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The Clifford algebra Cliffn is the algebra over R freely generated
by n anticommuting square roots of −1:

eiej + ejei = −2δij

In 1908, Cartan showed that Cliffn+8 consists of
16× 16 matrices with entries in Cliffn:

Cliffn+8
∼= M16(Cliffn)
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Cliff0
∼= R

Cliff1
∼= C

Cliff2
∼= H

Cliff3
∼= H⊕H

Cliff4
∼= M2(H)

Cliff5
∼= M4(C)

Cliff6
∼= M8(R)

Cliff7
∼= M8(R)⊕M8(R)



As a consequence, we get Bott periodicity:

πn+8(O(∞)) ∼= πn(O(∞))

π0(O(∞)) ∼= Z2 real numbers: R
π1(O(∞)) ∼= Z2 complex numbers: C
π2(O(∞)) ∼= 0
π3(O(∞)) ∼= Z quaternions: H
π4(O(∞)) ∼= 0
π5(O(∞)) ∼= 0
π6(O(∞)) ∼= 0
π7(O(∞)) ∼= Z octonions: O
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The rotation group SO(n) acts on vectors,
but its double cover also acts on spinors,
which are defined using Clifford algebras.

There’s a way to ‘multiply’ a spinor and a vector and get a spinor:

When the space of spinors and the space of vectors have the same
dimension, this gives a normed division algebra!
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n vectors spinors normed division algebra?

1 R R YES: REAL NUMBERS
2 R2 R2 YES: COMPLEX NUMBERS
3 R3 R4 NO
4 R4 R4 YES: QUATERNIONS
5 R5 R4 NO
6 R6 R4 NO
7 R7 R8 NO
8 R8 R8 YES: OCTONIONS

Bott periodicity =⇒ spinors in dimension 8 more
have dimension 16 times as big.

So, we only get 4 normed division algebras.



The normed division algebras are connected to lattices!

A lattice L ⊆ Rn is integral if v · w is an integer for all v ,w ∈ L.

A lattice L ⊆ Rn is even if v · v is an even number for all v ∈ L.

Any even lattice is integral.

A lattice L ⊆ Rn is unimodular if the volume of its unit cell is 1.

Witt’s Theorem There exists an even unimodular lattice in Rn

if and only if n is a multiple of 8.
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The integers Z ⊂ R are an integral unimodular lattice,
but not an even lattice:
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They’re closed under multiplication.
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The Hurwitz integral quaternions

{a+ bi + cj + dk | a, b, c , d all in Z or all in Z+ 1
2} ⊂ H ∼= R4

are closed under multiplication.

They give an integral unimodular lattice when rescaled by
√
2,

but not an even lattice.



The ‘Cayley integral octonions’

K ⊂ O ∼= R8

are closed under multiplication.

They give an integral unimodular lattice when rescaled by
√
2,

and this is an even lattice!

To get this lattice, just pack equal-sized balls in 8 dimensions so
that each touches 240 others. It’s called the E8 lattice.
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Of the Hurwitz integral quaternions

{a+ bi + cj + dk | a, b, c , d all in Z or all in Z+ 1
2} ⊂ H ∼= R4

exactly 24 lie on the unit sphere!

8 are the vertices of a ‘hyperoctahedron’:

±1, ±i , ±j , ±k



Of the Hurwitz integral quaternions

{a+ bi + cj + dk | a, b, c , d all in Z or all in Z+ 1
2} ⊂ H ∼= R4

exactly 24 lie on the unit sphere!

16 are the vertices of a hypercube:

1

2
(±1± i ± j ± k)



Of the Hurwitz integral quaternions

{a+ bi + cj + dk | a, b, c , d all in Z or all in Z+ 1
2} ⊂ H ∼= R4

exactly 24 lie on the unit sphere!

Together they are the vertices of the 24-cell:

They form a group called the binary tetrahedral group.



Even better, the 16 vertices of a hypercube form the vertices of
two hyperoctahedra! So the vertices of the 24-cell can be

partitioned into the vertices of 3 hyperoctahedra:

24 = 8 + 8 + 8



Rescaling the Hurwitz integral quaternions by
√
2, we get an

integral unimodular lattice called the D4 lattice. This controls the
representation theory of Spin(8), the double cover of SO(8).

The vertices of the 24-cell break up into 3 sets of 8. These give
bases for the vector, left-handed spinor, and right-handed spinor

representations of Spin(8).

