesian 1-cell) :  Let 𝔼,𝔹 be bicategories, and 𝑝 : 𝔼 → 𝔹 a lax functor. Let 𝑓 :
𝑥 → 𝑦 be a 1-cell in 𝔼. 𝑓  is Cartesian when the following properties are satisfied:
1. For each 0-cell 𝑧 in 𝔼 and 1-cell 𝑔 : 𝑧 → 𝑦, and for each 1-cell ℎ : 𝑝𝑧 → 𝑝𝑥 and 2-

isomorphism 𝛼 : 𝑝𝑓 ⋅ ℎ ⇒ 𝑝𝑔, there is a 1-cell ℎ̂ : 𝑧 → 𝑥 and 2-isomorphisms 𝛼 : ℎ̂ ⋅ 𝑓 ⇒
𝑔, 𝛽 : 𝑝ℎ̂ ⇒ ℎ such that 𝛽 ⋅ 𝑝𝑓 | 𝛼 = 𝑝2ℎ̂,𝑓 | 𝑝𝛼. The triple (ℎ̂, 𝛼, 𝛽) is called a lift of
(ℎ, 𝛼, 𝑔).

2. Let 𝑧 be a 0-cell in 𝔼. Let (𝑔 : 𝑧 → 𝑦, ℎ : 𝑝𝑧 → 𝑝𝑥, 𝛼 : ℎ ⋅ 𝑝𝑓 ≅ 𝑝𝑔) and (𝑔′ : 𝑧 → 𝑥, ℎ′ :
𝑝𝑧 → 𝑝𝑥, 𝛼′ : ℎ′ ⋅ 𝑝𝑓 ≅ 𝑝𝑔′) be two triples as above. Let (𝛿 : ℎ ⇒ ℎ′, 𝜎 : 𝑔 ⇒ 𝑔′) be a pair
of 2-cells such that 𝛼 | 𝑝𝜎 = 𝛿 ⋅ 𝑝𝑓 | 𝛼′. Let (ℎ̂, 𝛼, 𝛽) be a lift of (ℎ, 𝛼, 𝑔) and (ℎ̂′, 𝛼′, 𝛽′)
be a lift of (ℎ′, 𝛼′, 𝑔′). Then there is a unique 2-cell 𝛿 : ℎ̂ ⇒ ℎ̂′ such that 𝛽 | 𝛿 = 𝑝𝛿 | 𝛽′
and 𝛿 ⋅ 𝑓 | 𝛼′ = 𝛼.

Definition 0.3 (Cartesian 2-cell) :  Let 𝔼,𝔹 be bicategories, and 𝑝 : 𝔼 → 𝔹 a lax functor. Let
𝑓, 𝑔 : 𝑥 → 𝑦 be 1-cells in 𝔼 and 𝜎 : 𝑓 ⇒ 𝑔 a 2-cell. Then 𝜎 is Cartesian as a 2-cell if it is
Cartesian in the usual sense with respect to 𝑝𝑥,𝑦 : 𝔼(𝑥, 𝑦) → 𝔹(𝑝𝑥, 𝑝𝑦).

Definition 0.4 (Locally fibered pseudofunctor) :  Let 𝔼,𝔹 be bicategories, and 𝑝 : 𝔼 → 𝔹 a lax
functor. 𝑝 is locally fibred if for all 0-cells 𝑥, 𝑦 : 𝔼, 𝑝𝑥,𝑦 is a Grothendieck fibration.

Definition 0.5 (Fibration of bicategories) :  Let 𝔼,𝔹 be bicategories, and 𝑝 : 𝔼 → 𝔹 a
pseudofunctor. 𝑝 is a fibration when:
1. 𝑝 is locally fibred
2. for each 0-cell 𝑦 in 𝐸 and 1-cell 𝑓 : 𝑥 → 𝑝𝑦, there exists a Cartesian 1-cell ℎ : 𝑧 → 𝑦 with

𝑝ℎ = 𝑧
3. the horizontal composite of two Cartesian 2-cells is again Cartesian

The following theorem strengthens condition 1 of Definition 0.2 by imposing the constraint that 𝛽
must be the identity 2-cell.



Theorem 0.4 (Strictification of the lifting condition) :  Let 𝑝 : 𝔼 → 𝔹 be a locally fibred
pseudofunctor. Then a 1-cell 𝑓 : 𝑥 → 𝑦 in 𝔼 is Cartesian if and only if has the following lifting
property:
1. for every 0-cell 𝑧 in 𝔼 and 1-cell 𝑔 : 𝑧 → 𝑦, and for every 1-cell ℎ : 𝑝𝑧 → 𝑝𝑥 and 2-

isomorphism, 𝛼 : 𝑝𝑓 ⋅ ℎ ⇒ 𝑝𝑔 there is a 1-cell ℎ̂ : 𝑧 → 𝑥 and a 2-isomorphism 𝛼 : ℎ̂ ⋅ 𝑓 ⇒ 𝑔
such that 𝑝ℎ̂ = ℎ and 𝑝2ℎ̂,𝑓 | 𝑝𝛼 = 𝛼.

