- **Definition 1** (Complete lattice). A **complete lattice** is a partially ordered set $(L, \leq)^1$ where all subsets $S \subseteq \mathcal{L}$ have a infimum and a supremum denoted by inf *S* and sup *S* respectively. We use $\mathcal L$ to refer to the [lattice](#page-0-0) and its underlying set.
- **Definition 2** (\mathcal{L} -relation). Given a [complete lattice](#page-0-0) \mathcal{L} and a set *X*, an \mathcal{L} -relation on *X* is a function $d: X \times X \to \mathcal{L}$. We often refer to the pair (X, d) as a \mathcal{L} -space, and we will also use a single bold-face symbol **X** to refer to a $\mathcal{L}\text{-space with underlying}$ $\mathcal{L}\text{-space with underlying}$ $\mathcal{L}\text{-space with underlying}$ set *X* and *L*[-relation](#page-0-2) $d\chi$ ²

A **nonexpansive** (or short) map from **X** to **Y** is a function $f: X \rightarrow Y$ between the underlying sets of **X** and **Y** that does not increase the distance between points:

$$
\forall x, x' \in X, \quad d_{\mathbf{Y}}(f(x), f(x')) \leq d_{\mathbf{X}}(x, x'). \tag{1}
$$

The identity maps $id_X : X \to X$ and the composition of two [nonexpansive](#page-0-3) maps are always [nonexpansive](#page-0-3)³, therefore we have a category whose objects are *L*[-spaces](#page-0-1) ³ Fix three *L*-spaces **X**, **Y** and **Z** [with two](#page-0-3) nonand morphisms are [nonexpansive](#page-0-3) maps. We denote it by L**Rel**.

- **Definition 3** (*L*-structure). Given a [complete lattice](#page-0-0) \mathcal{L} , an \mathcal{L} -structure⁴ is a set *X* equipped with a family of binary relations $R_\varepsilon \subseteq X \times X$ indexed by $\varepsilon \in \mathcal{L}$ satisfying
- **monotonicity** in the sense that if $\varepsilon \leq \varepsilon'$, then $R_{\varepsilon} \subseteq R_{\varepsilon'}$, and
- **continuity** in the sense that for an *I*-indexed family of elements $\varepsilon_i \in \mathcal{L}$,

$$
\bigcap_{i\in I} R_{\varepsilon_i} = R_{\delta}, \text{ where } \delta = \inf_{i\in I} \varepsilon_i.
$$

Intuitively⁵ $(x, y) \in R$ _{*ε*} should be interpreted as bounding the distance from *x* to 5 The proof of [Proposition](#page-0-4) 4 will shed more *y* above by *ε*. Then, [monotonicity](#page-0-5) means the points that are at a distance below *ε* are also at a distance below ε' when $\varepsilon \leq \varepsilon'$. [Continuity](#page-0-5) means the points that are at a distance below a bunch of bounds ε_i are also at distance below the infimum of those bounds $\inf_{i \in I} \varepsilon_i$.

The names for these conditions come from yet another equivalent definition (this time more directly equivalent). Organising the data of an $\mathcal{L}\text{-structure}$ $\mathcal{L}\text{-structure}$ $\mathcal{L}\text{-structure}$ into a function *R* : $\mathcal{L} \to \mathcal{P}(X \times X)$ sending *ε* to R_{ε} , we can recover [monotonicity](#page-0-5) and [continuity](#page-0-5) by seeing $\mathcal{P}(X \times X)$ as a [complete lattice](#page-0-0) like in **??**. Indeed, [monotonicity](#page-0-5) is equivalent to *R* being a monotone function between the posets (\mathcal{L} , \leq) and ($\mathcal{P}(X \times X)$, \subseteq), and [continuity](#page-0-5) is equivalent to *R* preserving infimums, which in turn is equivalent to *R* being a continuous functor between these posets viewed as posetal categories.⁶

A morphism between two *L*[-structures](#page-0-5) $(X, \{R_{\varepsilon}\})$ and $(Y, \{S_{\varepsilon}\})$ is a function f : $X \rightarrow Y$ satisfying

$$
\forall \varepsilon \in \mathcal{L}, \forall x, x' \in X, (x, x') \in R_{\varepsilon} \implies (f(x), f(x')) \in S_{\varepsilon}.
$$
 (2)

This should feel similar to [nonexpansive](#page-0-3) maps. Let us call L**Str** the category of L[-structures.](#page-0-5)

Proposition 4. *Given a [complete lattice](#page-0-0)* L*, the categories* L**[Rel](#page-0-6)** *and* L**[Str](#page-0-7)** *are isomorphic.*

¹ i.e. $\mathcal L$ is a set and $\leq \subseteq \mathcal L \times \mathcal L$ is a binary relation on $\mathcal L$ that is reflexive, transitive and antisymmetric.

² We will try to match the symbol for the space and the one for its underlying set only modifying the former with mathbf.

expansive maps $f : X \to Y$ and $g : Y \to Z$, we have by [nonexpansiveness](#page-0-3) of *g* then *f* :

$$
d_{\mathbf{Z}}(g \circ f(x), g \circ f(x')) \leq d_{\mathbf{Y}}(f(x), f(x'))
$$

$$
\leq d_{\mathbf{X}}(x, x').
$$

⁴ We borrow the name "structure" from the very abstract notion of relational structure used in [**?**, **?**, **?**].

light o[n these objects by equating them with](#page-0-1) \mathcal{L} spaces.

