
categorical foundations of quantitative algebraic reasoning 1

Definition 1 (Complete lattice). A complete lattice is a partially ordered set (L,≤)1
1 i.e. L is a set and ≤ ⊆ L × L is a binary re-
lation on L that is reflexive, transitive and anti-
symmetric.

where all subsets S ⊆ L have a infimum and a supremum denoted by inf S and
sup S respectively. We use L to refer to the lattice and its underlying set.

Definition 2 (L-relation). Given a complete lattice L and a set X, an L-relation on
X is a function d : X × X → L. We often refer to the pair (X, d) as a L-space, and
we will also use a single bold-face symbol X to refer to a L-space with underlying
set X and L-relation dX.2 2 We will try to match the symbol for the space

and the one for its underlying set only modify-
ing the former with mathbf.

A nonexpansive (or short) map from X to Y is a function f : X → Y between the
underlying sets of X and Y that does not increase the distance between points:

∀x, x′ ∈ X, dY( f (x), f (x′)) ≤ dX(x, x′). (1)

The identity maps idX : X → X and the composition of two nonexpansive maps
are always nonexpansive3, therefore we have a category whose objects are L-spaces 3 Fix three L-spaces X, Y and Z with two non-

expansive maps f : X → Y and g : Y → Z, we
have by nonexpansiveness of g then f :

dZ(g ◦ f (x), g ◦ f (x′)) ≤ dY( f (x), f (x′))

≤ dX(x, x′).

and morphisms are nonexpansive maps. We denote it by LRel.

Definition 3 (L-structure). Given a complete lattice L, an L-structure4 is a set X

4 We borrow the name “structure” from the very
abstract notion of relational structure used in [?,
?, ?].

equipped with a family of binary relations Rε ⊆ X × X indexed by ε ∈ L satisfying

• monotonicity in the sense that if ε ≤ ε′, then Rε ⊆ Rε′ , and

• continuity in the sense that for an I-indexed family of elements εi ∈ L,⋂
i∈I

Rεi = Rδ, where δ = inf
i∈I

εi.

Intuitively5 (x, y) ∈ Rε should be interpreted as bounding the distance from x to 5 The proof of Proposition 4 will shed more
light on these objects by equating them with L-
spaces.

y above by ε. Then, monotonicity means the points that are at a distance below ε

are also at a distance below ε′ when ε ≤ ε′. Continuity means the points that are
at a distance below a bunch of bounds εi are also at distance below the infimum of
those bounds infi∈I εi.

The names for these conditions come from yet another equivalent definition (this
time more directly equivalent). Organising the data of an L-structure into a function
R : L → P(X × X) sending ε to Rε, we can recover monotonicity and continuity by
seeing P(X × X) as a complete lattice like in ??. Indeed, monotonicity is equivalent
to R being a monotone function between the posets (L,≤) and (P(X × X),⊆), and
continuity is equivalent to R preserving infimums, which in turn is equivalent to R
being a continuous functor between these posets viewed as posetal categories.6 6 Limits in a posetal category are always com-

puted by taking the infimum of all the points in
the diagram.

A morphism between two L-structures (X, {Rε}) and (Y, {Sε}) is a function f :
X → Y satisfying

∀ε ∈ L, ∀x, x′ ∈ X, (x, x′) ∈ Rε =⇒ ( f (x), f (x′)) ∈ Sε. (2)

This should feel similar to nonexpansive maps. Let us call LStr the category of
L-structures.

Proposition 4. Given a complete lattice L, the categories LRel and LStr are isomorphic.
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Proof. Given an L-relation (X, d), we define the binary relations Rd
ε ⊆ X × X by

(x, x′) ∈ Rd
ε ⇐⇒ d(x, x′) ≤ ε. (3)

This family satisfies monotonicity because for any ε ≤ ε′ we have

(x, x′) ∈ Rd
ε

(3)⇐⇒ d(x, x′) ≤ ε =⇒ d(x, x′) ≤ ε′
(3)⇐⇒ (x, x′) ∈ Rd

ε′ .

It also satisfies continuity because if (x, x′) ∈ Rεi for all i ∈ I, then d(x, x′) ≤ εi

for all i ∈ I. By defintion of infimum, we must have d(x, x′) ≤ infi∈I εi, hence
(x, x′) ∈ Rinfi∈I εi

. We conclude the forward inclusion (⊆) of continuity holds, the
converse (⊇) follows from monotonicity.

Any nonexpansive map f : (X, d) → (Y, ∆) in LRel is also a morphism between
the L-structures (X, {Rd

ε }) and (Y, {R∆
ε }) because for all ε ∈ L and x, x′ ∈ X, we

have

(x, x′) ∈ Rd
ε

(3)⇐⇒ d(x, x′) ≤ ε
(1)
=⇒ ∆( f (x), f (x′)) ≤ ε

(3)⇐⇒ ( f (x), f (x′)) ∈ R∆
ε .

It follows that the assignment (X, d) 7→ (X, {Rd
ε }) is a functor F : LRel → LStr

acting trivially on morphisms.
Given an L-structure (X, {Rε}), we define the function dR : X × X → L by

dR(x, x′) = inf
{

ε ∈ L | (x, x′) ∈ Rε

}
.

Note that monotonicity and continuity of the family {Rε} imply7 7 The converse implication (⇐) is by definition
of infimum. For (⇒), continuity says that

RdR(x,x′) =
⋂

ε∈L,(x,x′)∈Rε

Rε,

so RdR(x,x′) contains (x, x′), then by monotonic-
ity, dR(x, x′) ≤ ε implies Rε also contains (x, x′).

dR(x, x′) ≤ ε ⇐⇒ (x, x′) ∈ Rε. (4)

This allows us to prove that a morphism f : (X, {Rε}) → (Y, {Sε}) is nonexpansive
from (X, dR) to (Y, dS) because for all ε ∈ L and x, x′ ∈ X, we have

dR(x, x′) ≤ ε
(4)⇐⇒ (x, x′) ∈ Rε

(2)
=⇒ ( f (x), f (x′)) ∈ Sε

(4)⇐⇒ dS( f (x), f (x′)) ≤ ε,

hence putting ε = d(x, x′), we obtain dS( f (x), f (x′)) ≤ dR(x, x′). It follows that the
assignment (X, {Rε}) 7→ (X, dR) is a functor G : LStr → LRel acting trivially on
morphisms.

Observe that (3) and (4) together say that RdR
ε = Rε and dRd = d, so F and G are

inverse to each other on objects. Since both functors do nothing to morphisms, we
conclude that F and G are inverse to each other, and that LRel ∼= LStr.


