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Assuring the correct behavior of cyber-physical systems requires significant modeling effort, partic-
ularly during early stages of the engineering and design process when a system is not yet available
for testing or verification of proper behavior. A primary motivation for ‘getting things right’ in these
early design stages is that altering the design is significantly less costly and more effective than when
hardware and software have already been developed. Engineering cyber-physical systems requires
the construction of several different types of models, each representing a different view, which in-
clude stakeholder requirements, system behavior, and the system architecture. Furthermore, each of
these models can be represented at different levels of abstraction. Formal reasoning has improved the
precision and expanded the available types of analysis in assuring correctness of requirements, behav-
iors, and architectures. However, each is usually modeled in distinct formalisms and corresponding
tools. Currently, this disparity means that a system designer must manually check that the different
models are in agreement. Manually editing and checking models is error prone, time consuming, and
sensitive to any changes in the design of the models themselves. Wiring diagrams and related theory
provide a means for formally organizing these different but related modeling views, resulting in a
compositional modeling language for cyber-physical systems. Such a categorical language can make
concrete the relationship between different model views, thereby managing complexity, allowing
hierarchical decomposition of system models, and formally proving consistency between models.

1 Introduction

Cyber-physical systems are composed of computing platforms, control systems, sensors, and commu-
nication networks [20]. These systems provide critical service capabilities in a number of engineering
domains, including transportation, medical devices, and power, to name a few. The design of cyber-
physical systems poses new challenges because of the intertwined nature of digital control with physical
processes and the environment. As autonomy and coordination between a multitude of such systems be-
comes commonplace, there is an increasing need to formally assure not only their individual behavior
but also the emergent properties that arise from the behavior of the composite system. One such emer-
gent property is safety. When cyber-physical systems exhibit unwanted behaviors, they can transition to
hazardous states and then lead to accidents. To avoid such undesirable outcomes it is necessary to pro-
vide evidence of correct behavior before deployment, during the design phase of the systems lifecycle.
Design changes in later stages of the system lifecycle cost more and are less effective [23]. It is only
possible to produce this evidence early – when an implemented system is not yet available – through the
management and use of various models.

The formal assurance of such complex systems requires the use of compositional methods to manage
the various views necessary for the modeling and simulation of cyber-physical system design artifacts [8].
At the highest level of abstraction a system must be constrained by requirements, which define what the
system ought to and ought not to do. Through an iterative process, requirements are refined to dictate the
set of allowable behaviors and then used to architect a candidate implementation. There are often several
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candidate implementations that are functionally equivalent but implemented with different hardware or
software and they can be compared in terms of how they respond to different performance metrics.

There is a gap in systems engineering, including its currently narrowly overlapping fields of safety
and security, where there is a lack of semantic strength1 between requirements, behaviors, and architec-
tures. These are considered connected in practice but currently reside in distinct formalisms, leading to
an unmanageable problem of complexity [12, 13]. However, each is naturally modeled in different for-
malisms, for example, first-order logic for requirements, difference and differential equations for physical
behavior, and graphs for architectures. Indeed, state space representations in control are informally re-
lated to finite state machines in the software implementation. Compositional formal methods assist with
making this informal understanding of relation and unification explicit.

Recent work in applied category theory for dynamical systems [10,24,26], probabilistic failure analy-
sis [5], control [4], and requirements management [16] is particularly relevant to making this unification
happen. Specifically, the wiring diagram category [27] is useful for compositionally modeling cyber-
physical systems because it models reactive systems, feedback, and real-time computation, all of which
are necessary properties for modeling cyber-physical systems [1, §1.2]. However, to date there is lit-
tle work in merging this mathematical machinery for the design of a modeling language blueprint for
cyber-physical systems using categorical, or otherwise algebraic, concepts.

Our aim with this line of research is to use categorical formalisms and concepts to better model
systems for the purposes of system assurance. To achieve this aim we bring theoretical concepts from
applied category theory to the realm of application by modeling and simulating cyber-physical systems
in a categorical context. This requires us to precisely unify a number of diverse models for the purpose
of having a holistic picture of the systems behavior and how it relates to candidate implementations.