2. Let 𝑧 be a 0-cell in 𝔼. Let (𝑔 : 𝑧 → 𝑦, ℎ : 𝑝𝑧 → 𝑝𝑥, 𝛼 : ℎ ⋅ 𝑝𝑓 ≅ 𝑝𝑔) and (𝑔′ : 𝑧 → 𝑥, ℎ′ :
𝑝𝑧 → 𝑝𝑥, 𝛼′ : ℎ′ ⋅ 𝑝𝑓 ≅ 𝑝𝑔′) be two triples as above. Let (𝛿 : ℎ ⇒ ℎ′, 𝜎 : 𝑔 ⇒ 𝑔′) be a pair
of 2-cells such that 𝛼 | 𝑝𝜎 = 𝛿 ⋅ 𝑝𝑓 | 𝛼′. Let (ℎ̂, 𝛼) be a strict lift of (ℎ, 𝛼, 𝑔) (i.e, 𝛽 is the
identity 2-cell) and and (ℎ̂′, 𝛼′) be a strict lift of (ℎ′, 𝛼′, 𝑔′). Then there is a unique 2-cell
𝛿 : ℎ̂ ⇒ ℎ̂′ such that 𝛿 = 𝑝𝛿 and 𝛿 ⋅ 𝑓 | 𝛼′ = 𝛼.

Proof :  Note that point (1.) is a strengthening of the Cartesian lifting condition for 1-cells,
while (2.) is a weakening of the Cartesian lifting condition for 2-cells.

The forward implication (if 𝑓  is Cartesian, then it has the strict lifting property) is Proposition
3.2.1 of [2].

The reverse implication is by a similar proof, and we omit the details. ∎

Theorem 0.5 (Dropping the invertibility of 𝛼) :  Let 𝑝 : 𝔼 → 𝔹 be a locally fibred
pseudofunctor, and let 𝑓  be a Cartesian 1-cell. Then 𝑓  has the analogous lifting property given
by dropping the assumption that 𝛼 be invertible, in Definition 0.2., and weakening the
conclusion “𝛼 is a 2-isomorphism” to “𝛼 is Cartesian”. More explicitly, a Cartesian 1-cell has
the following lifting properties:
1. for every 0-cell 𝑧 in 𝔼 and 1-cell 𝑔 : 𝑧 → 𝑦, and for every 1-cell ℎ : 𝑝𝑧 → 𝑝𝑥 and not-

necessarily invertible 2-cell 𝛼 : 𝑝𝑓 ⋅ ℎ ⇒ 𝑝𝑔 there is a 1-cell ℎ̂ : 𝑧 → 𝑥 and a Cartesian 2-cell
𝛼 : ℎ̂ ⋅ 𝑓 ⇒ 𝑔 such that 𝑝ℎ̂ = ℎ and 𝑝2ℎ̂,𝑓 | 𝑝𝛼 = 𝛼.

2. for every 0-cell 𝑧 in 𝔼, and any two lifting problems (𝑔1 : 𝑧 → 𝑦, ℎ1 : 𝑝𝑧 → 𝑝𝑥, 𝛼1 : ℎ1 ⋅
𝑝𝑓 ⇒ 𝑝𝑔1) and (𝑔2 : 𝑧 → 𝑦, ℎ2 : 𝑝𝑧 → 𝑝𝑥, 𝛼2 : ℎ2 ⋅ 𝑝𝑓 ⇒ 𝑝𝑔2); for any “morphism of
lifting problems” (𝛿 : ℎ1 ⇒ ℎ2, 𝜎 : 𝑔1 ⇒ 𝑔2) such that 𝛿 ⋅ 𝑝𝑓 | 𝛼2 = 𝛼1 | 𝑝𝜎 and any two
lifts (ℎ̂1 : 𝑧 → 𝑥, 𝛼1 : ℎ̂1 ⋅ 𝑓 ⇒ 𝑔1, 𝛽1 : 𝑝ℎ̂1 ≅ ℎ1) and (ℎ̂2 : 𝑧 → 𝑥, 𝛼2 : ℎ̂2 ⋅ 𝑓 ⇒ 𝑔2, 𝛽2 :
𝑝ℎ̂2 ≅ ℎ2), if 𝛼2 is Cartesian, there is a unique 2-cell 𝛿 : ℎ̂1 ⇒ ℎ̂2 such that 𝑝(𝛿) | 𝛽2 =
𝛽1 | 𝛿 and 𝛿 ⋅ 𝑓 | 𝛼2 = 𝛼1 | 𝜎.

Proof :
1. Let 𝜌 be a Cartesian 2-cell over 𝛼 with codomain 𝑔, and write 𝑘 for its domain. Then by the

lifting property of a Cartesian 1-cell, there is a 1-cell ℎ̂ and a 2-isomorphism 𝛾 : ℎ̂ ⋅ 𝑓 ≅ 𝑘
such that 𝑝ℎ̂ = ℎ and 𝑝𝛾 = 𝑝2ℎ̂,𝑓 . Then we define 𝛼 = 𝛾 | 𝜌. 𝜌 was Cartesian by assumption,
𝛾 is an isomorphism, and the composition of Cartesian 2-cells is Cartesian, so we are done.