Each of these representations can be seen as the octonions O.



A superstring in 10 dimensions can be described by an
O⊕O⊕O-valued field on the 2-dimensional string worldsheet.

This field transforms under rotations in 8 spatial dimensions
transverse to the worldsheet via this representation of Spin(8):

vector ⊕ left-handed spinor ⊕ right-handed spinor

The ‘vector’ O describes the motion of the string in the 8
directions transverse to the worldsheet:

its bosonic degrees of freedom.

The left- and right-handed spinors, O⊕O describe
the string’s fermionic degrees of freedom.



A superstring in 10 dimensions can be described by an
O⊕O⊕O-valued field on the 2-dimensional string worldsheet.

This field transforms under rotations in 8 spatial dimensions
transverse to the worldsheet via this representation of Spin(8):

vector ⊕ left-handed spinor ⊕ right-handed spinor

The ‘vector’ O describes the motion of the string in the 8
directions transverse to the worldsheet:

its bosonic degrees of freedom.

The left- and right-handed spinors, O⊕O describe
the string’s fermionic degrees of freedom.



So, we have seen the numbers 8 and 24 interacting in superstring
theory. But the number 24 also shows up starting from the

simplest field theory of all!

First consider the wave equation:

∂2ϕ

∂t2
− ∂2ϕ

∂x2
= 0

on the cylinder of radius 1:

(t, x) ∈ R× S1 ϕ : R× S1 → C



Since

∂2

∂t2
− ∂2

∂x2
=

(
∂

∂t
+

∂

∂x

)(
∂

∂t
− ∂

∂x

)

any solution of the wave equation
is the sum of a left-moving and right-moving waves:

ϕ(t, x) = f (t − x) + g(t + x)



Keep just the left-moving waves using this equation:

∂ϕ
∂t = ∂ϕ

∂x

This is arguably the simplest field theory of all!

If we quantize this field theory on the cylinder of radius 1,
its vacuum energy is

− 1
24

Why???
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Discarding the constant function,
every left-moving solution is a linear combination of waves

ϕk(t, x) = exp(ik(t − x))

where k = 1, 2, 3, . . . . The frequency of the wave ϕk is just k .

Thus, the left-moving wave equation is isomorphic to a collection
of classical harmonic oscillators, one of frequency k for each

k = 1, 2, 3, . . . .



Let’s use units where ℏ = 1. Then the ground state energy of a
quantum harmonic oscillator of frequency ω is 1

2ω.

When we have a bunch of oscillators, their ground state energies
add. Since the left-moving wave equation is isomorphic to a

collection of oscillators of frequencies 1, 2, 3, . . . ,
its ground state energy is apparently

1

2
(1 + 2 + 3 + · · · ) = ∞



Let’s use units where ℏ = 1. Then the ground state energy of a
quantum harmonic oscillator of frequency ω is 1

2ω.

When we have a bunch of oscillators, their ground state energies
add. Since the left-moving wave equation is isomorphic to a

collection of oscillators of frequencies 1, 2, 3, . . . ,
its ground state energy is apparently

1

2
(1 + 2 + 3 + · · · ) = ∞



We could set the ground state energy to zero.

But around 1735, Leonhard Euler gave a bizarre ‘proof’ that

1 + 2 + 3 + 4 + · · · = − 1

12

This would mean the ground state energy of the quantized
left-moving wave equation is

1

2
(1 + 2 + 3 + · · · ) = − 1

24



Euler started with this:

1 + x + x2 + x3 + · · · =
1

1− x

He differentiated both sides:

1 + 2x + 3x2 + · · · =
1

(1− x)2

He set x = −1 and got this:

1− 2 + 3− 4 + · · · =
1

4



Then Euler considered this function:

ζ(s) = 1−s + 2−s + 3−s + 4−s + · · ·

He multiplied by 2−s :

2−sζ(s) = 2−s + 4−s + 6−s + 8−s + · · ·

Then he subtracted twice the second equation from the first:

(1− 2 · 2−s)ζ(s) = 1−s − 2−s + 3−s − 4−s + · · ·



Taking this result:

(1− 2 · 2−s)ζ(s) = 1−s − 2−s + 3−s − 4−s + · · ·

and setting s = −1, he got:

−3(1 + 2 + 3 + 4 + · · · ) = 1− 2 + 3− 4 + · · ·

Since he already knew the right-hand side equals 1/4,
he concluded:

1 + 2 + 3 + 4 + · · · = − 1

12



Euler’s calculation looks crazy, but now we understand it better!
The sum

1−s + 2−s + 3−s + 4−s + · · ·

converges for Re(s) > 1 to an analytic function:
the Riemann zeta function, ζ(s).