We provide evidence that using category theory as a modeling language makes it possible to unify
the necessary but diverse views of cyber-physical system models. Using category theory solves an impor-
tant problem in systems theory and systems engineering practice, which is a lack of formal traceability
between requirements, behaviors, and implementations. We posit that wiring diagrams provide an effec-
tive solution to formal unification of system models that will improve scalability of the overall modeling
effort. As a first step, it is required that we reverse engineer the composite behavior of a system cat-
egorically, and combine these possible decompositions with appropriate hierarchical implementations
to provide flexibility for the system designer: this is the main contribution of this paper. The results of
this ongoing project, which uses real-life systems and design needs, exhibit the usefulness of category
theory for finding consistency errors in system models early in the design phase. Applying formal tools
and constructions directly to the field of systems engineering results in highly unified engineering design
artifacts, which in turn have the potential to reduce the amount of faulty and dangerous systems that get
deployed.

2 Categorical Semantics for Cyber-Physical Systems

In engineering there are two main iterative design steps, synthesis and analysis. Synthesis is the process
by which new systems are formed from already known device laws, and analysis is the process by which
the new system is evaluated as a whole for its overall function. At each iteration of synthesis and analysis
there is a notion of refinement. Designing systems starts at some level of abstraction and as we progress
through the design-phase the modeling artifacts are developed to be closer and closer to the eventual real
system that will be deployed.

1The complement of semantic strength is a perhaps familiar term: semantic gap.
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In this work, we follow the categorical formalism of wiring diagrams [24,27]. After we introduce the
relevant theory in this section, we proceed to investigating a specific example of a cyber-physical system,
namely an unmanned aerial vehicle (UAV). We start with modeling the system functions (Section 3) and
iteratively decompose down to an implementation (Section 4) of an actual flight controller and airframe.
We show that by using wiring diagrams we can synthesize system models, analyze them with respect
to their behavioral outcomes, and refine them from a particular set of behaviors to a concrete candidate
architecture.

Recall that for a category C with products, the category WC of labeled boxes and wiring diagrams2

has as objects pairs of objects X = (Xin,Xout) that should be thought of as the input and output types of
an interface

XXin Xout

that serves as a placeholder for some system, whereas a morphism X →Y is a pair of arrows ( fin : Xout×
Yin → Xin, fout : Xout → Yout) in C that should be thought of as providing the flow of information in a
picture as follows

Y

X (1)

It is a monoidal category, with X⊗Y = (Xin×Yin,Xout×Yout) expressing parallel placement

X

Y

(2)

In what follows, C will be Set or Lin (the category of linear spaces and linear maps) whereas in general
the types could be objects in any cartesian monoidal category, which provides the flexibility to model
different sorts of information or views of systems as well as incorporate notions of discrete and contin-
uous time or functorially map between systems with different values. We sometimes write just W for
WC.

Morphisms in this category give a concrete mathematical description of pictures like Figure 1 where
the interconnection of three systems L,C,D produces a composite system U. As objects in WSet, these
are L = C = U = (R2,R) and D = (R,R), whereas the morphism L⊗C⊗D→ U that captures the above
arrangement is explicitly given in Figure 2.

The essence of the proposed categorical formalism for systems modeling is encapsulated by viewing
different types of system behaviors or requirements as algebras for W, namely lax monoidal functors3

from W to (Cat,×,1). So each algebra assigns to a box X = (Xin,Xout) a category FX of systems that
can be placed inside the box, and also assigns to a wiring diagram ( fin, fout) : X→Y a functor FX→ FY
that, given a system inhabiting the internal box, produces the composite system inhabiting the external
box. Moreover, the laxator φX ,Y : FX ×FY → F(X ⊗Y ) maps two given systems inside the boxes in
wiring diagram (2) to a system inside their parallel placement.

2The original definition involves C-typed finite sets and functions that respect the types; herein we abuse the notation by
referring to the resulting category by taking products of types [24, Rem. 2.2.2].