2. Apply the 2-lifting property of a Cartesian 2-cell to 𝛼2; the map 𝑝(𝛼1 | 𝜎) factors through
𝑝𝛼2 according to

𝑝2ℎ̂1,𝑓
−1 | 𝛽1 | 𝛿 ⋅ 𝑓 | 𝑝2ℎ̂2,𝑓

| 𝑝𝛼2 = 𝑝(𝛼1 | 𝜎)

Therefore there is a unique 2-cell 𝜅 : ℎ̂1 ⋅ 𝑓 ⇒ ℎ̂2 ⋅ 𝑓  such that



𝑝𝜅 = 𝑝2ℎ̂1,𝑓
−1 | 𝛽1 | 𝛿 ⋅ 𝑓 | 𝑝2ℎ̂2,𝑓

and 𝜅 | 𝛼2 = 𝛼1 | 𝜎. We can apply the known 2-lifting property of the Cartesian 1-cell 𝑓  to
the lifting problems (ℎ1, 𝑝2ℎ̂1,𝑓

, ℎ̂1 ⋅ 𝑓) and (ℎ2, 𝑝2ℎ̂2,𝑓
, ℎ̂2 ⋅ 𝑓) with lifts (ℎ̂1, 1ℎ̂1⋅𝑓

, 𝛽1) and
(ℎ̂2, 1ℎ̂2⋅𝑓

, 𝛽2) respectively, with (𝛿, 𝜅) the 2-cells connecting the lifting problems. One
easily sees that 𝑝2ℎ̂1,𝑓

| 𝑝𝜅 = 𝛿 ⋅ 𝑝𝑓 | 𝑝2ℎ̂2,𝑓
 so that we can apply lifting condition. Thus there

is a unique 2-cell 𝛿 such that 𝛽1 | 𝛿 = 𝑝𝛿 | 𝛽2 (which is the condition we want) and 𝛿 ⋅ 𝑓 =
𝜅, so 𝛿 ⋅ 𝑓 | 𝛼2 = 𝛼1 | 𝜎. If 𝛿′ is any morphism satisfying these same properties, then by 2-
Cartesianity of 𝛼2 we must have 𝛿′ ⋅ 𝑓 = 𝜅, so 𝛿 = 𝛿′.

∎

Theorem 0.6 (Fibrations can be made strict) :  Let 𝑝 : 𝔼 → 𝔹 be a locally fibered
pseudofunctor. Then in the slice 1-category of pseudofunctors 𝑝 : 𝕏 → 𝔹 and pseudofunctors
𝑠 : (𝕏, 𝑝) → (𝕐, 𝑞) such that 𝑞 = 𝑠 ⋅ 𝑝 on the nose, 𝑝 is isomorphic to a strict locally fibered
pseudofunctor 𝑝′.

Proof : This is Proposition 3.2.2 of [2]. ∎

Henceforth, all locally fibred pseudofunctors we introduce are assumed to be strict, and when we
appeal to the lifting property of a Cartesian 1-cell in a fibration, we make use of the stronger
property given in Theorem 0.4.

Definition 0.6 (Cloven fibration) :  A fibration 𝑝 : 𝔼 → 𝔹 between bicategories is cloven
when:
• for each 𝑒 in 𝐸 and 𝑓 : 𝑏 → 𝑝𝑒, there is given a choice of Cartesian lift of 𝑓  with codomain 𝑒
• for each Cartesian 1-cell 𝑓  in 𝔼, and each triple (ℎ, 𝛼, 𝑔) as in Definition 0.2, there is given a

choice of lift (ℎ̂, 𝛼, 𝛽).
• for all 𝑥, 𝑦 ∈ 𝔼, the hom-functor 𝑝𝑥,𝑦 : 𝔼(𝑥, 𝑦) → 𝔹(𝑥, 𝑦) is a cloven fibration

Whenever we assume a fibration is cloven, we will further assume that the map (ℎ, 𝛼, 𝑔) ↦
(ℎ̂, 𝛼, 𝛽) is chosen such that 𝛽 is always the identity 2-cell.

Let us isolate a more convenient form of the uniqueness condition that reflects the way we will use
it.

Theorem 0.7 :  Let 𝑝 : 𝔼 → 𝔹 be a pseudofunctor. Let 𝑧, 𝑥 ∈ 𝔼, let ℎ, ℎ′ : 𝑧 → 𝑥, and let
𝛿1, 𝛿2 : ℎ ⇒ ℎ′. Let 𝑓 : 𝑥 → 𝑦 be any Cartesian 1-cell, and let 𝛼 : ℎ′ ⋅ 𝑓 ⇒ 𝑔 be any Cartesian
2-cell. Then to prove 𝛿1 = 𝛿2, it suffices to show that 𝑝(𝛿1) = 𝑝(𝛿2) and that 𝛿1 ⋅ 𝑓 | 𝛼 = 𝛼2 ⋅
𝑓 | 𝛼.

Proof :  Any Cartesian 2-cell is also monic, so 𝛼1 ⋅ 𝑓 | 𝛼 = 𝛼2 ⋅ 𝑓 | 𝛼 implies 𝛼1 ⋅ 𝑓 = 𝛼2 ⋅ 𝑓 .
One then can apply the unique factoring property of the Cartesian 1-cell 𝑓 , taking 𝜎 = 𝛼1 ⋅
𝑓 | 𝛼 = 𝛼2 ⋅ 𝑓 | 𝛼. ∎



The free fibration
Let 𝑝 : 𝐸 → 𝐵 be a 1-functor between 1-categories. There is an associated “free fibration” over 𝐵
generated by 𝑝, defined as follows:
• the objects are triples (𝑏, 𝑒, 𝑓 : 𝑏 → 𝑝𝑒)
• a morphism (𝑏, 𝑒, 𝑓) → (𝑏′, 𝑒′, 𝑓 ′) is a pair of morphisms (𝑠 : 𝑏 → 𝑏′, 𝑡 : 𝑒 → 𝑒′) such that 𝑠 ⋅
𝑓 ′ = 𝑓 ⋅ 𝑝𝑡.

This construction can be extended to a 2-functor on 𝐂𝐚𝐭/𝐵; it is a Kock–Zöberlein 2-monad on
𝐂𝐚𝐭/𝐵 whose algebras are precisely fibrations equipped with a cleavage (see [1], section 9.2).