⁶ Limits in a posetal category are always computed by taking the infimum of all the points in the diagram.

Proof. Given an $\mathcal{L}\text{-relation } (X, d)$ $\mathcal{L}\text{-relation } (X, d)$ $\mathcal{L}\text{-relation } (X, d)$, we define the binary relations $R^d_\varepsilon \subseteq X \times X$ by

$$
(x, x') \in R_{\varepsilon}^d \Longleftrightarrow d(x, x') \leq \varepsilon. \tag{3}
$$

This family satisfies [monotonicity](#page-0-5) because for any $\varepsilon \leq \varepsilon'$ we have

$$
(x,x')\in R^d_{\varepsilon} \overset{(3)}{\iff} d(x,x')\leq \varepsilon \implies d(x,x')\leq \varepsilon' \overset{(3)}{\iff} (x,x')\in R^d_{\varepsilon'}.
$$

It also satisfies [continuity](#page-0-5) because if $(x, x') \in R_{\varepsilon_i}$ for all $i \in I$, then $d(x, x') \leq \varepsilon_i$ for all $i \in I$. By defintion of infimum, we must have $d(x, x') \leq \inf_{i \in I} \varepsilon_i$, hence $(x, x') \in R_{\inf_{i \in I} \varepsilon_i}$. We conclude the forward inclusion (\subseteq) of [continuity](#page-0-5) holds, the converse (⊇) follows from [monotonicity.](#page-0-5)

Any [nonexpansive](#page-0-3) map $f : (X, d) \to (Y, \Delta)$ in *L*[Rel](#page-0-6) is also a morphism between the L[-structures](#page-0-5) $(X, \{R_{\varepsilon}^{d}\})$ and $(Y, \{R_{\varepsilon}^{A}\})$ because for all $\varepsilon \in \mathcal{L}$ and $x, x' \in X$, we have

$$
(x,x')\in R_{\varepsilon}^d\overset{(3)}{\iff}d(x,x')\leq \varepsilon\overset{(1)}{\implies}\Delta(f(x),f(x'))\leq \varepsilon\overset{(3)}{\iff}(f(x),f(x'))\in R_{\varepsilon}^{\Delta}.
$$

It follows that the assignment $(X,d) \mapsto (X, \{R^d_\varepsilon\})$ is a functor $F : \mathcal{L}Rel \to \mathcal{L}Str$ $F : \mathcal{L}Rel \to \mathcal{L}Str$ $F : \mathcal{L}Rel \to \mathcal{L}Str$ $F : \mathcal{L}Rel \to \mathcal{L}Str$ acting trivially on morphisms.

Given an \mathcal{L} [-structure](#page-0-5) $(X, \{R_{\varepsilon}\})$, we define the function $d_R : X \times X \to \mathcal{L}$ by

$$
d_R(x,x') = \inf \{ \varepsilon \in \mathcal{L} \mid (x,x') \in R_{\varepsilon} \}.
$$

Note that [monotonicity](#page-0-5) and [continuity](#page-0-5) of the family $\{R_\varepsilon\}$ imply⁷ 7 The converse implication (\Leftarrow) is by definition

$$
d_R(x, x') \leq \varepsilon \Longleftrightarrow (x, x') \in R_{\varepsilon}.\tag{4}
$$

This allows us to prove that a morphism $f : (X, \{R_{\varepsilon}\}) \to (Y, \{S_{\varepsilon}\})$ is [nonexpansive](#page-0-3) from (X, d_R) to (Y, d_S) because for all $\varepsilon \in \mathcal{L}$ and $x, x' \in X$, we have

$$
d_R(x,x') \leq \varepsilon \stackrel{(4)}{\iff}(x,x') \in R_{\varepsilon} \stackrel{(2)}{\implies} (f(x),f(x')) \in S_{\varepsilon} \stackrel{(4)}{\iff} d_S(f(x),f(x')) \leq \varepsilon,
$$

hence putting $\varepsilon = d(x, x')$, we obtain $d_S(f(x), f(x')) \leq d_R(x, x')$. It follows that the assignment $(X, \{R_{\varepsilon}\}) \mapsto (X, d_R)$ is a functor $G : \mathcal{L}$ **[Str](#page-0-7)** $\to \mathcal{L}$ **[Rel](#page-0-6)** acting trivially on morphisms.

Observe that ([3](#page-1-0)) and ([4](#page-1-1)) together say that $R_{\varepsilon}^{d_R} = R_{\varepsilon}$ and $d_{R^d} = d$, so *F* and *G* are inverse to each other on objects. Since both functors do nothing to morphisms, we conclude that *F* and *G* are inverse to each other, and that $\mathcal{L}Rel \cong \mathcal{L}Str$ $\mathcal{L}Rel \cong \mathcal{L}Str$ $\mathcal{L}Rel \cong \mathcal{L}Str$ $\mathcal{L}Rel \cong \mathcal{L}Str$. \Box

of infimum. For (\Rightarrow) , [continuity](#page-0-5) says that

$$
R_{d_R(x,x')} = \bigcap_{\varepsilon \in \mathcal{L}, (x,x') \in R_{\varepsilon}} R_{\varepsilon},
$$

so $R_{d_R(x,x')}$ contains (x, x') [, then by](#page-0-5) monotonicity, $d_R(x, x') \leq \varepsilon$ implies R_ε also contains (x, x') .