3These are in fact usually pseudofunctors and more specifically monoidal indexed categories [24, Rem. 2.1.1].
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Figure 1: Wiring diagrams make explicit the type of interconnections between subsystems.
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fin :

(L⊗C⊗D)out︷︸︸︷
R3 ×

Uin︷︸︸︷
R2→

(L⊗C⊗D)in︷︸︸︷
R5 by (x,y,z,w,v)7→(w,z,v,x,y)

fout : R3︸︷︷︸
(L⊗C⊗D)out

→ R︸︷︷︸
Uout

by (x,y,z)7→z

Figure 2: In wiring diagrams the syntax defines the architecture; that is, how the boxes are arranged.

One of the examples used in this work is the algebra of linear time-invariant systems, also called
linear dynamical systems by Spivak [25]. The algebra, namely a lax monoidal functor

LTIS: WLin→ Cat (3)

assigns to any box Xin Xout a special discrete dynamical system; that is, a set S called the state space
and two functions u,r called update and readout as in

(S,u : S×Xin→ S,r : S→ Xout)

where all S,Xin,Xout are linear spaces and both update and readout functions u and r are linear functions
expressed as

u(s,x) = A · s+B · x =
(
A B

)(s
x

)
r(s) = C · s

where A , B and C are matrices of appropriate dimension and · is matrix multiplication. For example,
if Xin = Rk, Xout = R` and S = Rn, then A ∈ nMn represents a transformation Rn → Rn, B ∈ nMk a
transformation Rk→Rn and C ∈ `Mn a transformation Rn→R`. We often write

•
s= u(s,x) as a standard

notation, even in this discrete time-case.
Now given an arbitrary wiring diagram ( fin, fout) : (Xin,Xout)→ (Yin,Yout), notice that for Yin = Rk′

and Yout = R`′ both components of the wiring diagram are also expressed via matrices

Fin =
(

k(A
F)` k(B

F)k′
)

Fout = `′C
F
`



G. Bakirtzis, C. Vasilakopoulou & C.H. Fleming 5

The functor LTIS maps some system (S,A ,B,C ) in XRk R` to the composite system

(S,A +B ·A F ·C , B ·BF , C F ·C ) (4)

in YRk′ R`′ . The laxator of LTIS maps any two such systems (S1,A1,B1,C1), (S2,A2,B2,C2) inhab-
iting parallel boxes to the system(

S1×S2,

(
A1 0
0 A2

)
,

(
B1 0
0 B2

)
,

(
C1 0
0 C2

))
.

This is the machinery that will allow us to model control systems and, therefore, the largest class of
cyber-physical systems.

3 Simulating Dynamics

A UAV is often a small factor fixed wing plane or multi-rotor copter that is controlled on the ground by a
computer. The unmanned aerial system, which includes the UAV, ground control station, and a network
between the two, is responsible for navigating the plane from one waypoint to the next.

A UAV includes a control system and as such it needs to adhere to certain control laws, which
have to be designed, implemented, and tuned. But what is a behavioral interpretation of what a UAV
does? We can consider behavior as a composition of system functions. In this sense, a compositional
interpretation could be the composition of its sensors, controllers, and control surfaces to produce a
known set of dynamics. To simulate the UAV behavior the first step is to produce the dynamic response
of the system to environmental values. We capture the dynamics of such a system to the systems-as-
algebras paradigm, where we consider that the sensors are measuring the environment but also get input
from the resulting airframe dynamics. We describe this process step-by-step in a practical approach, and
conclude the section with the bare categorical dimension of said process.

Thinking of the composite UAV system in terms of its control laws for discrete time, we would model
its dynamics by its difference equations – since we are operating in discrete time – but we map the matrix
representation as above. Therefore

sp+1 = A sp +Bcp

where sp ∈ Rn is the discrete time state and cp ∈ Rn is the control signal/output, and

yp = C sp +Dcp

is the measurement which is also yp ∈Rn, where we could assume a perfect measurement so that sp = yp.
In practice, the airframe behavior (say, the static parts of the airframe) can be considered or otherwise
contained in A , servos and actuators would be part of B, sensors are part of C . The disturbance, or
feedforward term, D is typically 0 of proper dimension. We define the following notational abbreviations:

L, sensor,

C, controller, and

D, dynamics.