Something similar is true for fibrations between bicategories. ([2], section 4.2) and [3] give a
construction of the free fibration on a pseudofunctor between bicategories; we recall this here.

Definition 0.7 (Oplax comma category associated to a pseudofunctor) :  Let 𝑝 : 𝔼 → 𝔹 be a
pseudofunctor between bicategories. The bicategory 𝔹/𝑝 is defined as follows:
• its objects are ordered triples (𝑏, 𝑒, 𝑓 : 𝑏 → 𝑝𝑒), where 𝑏 ∈ 𝔹0 and 𝑒 ∈ 𝔼0
• A 1-cell (𝑏, 𝑒, 𝑓) → (𝑏′, 𝑒′, 𝑓 ′) is defined to be a triple (𝑠, 𝑡, 𝛼), where 𝑠 : 𝑏 → 𝑏′, 𝑡 : 𝑒 → 𝑒′,

and 𝛼 : 𝑠 ⋅ 𝑓 ′ ⇒ 𝑓 ⋅ 𝑝𝑡.
• A 2-cell (𝑠, 𝑡, 𝛼) ⇒ (𝑠′, 𝑡′, 𝛼′) consists of a pair (𝛽 : 𝑠 ⇒ 𝑠′, 𝛾 : 𝑡 ⇒ 𝑡′) such that 𝛽 ⋅
𝑓 ′ | 𝛼′ = 𝛼 | 𝑓 ⋅ 𝑝𝛾

• composition and identity are evident
• the associator and unitors, and the coherence conditions, are inherited from 𝔹 and 𝔼

𝔹/𝑝 is equipped with a strict projection functor 𝑑0 : 𝔹/𝑝 → 𝔹 mapping (𝑏, 𝑒, 𝑓) ↦ 𝑏 and (𝑠, 𝑡, 𝛼) ↦
𝑠.

Theorem 0.8 : For any pseudofunctor 𝑝 : 𝔼 → 𝔹, 𝑑0 is a fibration.

Proof : This is proposition 4.2.4 of [2] and Theorem 4.24 of [3]. ∎

Cartesian lifts as universal arrows
Let 𝑝 : 𝔼 → 𝔹 be a locally fibred pseudofunctor, and let 𝔼𝐼  denote the bicategory of arrows and
oplax squares in 𝔼. Then 𝑝 induces a pseudofunctor 𝑝𝐿 : 𝔼𝐼 → 𝔹/𝑝 sending 𝑓 : 𝑒 → 𝑒′ to
(𝑝(𝑏), 𝑒′, 𝑓).

Theorem 0.9 :  Let (𝑏, 𝑒, 𝑓 : 𝑏 → 𝑝(𝑒)) be an object in 𝔹/𝑝 and let 𝑓  be a Cartesian lift of 𝑓 .
Then 𝑓  is a 2-rari-universal lift of (𝑏, 𝑒, 𝑓) along 𝑝𝐿.

Proof :  Let 𝑤0 : 𝑒0 → 𝑒′0 be an object in 𝔼𝐼  and let (𝑠 : 𝑝(𝑒0) → 𝑝(𝑒1), 𝑡 : 𝑒′0 → 𝑒′1, 𝛼) :
𝑝𝐿(𝑤0) → 𝑝𝐿(𝑤1) in 𝔹/𝑝 from 𝑝𝐿(𝑤0) → 𝑝𝐿(𝑤1).

To show that (𝑝𝐿 ↓ 𝑝𝐿(𝑤1))((𝑤0, (𝑠, 𝑡, 𝛼)), (𝑤1, 1𝑝𝐿(𝑤1))) has a terminal object, it suffices to
show that there is a 1-cell 𝜏(𝑠, 𝑡, 𝛼) in 𝔼𝐼  lying strictly over (𝑠, 𝑡, 𝛼), such that the identity 2-
cell 𝑝𝐿(𝜏(𝑠, 𝑡, 𝛼)) ⇒ (𝑠, 𝑡, 𝛼) is a universal arrow from 𝑝𝐿𝑤0,𝑤1

 to (𝑠, 𝑡, 𝛼). This is a small
reformulation of Theorem 0.5 and we omit the details. ∎



Lemma 0.9.1 :  𝑝𝐿 always satisfies the identity condition of Theorem 0.2, and it satisfies the
composition condition when the horizontal composite of Cartesian 2-cells in 𝔼 is again
Cartesian.

Proof : Straightforward. ∎

Therefore, we conclude:

Theorem 0.10 :  Let 𝑝 be a strict fibration. Then 𝑝𝐿 has an essentially unique quasi-rari 𝑠𝐿.

The exponential fibration
Let 𝔸,𝔼 be bicategories; then there is a bicategory Bicatop (𝔸,𝔼) whose 0-cells are lax functors 𝔸 →
𝔼, whose 1-cells are oplax natural transformations, and whose 2-cells are modifications. (see [1],
Theorem 4.4.11)

For a pseudofunctor 𝑝 : 𝔼 → 𝔹, postwhiskering with 𝑝 induces a pseudofunctor Bicatop (𝔸,𝔼) →
Bicatop (𝔸,𝔹), which is strict if 𝑝 is (see [1], sections 11.1 and 11.3).

The main theorem of this section is as follows:

Theorem 0.11 (Exponential fibration) :  Let 𝑝 : 𝔼 → 𝔹 be a cloven fibration between
bicategories. Then for any bicategory 𝔸, the postwhiskering pseudofunctor − ⋅ 𝑝 :
Bicatop (𝔸,𝔼) → Bicatop (𝔸,𝔹) is a fibration.