This function can be analytically continued to s = −1,
and one can prove

ζ(−1) = − 1

12



Assuming Euler’s calculation is right, what is the partition function
of the left-moving scalar field?

For any system with energy eigenvalues Ej , define its
partition function to be

Z (β) =
∑
j

e−βEj

To calculate it quickly, we’ll use this fact:

When we combine several sysems, we can multiply their partition
functions to get the partition function of the combined system.
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First: what’s the partition function of
a quantum harmonic oscillator?

An oscillator with frequency ω can have energies

1

2
ω, (1 +

1

2
)ω, (2 +

1

2
)ω, (3 +

1

2
)ω, . . .

So, its partition function is:

∞∑
n=0

e−i(n+ 1
2
)βω = e−

1
2
βω

∞∑
k=0

e−nβω =
e−

1
2
βω

1− e−βω



Since the left-moving scalar field is isomorphic to a collection
of oscillators with frequencies 1, 2, 3, . . . ,

its partition function is a product:

Z (β) =
∞∏
k=1

e−
1
2
kβ

1− e−kβ
= e−

1
2
(1+2+3+··· )β

∞∏
k=1

1

1− e−kβ

According to Euler’s crazy calculation, we get

Z (β) = e
1
24β

∞∏
k=1

1

1− e−kβ



This partition function

Z (β) = e
1
24β

∞∏
k=1

1

1− e−kβ

is essentially the reciprocal of the Dedekind eta function —
introduced in 1877, long before quantum field theory!

Next, let β = it. Inverse temperature is like imaginary time!

Z = e
1
24 it

∞∏
k=1

1

1− e−ikt

This converges when t is in
the complex upper half-plane.
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Now Z is the partition function for the torus-shaped spacetime
C/L where L is a lattice in C.



But the torus coming from this parallelogram:

is the same as the torus coming from this one:



So: our calculation only gives a well-defined
partition function for the torus C/L if

Z = e
1
24 it

∞∏
k=1

1

1− e−ikt

is unchanged when we add 2π to t.

Alas, Z does change: it gets multiplied by

e
2πi
24

But Z 24 does not change!
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So, the left-moving wave equation has a well-defined partition
function on C/L when the field has 24 components!

In bosonic string theory, we use such a field to describe the motion
of the string in the 24 directions to the worldsheet.

But this partition function, Z 24, was famous long before string
theory. Its reciprocal is called the modular discriminant ∆.

∆ is the simplest ‘modular form’ that vanishes in the limit
where the torus C/L becomes infinitely skinny.

∆ = e
−it

( ∞∏
k=1

1− e−ikt

)24
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We’ve seen both superstrings and bosonic strings involve a
24-component field on the string worldsheet. For superstrings the

24 components take values in O⊕O⊕O,
and are thus connected to the 24-cell:

For bosonic strings the 24 components are connected to
the modular discriminant

∆ = e
−it

( ∞∏
k=1

1− e−ikt

)24

Is this function related to the 24-cell? Yes!
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Each point t in the complex upper half-plane H gives a flat
Riemannian torus:

But many different choices of t ∈ H give conformally equivalent
tori! If we only care about the conformal structure on the torus,

we call it an elliptic curve.

Thus, the ‘moduli space’ of elliptic curves is a quotient of H.
In fact it is H/SL(2,Z).



But SL(2,Z) doesn’t act freely on H, because there are elliptic
curves with extra symmetries corresponding to the square and

hexagonal lattices.



However, the subgroup Γ(3) ⊂ SL(2,Z) does act freely.
This subgroup consists of integer matrices(

a b
c d

)
with determinant 1, such that each entry is congruent to

the corresponding entry of(
1 0
0 1

)
modulo 3.

The quotient H/Γ(3) has no ‘points of greater symmetry’.



The group

SL(2,Z)/Γ(3) ∼= SL(2,Z/3)

acts on H/Γ(3). To get the moduli space of elliptic curves from
H/Γ(3), we just need to mod out by the action of this group.

But this group SL(2,Z/3) has 24 elements.

In fact, it’s isomorphic to our friend the binary tetrahedral group!

±1, ±i , ±j , ±k
1
2 (±1± i ± j ± k)