Any such system requires a prediction s′, this is typically used within C (Figure 3). This is done in
different ways (open-loop, MPC, classical control, et cetera). In modern control, one typically takes a
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sensor
L

controller
C

dynamics
D

fin : R3×R2→ R5, (s′,c,s,e,d) 7→ (e,s,d,s′,c)
fout : R3→ R, (s′,c,s) 7→ s

R

R

R
R

R
d

e s′

c

s

UAV

Figure 3: The physical decomposition of the unmanned aerial vehicle (UAV), where d denotes the desired
state, s′ the predicted state, c the control action, s the current state, and e the environmental inputs. The
functions coincide with U (Figure 2).

measurement yp and uses it to create an estimate of the full state at that time sp+1, and then uses that state
information to update its control signal.

At this point, we have mapped a given behavioral formalism to our wiring diagram syntax and se-
mantics for illustrative purposes. We posit that such diagrams can fully capture behaviors that adhere to
composition. A different formalism could model the behavior of an information technology (IT) system
by mapping a graph formalism used to assess and measure its performance. However, the usefulness of
the formalism lies precisely in relating the physical behavior of the cyber-physical systems to its can-
didate architecture and therefore composition in this sense better captures the possible misbehavior a
system designer might want to mitigate against.

We now wish to use the compositional system-as-algebra perspective to, in a sense, reverse engineer:
given a specific behavioral description of some UAV we would like to provide specific descriptions for
the individual component systems that would result in such a composite behavior. We will use the system
model for predicting aircraft pitch [19]. In that specific example, the longitudinal equations of motion
for a fixed-winged aircraft are given as a state-space model of the following form,


•
a
•
q
•
θ

=

 −0.313 56.7 0
−0.0139 −0.426 0

0 56.7 0

a
q
θ

+

 0.232
0.0203

0

(δ) (5)

y =
(
0 0 1

)a
q
θ


where a is the angle of attack, q is the pitch rate, θ is the pitch angle and δ is the deflection angle.

Working in the linear time-invariant system algebra (3), suppose (SL,AL,BL,CL), (SC,AC,BC,CC)
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and (SD,AD,BD,CD) are three linear systems inhabiting the respective boxes of Figure 3, with

uL(sL,e,s) =AL · sL +BL · (e,s) rL(sL) =CL · sL
uC(sC,d,s′) =AC · sC+BC · (d,s′) rC(sC) =CC · sC

uD(sD,c) =AD · sD+BD · (c) rD(sD) =CD · sD

Using the algebra machinery (4), we can compute the composite linear dynamical system that inhabits
the box UAV: its state space is SL×SC×SD, and its update and readout linear functions are

uUAV : SL×SC×SD×R2→ SL×SC×SD,

(sL,sC,sD,d,e) 7→ (ALsL+BL

(
e

CDsD

)
,ACsC+BC

(
d

CLsL

)
,ADsD+BDCCsC)

rUAV : SL×SC×SD→ R
(sL,sC,sD) 7→ CDsD

We assume, for simplicity4, that the state spaces of the sensor and controller are R. Knowing that only
the dynamics D relate to the triplet (a,q,θ), we set SD = R3 producing a resulting state space of the
composite system SUAV =R5. Moreover, from the shape of the boxes we deduce that matrices AL, AC, CL

and CC are one-by-one, BL and BC are one-by-two, whereas AD is three-by-three, BD is three-by-one
and CD is one-by-three.

Decoding the above equations, we first of all have that the only output of the composite system is the
output of D, namely

CUAV =
(
0 0 1(CD)3

)
Hence for obtaining equation (5), in the specific example we deduce that CD =

(
0 0 1

)
meaning only

θ is outputted to the outside world as desired.