We will prove this in a series of lemmas. We assume that 𝑝 is strict, and make use of this fact
without comment.

Theorem 0.12 : Let 𝔸 be a bicategory, and 𝑝 : 𝔼 → 𝔹 a strict locally fibered pseudofunctor.
Suppose that the horizontal composite of Cartesian 2-cells in 𝑝 is Cartesian. Then (− ⋅ 𝑝) :
Bicatop (𝔸,𝔼) → Bicatop (𝔸,𝔹) is locally fibered.

Proof :  Let 𝐹,𝐺 : 𝔸 → 𝔼 be lax functors. Let 𝜏 : 𝐹 ⇒ 𝐺 be an oplax natural transformation.
Let 𝜎 : 𝐹 ⋅ 𝑝 ⇒ 𝐺 ⋅ 𝑝 be an oplax natural transformation. Let 𝛾 : 𝜎 ⇒ 𝜏 ⋅ 𝑝 be a modification.
We want to prove that there is a lift 𝜎 of 𝜎 along 𝑝 and a Cartesian lift 𝛾 of 𝛾 along 𝑝.

For 𝑎 in 𝔸, define 𝛾(𝑎) to be any choice of Cartesian 2-cell with codomain 𝜏(𝑎) such that
𝑝(𝛾(𝑎)); define 𝜎(𝑎) to be the domain of 𝛾(𝑎).

For 𝑓 : 𝑎 → 𝑎′ in 𝔸, define 𝜎(𝑓) as follows: the horizontal composite 𝛾(𝑎) ⋅ 𝐺(𝑓) is Cartesian
because 𝛾(𝑎) is and 1𝐺(𝑓) is. Thus to construct a 2-cell 𝜎(𝑓) : 𝐹 (𝑓) ⋅ 𝜏(𝑎′) ⇒ 𝜏(𝑎) ⋅ 𝐺(𝑓) it
suffices to observe that 𝜎 : 𝑝(𝐹(𝑓) ⋅ 𝜏(𝑎′)) ⇒ 𝑝(𝜏(𝑎) ⋅ 𝐺(𝑓)) makes the appropriate triangle
commute in 𝔹(𝑝(𝐹(𝑎)), 𝑝(𝐺(𝑎′))) (because 𝛾 is a modification).

It is necessary to verify that 𝜎(𝑓) is natural in 𝑓 . The argument is by appeal to the fact that
𝛾(𝑎) ⋅ 𝐺(𝑓) is monic for any 𝑓 , appeal to the definition of 𝜎(𝑓), and the naturality condition of
𝜏 .



We also sketch the proof of the oplax unity and composition constraints. The proof technique
is similar to the naturality of 𝜎(𝑓). As before we should use the fact that 𝛾(𝑎) ⋅ 𝐺(1𝑓) is monic
for any 𝑓  because it is Cartesian, and then reduce the unity / composition constraint for 𝜎 to
the unity / composition constraint for 𝜏 .

Thus, 𝜎 is an oplax natural transformation. It now follows immediately from the definition of
𝛾 that it is a modification.

It remains to prove that 𝛾 is Cartesian. Therefore, let 𝜌 be some oplax natural transformation
𝐹 ⇒ 𝐺 and let 𝜃 : 𝜌 ⇒ 𝜏  be a modification; suppose that 𝜅 : 𝜌 ⋅ 𝑝 ⇒ 𝜎 is a modification such
that 𝜅 | 𝛾 = 𝜃 ⋅ 𝑝. Then for each 𝑎 there is a unique lift 𝜅(𝑎) of 𝜅(𝑎) along 𝑝𝐹(𝑎),𝐺(𝑎) such that
𝜅(𝑎) | 𝜏(𝑎) = 𝜃(𝑎). To see that 𝜅 is indeed a modification, we use the same proof technique as
above, appealing to the fact that 𝛾(𝑎) ⋅ 𝐺(𝑓) is monic because it is Cartesian, and then
appealing to the definition of 𝛾 and the fact that 𝜃 is a modification. ∎

Theorem 0.13 : Let 𝔸 be a bicategory, and 𝑝 : 𝔼 → 𝔹 a pseudofunctor.
• There is a bijective correspondence between lax (respectively colax, pseudo) functors 𝔸 →
𝔹/𝑝 and triples (𝐹 ,𝐺, 𝜏), where 𝐹 : 𝔸 → 𝔹 and 𝐺 : 𝔸 → 𝔼 are lax (respectively colax,
pseudo) functors and 𝜏 : 𝐹 ⇒ 𝐺 ⋅ 𝑝 is an oplax natural transformation.

• There is a bijective correspondence between lax (respectively colax, pseudo) functors 𝔸 →
𝔼𝐼  and triples (𝐹 ,𝐺, 𝜏) where 𝐹  and 𝐺 are lax (respectively colax, pseudo) functors 𝔸 → 𝔼
and 𝜏  is an oplax natural transformation 𝐹 ⇒ 𝐺.

• If (𝐹 ,𝐺, 𝜏) : 𝔸 → 𝑝/𝔹 is given, then a lift (on the nose) of (𝐹 ,𝐺, 𝜏) along 𝑝𝐿 precisely
corresponds to a pair (𝐹 , 𝜏) where 𝐹  is a lift of 𝐹  along 𝑝 and 𝜏  is a lift of 𝜏  along 𝑝.