Regarding the update part for an element of the state space R5 of the form (sL,sC,

sD︷ ︸︸ ︷
a,q,θ), isolating

the first two variables we obtain

•
sL= ALsL+ 1(BL)2

 e
CDsD︸︷︷︸

θ

 •
sC= ACsC+ 1(BC)2

(
d

CLsL

)

which could be viewed as the ‘extra info’ of the composite system relating to the behaviors of the sensor
and controller, not appearing in equation (5) but part of the total system’s behavior. Now isolating the
last three variables we obtain a description

•
α
•
q
•
θ

= 3(AD)3

α

q
θ

+ 3(BD)1CCsC

Comparing with the desired equation (5), the deflection angle δ is the output of the controller CCsC which
matches the physical reality, and the AD, BD are completely determined by the composite description,

4In the likely case that sensor and controller are linear functions, to express them as linear time-invariant systems the state
space would match the input space and therefore be R2. Moreover A would be the zero matrix and B would be the unit matrix.
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namely

AD =

 −0.313 56.7 0
−0.0139 −0.426 0

0 56.7 0

 BD =

 0.232
0.0203

0


The remaining data AL,C,BL,C,CL,C depend on engineering and physical parameters. Imposing extra,
realistic conditions on what these could be is part of ongoing work.

In conclusion, this reverse engineering process is categorically described as follows. Given the al-
gebra LTIS, a wiring diagram f : L⊗ C⊗ D→ U in WLin (Figure 3) as well as an object of the target
category LTIS(U), namely a specific linear system as in equation (5) inhabiting the outside box UAV, the
goal is to find an object in the pre-image of the given system under the composite functor

LTIS(L)×LTIS(C)×LTIS(D)
φL,C,D−−−→ LTIS(L⊗C⊗D)

LTIS( f )−−−−→ LTIS(U). (6)

Clearly it is not expected that such a problem has a unique solution, but for example, in this specific case
the system

(SD,AD,BD,CD) (7)

was completely determined by the composite system. Further work would aim to shed light on possible
shapes of wiring diagrams that have better-behaved solutions under algebras of interest.

4 Decomposing Hierarchically to an Implementation

We have shown how to model a behavioral response of the system as it pertains to its physics. But how
might we connect this behavioral understanding to a concrete implementation, in particular how can
we zoom-in on each of the boxes to create an architectural implementation that will yield the wanted
behaviors? Of course, there is no one solution for how to implement a cyber-physical system, so how
might we categorically capture different architectural solution with an explicit relationship to the wanted
set of behaviors?

Starting with a cyber-physical system from an engineer or designer point of view we now might
want to model a candidate implementation. That means decomposing it into certain sub-components and
using a specific wiring between them, following some choices based on the physical reality, experience,
purpose and access to particular components at the time. Having formalized arbitrary zoomed-in pictures
of a system or even more abstractly an agnostic process interface where various descriptions could live on
using the category of labeled boxes and wiring diagrams, gives us the chance to view the above process
using the basic notion of a slice category under an appropriate perspective.

Broadly speaking, for any category C and a fixed object c ∈ C, we here think of C/c as containing
all possible ‘design choices’ for c available to a system engineer; this formally models the possibility
of implementing a system c in multitudes of ways. For example, in our setting a designer might choose
to implement the flight control system – a subsystem of the UAV – either using a microcontroller or a
field programmable gate array (FPGA). Similarly, the same applies to the rest of the system: there are a
number of options for implementing the sensory system or dynamics.

In fact, we have already used a chosen implementation in the previous section. In more detail, sup-
pose we have a process inhabiting some box URR R, which is an object of W. How can we decompose
it into sub-processes, and how should they be interconnected to form the given system? All the possible
decompositions can be thought of as the objects of the slice category W/ URR R, therefore the architec-
tural implementation is manifested by choosing one such object: for example, f : L⊗C⊗D→ U is one
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such choice (Figure 1), namely a wiring diagram with target U. Considering all possible subcomponents
and wirings of a box could be thought of as the object-function of the functor W/(-) : W→ Cat.

To control a UAV we could implement a number of design solutions, each with different components
and setup. For illustrative purposes we show one such candidate implementation, one that models a
real UAV system. We do discuss possible deviations from this one design and how they are modeled
in the slice category. For the design of a candidate implementation we use the following notational
abbreviations:

I, inertial measurement unit,

P, processor,

V, servos,

X, aileron,

Y, rudder,

Z, throttle,

W, elevator, and

F, airframe.

For example, a possible set of components for the implementation of the sensory system for a flight
control system includes a gyroscope, an accelerometer, and a pressure sensor, which are usually realized
through an inertial measurement unit (IMU). Because an IMU has accumulative error it is important to
either add redundancy (that is, use two IMU devices) or add a separate device (for example, a global po-
sitioning unit (GPS) to ping and correct this error in IMU measurements). Current UAV systems include
further functionality, for example, by using differential pressure sensors or adding a magnetometer to
achieve further robustness during guided flight. Here we will focus on one possible design of the UAV,
including implementation for the dynamics through control surfaces; that is, aileron, rudder, throttle, and
elevator, and airframe. To manipulate the control surfaces we include servos, which are small motors
attached to the control surfaces that move them based on the control laws that are implemented in the
controller.

One of the important advantages of expressing system decompositions as a morphism in the category
W is that we can perform further zoomed-in decompositions as desired, in a hierarchical way. For ex-
ample, we may choose to implement the sensor box L using two IMU units I1,I2 and a processor P1 in a
certain interconnection. Expressing this as a morphism with target L, namely g : I1⊗I2⊗P→ L means
that we can compose this with the earlier f to obtain a two-level zoomed-in decomposition

(I1⊗I2⊗P1)⊗C⊗D
g⊗1⊗1−−−−→ L⊗C⊗D

f−→ UAV.

that only ‘opens-up’ the box L. We could moreover implement the control as well as the dynamics
box, and decompose them in a choice of subcomponents and wires between them. An example where
the control box is decomposed into P2 followed by V in a serial composition, and the dynamics box is
decomposed into four parallel boxes, X, Y, Z and W followed by F amounts to choosing h : P2⊗ V→ C

in W/ C and k : X⊗ Y⊗ Z⊗ W⊗ F→ D in W/ D . Combining all these morphisms we have the
composition (Figure 4):

(I1⊗I2⊗P1)⊗ (P2⊗V)⊗ (X⊗Y⊗Z⊗W⊗F)
g⊗h⊗k−−−−→ L⊗C⊗D

f−→ UAV
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that can be considered as a single morphism from the tensor of all second-level sub-components to UAV,
namely erasing the intermediate colored boxes.

P1

I1

I2

P2 V

X

Y

Z

W

F

C

UAV

L D

Figure 4: The component systems are further decomposed to candidate implementations.

A categorical approach to systems engineering allows us to hierarchically decompose from the sys-
tem function to a candidate implementation while making explicit the traceability between those two
related by different views of system design. Broadly speaking, this section’s narrative relates to the archi-
tectural implementation of our systems, formally expressed by choosing the constituent boxes (domain)
and their wiring interconnection (morphism) of a given system inside the category W. The implementa-
tion comes together with the physical behavior of the UAV (Section 3) via the algebra structure of any
lax monoidal functor B : W→ Cat, in this instance LTIS (3), as follows. For any UAV-implementation
f : A → UAV , the functorial assignment

B : W Cat

A B( A )

UAV B( UAV )

f B( f )

allows us to compose a given B-system on A to produce a B-system on UAV , or more interestingly
go backwards: given a B-system on UAV, we first choose an implementation f : A→ UAV where the
domain could be the tensor of a number of sub-boxes, and then we choose an object of the system’s
pre-image similarly to the composite functor (6). This is a two-step process which appears in practice
and depends on the choices of the system engineer, but can now be understood categorically through
functorial semantics.