All of this is seen easily by inspecting the definitions.

Theorem 0.14 (Canonical lift associated to an oplax natural transformation in a fibration) :
Let 𝑝 : 𝔼 → 𝔹 be a strict fibration, and 𝔸 a bicategory. Let 𝐹 : 𝔸 → 𝔹 and 𝐺 : 𝔸 → 𝔼 be lax
(respectively colax, pseudo) functors, and 𝜏 : 𝐹 ⇒ 𝐺 ⋅ 𝑝 an oplax natural transformation. Then
there is a lax (respectively colax, pseudo) functor 𝐹 : 𝔸 → 𝔼 which is a strict lift of 𝐹  along 𝑝,
and an oplax natural transformation 𝜏 : 𝐹 ⇒ 𝐺 such that the 1-cells and 2-cells of 𝜏  are
Cartesian.

Proof :  It suffices to give a lift of (𝐹 ,𝐺, 𝜏) along 𝑝𝐿; therefore we define the pair (𝐹 , 𝜏) as
(𝐹 ,𝐺, 𝜏) ⋅ 𝑠𝐿. It is immediate by construction that 𝐹  and 𝜏  are well defined and strict lifts of
𝐹, 𝜏  respectively, and that the 1- and 2-cells of 𝜏  are Cartesian. ∎

Theorem 0.15 :  Let 𝑝 : 𝔼 → 𝔹 be a strict fibration, and 𝔸 a bicategory. Then the
postcomposition functor − ⋅ 𝑝 : Bicatop (𝔸,𝔼) → Bicatop (𝔸,𝔹) has the Cartesian lifting
property; a 1-cell in Bicatop (𝔸,𝔼) is Cartesian if its 1-cells and 2-cells as an oplax natural
transformation are Cartesian.

The same is true for the associated bicategories of colax functors and oplax natural
transformations, and pseudofunctors and oplax natural transformations.



Proof :  Because we have established that − ⋅ 𝑝 is locally fibered, we use the stricter
characterization of Cartesian 1-cells in Theorem 0.4.

We only treat the case of lax functors, as the other cases are similar. For oplax functors,
everything is the same except the oplax unity and composition constraints for a natural
transformation. We regard a pseudofunctor as equipped with both a lax and oplax functor
structure which are mutually inverse, so once the lax and oplax cases are proved it is only a
matter of checking that the two lifted lax and oplax structures of a pseudofunctor are inverse.

Introduce lax functors 𝐹 : 𝔸 → 𝔹, 𝐺 : 𝔸 → 𝔼, and 𝜏 : 𝐹 ⇒ 𝐺 ⋅ 𝑝 an oplax natural
transformation. We use the definitions of 𝐹  and 𝜏  given above.

It must be shown that 𝜏  is a Cartesian 1-cell; we prove the two components of the definition
separately.

Thus, introduce 𝐻 : 𝔸 → 𝔼 a lax functor, and 𝜎 : 𝐻 ⇒ 𝐺 an oplax natural transformation;
introduce 𝜅 : 𝐻 ⋅ 𝑝 ⇒ 𝐹  an oplax natural transformation, and 𝛼 : 𝜅 ⋅ 𝜏 ≅ 𝜎 ⋅ 𝑝 an
isomorphism (i.e., an invertible modification); we will prove that there is a strict lift 𝜅 : 𝐻 ⇒
𝐹  of 𝜅 along 𝑝 and a strict lift 𝛼 : 𝜅 ⋅ 𝜏 ≅ 𝜎 of 𝛼 along 𝑝.

For 𝑎 in 𝔸, we define 𝜅(𝑎) and 𝛼(𝑎) in the evident way by appeal to Theorem 0.4.

For 𝑓 : 𝑎 → 𝑎′ in 𝔸, we define 𝜅(𝑓) as the unique 2-cell over 𝜅(𝑓) such that the already given
definition for 𝛼(𝑎) will constitute a modification 𝑘 ⋅ 𝜏 ≅ 𝜎. That a unique such morphism
exists follows from the fact that 𝜏(𝑎′) is Cartesian, and the pasting of the 2-cells 𝐹(𝑓) with
𝛼(𝑎) is Cartesian.

Let us prove that 𝜅(𝑓) is actually an oplax natural transformation, by verifying that 𝜅 is
natural in 𝑓 , and that the oplax unity and composition constraints hold. Each is an application
of Theorem 0.7 and the proof techniques are very similar.

Let 𝑓, 𝑔 : 𝑎 → 𝑎′ in 𝔸, and 𝜌 : 𝑓 ⇒ 𝑔. To establish the naturality of 𝜅 for 𝜌, apply Theorem 0.7
with Cartesian 1-cell 𝜏(𝑎′) and Cartesian 2-cell 𝛼(𝑎) ⋅ 𝜏(𝑔); then the naturality of 𝜅 at 𝜌
follows from the naturality of 𝜏  and 𝜎 at 𝜌.

For 𝑎 in 𝔸, the oplax unity condition at 𝑎 is established by applying Theorem 0.7 with
Cartesian 1-cell 𝜏(𝑎) and Cartesian 2-cell 𝛼(𝑎) ⋅ 𝜏(1𝑎), appealing to the oplax unity constraint
for 𝐹  and 𝐺.

For 𝑓 : 𝑎 → 𝑏, 𝑔 : 𝑏 → 𝑐 in 𝔸, the oplax composition condition at (𝑓, 𝑔) is established by
applying Theorem 0.7 with Cartesian 1-cell 𝜏(𝑐) and Cartesian 2-cell 𝛼(𝑎) ⋅ 𝐺(𝑓 ⋅ 𝑔).

For part 2 of the definition of Cartesian, let 𝑔, 𝑔′ : 𝐻 ⇒ 𝐺 and ℎ, ℎ′ : 𝐻 ⇒ 𝐹  be oplax natural
transformations. Let 𝜎 : 𝑔 ⇒ 𝑔′, 𝛿 : ℎ ⋅ 𝑝 ⇒ ℎ′ ⋅ 𝑝, 𝛼 : ℎ ⋅ 𝜏 ≅ 𝑔, 𝛼′ : ℎ′ ⋅ 𝜏 ≅ 𝑔′, and 𝛿 : ℎ ⋅
𝑝 ⇒ ℎ′ ⋅ 𝑝 be modifications, such that 𝛿 ⋅ 𝜏 | 𝛼′ ⋅ 𝑝 = 𝛼 ⋅ 𝑝. We will show there is a unique
modification 𝛿 : ℎ ⇒ ℎ′ such that 𝑝(𝛿) = 𝛿 and 𝛿 ⋅ 𝜏 | 𝛼′ = 𝛼.

The modification is constructed pointwise in the obvious way, for each 𝑎 ∈ 𝔸, appealing to (2.)
of , because each 𝜏(𝑎) is Cartesian. It is evidently unique, so it suffices to check that it satisfies
the axiom for a modification. Let 𝑓 : 𝑎 → 𝑎′ in 𝔸. We apply Theorem 0.4 with Cartesian 1-cell
𝜏(𝑎) and Cartesian 2-cell ℎ′(𝑎) ⋅ 𝜏(𝑓) | 𝛼(𝑎), then use the hypothesis that 𝜎 : 𝑔 ⇒ 𝑔′ is a
modification. ∎



Theorem 0.16 :  Let 𝑝 : 𝔼 → 𝔹 be a strict fibration, and 𝔸 a bicategory. A 1-cell 𝜏 : 𝐹 ⇒ 𝐺 in
Bicatop (𝔸,𝔼) is Cartesian iff it has Cartesian 1-cells and Cartesian 2-cells as an oplax natural
transformation.

Proof :  We have proved one direction of the implication in Theorem 0.15. For the other, let 𝜏 :
𝐹 ⇒ 𝐺 be a Cartesian oplax natural transformation in Bicatop (𝔸,𝔼). Let 𝜏  be the Cartesian
oplax natural transformation of 𝜏 ⋅ 𝑝 with codomain 𝐺 we constructed in Theorem 0.15; then 𝜏
factors through 𝜏  by some 𝜎 : 𝐹 ⇒ 𝐹  up to an invertible modification. Evidently 𝜎 is a
pseudonatural equivalence, because we can construct 𝜎−1 going in the opposite direction;
thus, the 1-cells of 𝜎 are equivalences and the 2-cells are isomorphisms.

By 3.1.8 and 3.1.9 of [2], it follows that the 1-cells of 𝜏  are Cartesian.

Similarly, because the pasting of Cartesian 2-cells is Cartesian, 𝜎(𝑓) is an isomorphism (thus
Cartesian) and 𝜏(𝑓) is an isomorphism, thus the pasting is an isomorphism. ∎

Theorem 0.17 :  Let 𝑝 : 𝔼 → 𝔹 be a strict fibration, and 𝔸 a bicategory. The horizontal
composite of Cartesian 1-cells in Bicatop (𝔸,𝔼) is again Cartesian.

Proof :  We use Theorem 0.16. Then apply [2] 3.1.9 which states that the composition of
Cartesian 1-cells is Cartesian. Because 𝑝 is a fibration, the pasting of Cartesian 2-cells is again
Cartesian. ∎

This concludes the proof of Theorem 0.11.

Theorem 0.18 :  For bicategories 𝔸,𝔹, let Bicatps (𝔸,𝔹) denote the bicategory of lax functors
(respectively, oplax and pseudo) and pseudonatural transformations.

Let 𝑝 : 𝔼 → 𝔹 be a cloven fibration between bicategories.

Then for any bicategory 𝔸, the postwhiskering pseudofunctor − ⋅ 𝑝 : Bicatps (𝔸,𝔼) →
Bicatps (𝔸,𝔹) is a fibration.

Proof :  In a 1-Grothendieck fibration, a Cartesian lift of an isomorphism is an isomorphism. It
follows that the functor 𝑠𝐿 sends 1-cells whose underlying square is invertible to 1-cells whose
underlying square is invertible, and that a Cartesian lift of a pseudonatural transformation
between lax functors is again a pseudonatural transformation.

The other thing that needs to be proven is that the factoring of a pseudonatural transformation
through a Cartesian pseudonatural transformation is pseudo. Inspecting the definition of 𝜅(𝑓),
it suffices to observe that the functor − ⋅ 𝜏(𝐹)(𝑎) is fully faithful because 𝜏(𝐹)(𝑎) is
Cartesian, so in particular 𝜅(𝑓) is an isomorphism if 𝜅(𝑓) ⋅ 𝜏(𝐹)(𝑎) is, and this 2-cell is an
isomorphism because every other 2-cell arising in the definition of 𝜅(𝑓) is an isomorphism. ∎

A limit lifting theorem for fibrations between bicategories
Let 𝑝 : 𝔼 → 𝔹 be a strict functor between bicategories. For the sake of this paper, the “fiber” of 𝑝
over 𝑏 refers the bicategory whose 0-cells are objects lying strictly over 𝑏, whose 1-cells 𝑓 : 𝑒 → 𝑒′



are 1-cells of 𝔼 equipped with a distinguished 2-isomorphism 𝑝(𝑓) ≅ 1𝑏, and whose 2-cells are 2-
cells of 𝔼 respecting the associated 2-isomorphism.