In particular, earlier the linear system (7) inhabiting the box D was completely determined by
the equations of the composite system, whereas now we could further elaborate on the possible linear
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systems inhabiting the boxes X, Y, Z, W and F. Moreover, if such possibilities do not agree with physical
intuition or the expected service of the system, such an implementation may be ruled out and alternatives
identified appropriately based on the allowable set of behaviors.

5 Related Work

Systems theory has as long tradition and spans a large number of subfields, some more formal than others.
A formal framework for systems theory was first built to describe biological systems [3, 28]. Since then,
there have been several developments to systems theory that have assisted in areas such as control [21],
safety assessment [17, 18], and security analysis [7, 29]. While we have been heavily influenced by sys-
tems theory, in this paper we develop a categorical approach to synthesizing and analyzing cyber-physical
system designs on top of systems theory. This is because category theory is flexible with respect to re-
lating different abstraction levels, which are necessary for the synthesis and analysis of cyber-physical
systems.

The idea of using category theory for unifying specification languages is not new [9, 14]. However,
we note that previous work in this area does not provide a concrete example of the specified system
and it has also been applied predominantly for software engineering. Cyber-physical systems require
modeling both the dynamics of the system and their implementation in software and hardware, which
is an approach we illustrate in this paper. Further, such approaches to systems theory are old enough to
require presenting again with the developments both in the theory and engineering of systems. While
the categorical language can potentially be used for any system, we focus on its effectiveness to unify
and scale models of cyber-physical systems, which pose new challenges because they operate in the
environment.

In engineering too there has been research that takes advantage of category theory. A categorical
formulation of hybrid systems that unifies all its views was presented by Ames and Sastry [2]. Our work
views dynamical systems at a different abstraction than Ames and Sastry. We formalize the different
views of a cyber-physical system as it would be modeled by systems engineers instead of focusing to
the different topologies studied in control, which is often the case when designing systems in practice.
Furthermore, Hasuo presented the idea of a research program for unifying the different views of cyber-
physical systems using category theory [15]. Our work presents one (partial) solution to the problem
outlined by Hasuo.

More recently, there have been other directions in the area of a categorical language for system design
and assessment [5, 6], control [4], and even requirements management [11]. We view these research di-
rections as complementary to the one presented in this paper. We present a framework for cyber-physical
systems, which requires relating system assessment, modeling control, and refining requirements.

6 Conclusion

Applied category theory is a new field with promising solutions to the formal unification and dissem-
ination of engineering design artifacts. This unification is of particular importance for designing and
assuring correctness of cyber-physical systems, where misbehavior can lead to hazards. Cyber-physical
system models require a number of views to provide evidence of correctness in their eventual deploy-
ment. We have shown that it is possible to create functorial relationships between the two main views of
a cyber-physical system, the simulation of the desired behavior of the system and its decomposition to
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a specific candidate implementation. By building this functorial relationship it is possible to find consis-
tency errors between those different model views and, therefore, better address misbehavior early in the
system’s lifecycle.

This is a first step to an eventual unification not only of methods in cyber-physical systems theory but
also of tools. This would be an important accomplishment given that today systems are designed predom-
inantly through tools. For example, tools are used to tune the control laws, simulate the overall system
state, provide guarantees that the system does not reach death states, and compare and contrast different
candidate implementations. We posit that working compositionally by formalizing cyber-physical sys-
tems modeling in category theory will in the future lead to scalable models of those complex systems.
In addition, applied category theory has already shown positive results in the area of software execution,
for example by using dependent types. Producing a cyber-physical systems modeling language blueprint
in category theory could lead to having a fully integrated model that could be used throughout the life-
cycle. In the beginning this model could be used to simulate the dynamical response and towards the
end it could be used to synthesize code from the model, which would bridge the gap between system
specification and implementation.

Beyond our general goals for this research program, our main immediate improvements to this work
are to integrate discrete and continuous time, extend notions from contract-based design [22] in category-
theoretic terms, and finally construct a fully traceable compositional model between requirements, be-
haviors, and implementations of cyber-physical systems.
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