Let 𝑝 : 𝔼 → 𝔹 be a fibration, 𝑓 : 𝑏 → 𝑏′ a 1-cell in 𝔹, and 𝔸 a bicategory. Let 𝐹 : 𝔸 → 𝑝−1(𝑏′) be a
pseudofunctor valued in the fiber over 𝑏′; we can regard 𝐹  as a pair (𝐹0, 𝜌) where 𝐹0 : 𝔸 → 𝔼 and
𝜌 : 𝐹0 ⋅ 𝑝 ⇒ 1𝑏′  is an invertible icon.

There is a canonical choice of pseudonatural transformation 𝜏 : 𝑏 ⇒ 𝐹 ⋅ 𝑝 given by the data of the
icon 𝜌.

A reindexing of 𝐹  along 𝑓  consists of a functor 𝐹 : 𝔸 → 𝔼 lying strictly over the constant
functor 1𝑏′  together with a Cartesian pseudonatural transformation 𝜏 : 𝐹 ⇒ 𝐹0 lying over 𝜏 .
Evidently, 𝐹  factors through the inclusion of the fiber of 𝑏 into 𝔼.

Suppose 𝐹 : 𝐴 → 𝑝−1(𝑏′) has a (conical) limit in the fiber. Because of our work to show that − ⋅ 𝑝 is
a fibration, it is evident that for any 𝑓 : 𝑏 → 𝑏′, the limit cone can be reindexed along 𝑓 , and if this
reindexed cone is a limit cone, we say that 𝑓  preserves the limit.

We say that reindexing along 𝑓  preserves limits of shape 𝔸 if it preserves limits for all
pseudofunctors 𝔸 → 𝑝−1(𝑏).

Theorem 0.19 (Limit lifting theorem):  Let 𝑝 : 𝔼 → 𝔹 be a fibration of bicategories, and let 𝔸
be a diagram bicategory. If 𝔹 has pseudo (respectively, oplax) limits of shape 𝔸, and the fibers
of 𝑝 have pseudo (respectively, oplax) limits of shape 𝔸 preserved by reindexing, then 𝔼 has
pseudo (respectively, oplax) limits of shape 𝔸.

Proof :  The proof is almost entirely formal, relying on the fibration structure for
pseudofunctors and pseudo (respectively, oplax) natural transformations we have established;
the same proof works in both the pseudo and oplax case. Let 𝐽 : 𝔸 → 𝔼 be a diagram. Let
(𝑠, 𝜏 : 𝑠 ⇒ 𝐽 ⋅ 𝑝) be the limit of 𝐽 ⋅ 𝑝, where 𝑠 is an object of 𝔹 and by abuse of notation also
the constant functor at 𝑠. Let (𝑠, 𝜏) be a Cartesian lift of 𝜏  with codomain 𝐽 ; 𝑠 is a diagram in
𝔼 that clearly factors through the fiber inclusion of the fiber 𝑝−1(𝑠) → 𝔼. Let (𝑠∗, 𝜏∗) be the
limit of this diagram in 𝑝−1(𝑠); we claim (𝑠∗, 𝜏∗ ⋅ 𝜏) is also the limit of the diagram in 𝔼. To
see this, let 𝑥 be an arbitrary object of 𝔼 and let 𝜅 : 𝑥 ⇒ 𝐽  be a cone. Then 𝜅 ⋅ 𝑝 is a cone for
𝐽 ⋅ 𝑝, and so 𝜅 factors through 𝜏  by some 1-cell 𝑔 : 𝑝(𝑥) → 𝑠 up to an invertible modification
𝛼. Because 𝜏  is Cartesian, 𝜅 factors through 𝜏  by a morphism ℎ : 𝑥 ⇒ 𝑠, up to an invertible
modification 𝛽.

Let 𝑔lim be a Cartesian 1-cell 𝑔∗𝑠∗ → 𝑠∗. Now, ℎ : 𝑥 → 𝑠 factors through the reindexing 𝑔𝑠 :
𝑔∗(𝑠) ⇒ 𝑠 by a vertical cone ℎ𝑣 : 𝑥 ⇒ 𝑔∗(𝑠). Because reindexing preserves limits, there is a
unique-up-to-isomorphism vertical 1-cell ℎ′ : 𝑥 → 𝑔∗𝑠∗ such that ℎ′ ⋅ 𝑔∗(𝜏∗) is isomorphic to
ℎ𝑣. Furthermore, ℎ′ ⋅ 𝑔lim is the unique 1-cell (up to isomorphism) such that (ℎ′ ⋅ 𝑔lim) ⋅ 𝜏∗ ≅ ℎ,
and such that (ℎ′ ⋅ 𝑔lim) ⋅ 𝜏∗ ⋅ 𝜏 ≅ ℎ ⋅ 𝜏 ≅ 𝜅. (Whiskering with a Cartesian 1-cell is fully
faithful.)

It remains to prove that for any two cones 𝜅, 𝜅′ : 𝑥 ⇒ 𝐽  and any modification 𝜌 : 𝜅 ⇒ 𝜅′, 𝜌
can be factored through 𝜏∗ ⋅ 𝜏 . The proof of this is substantially the same as for 1-cells, and we
omit it. ∎
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