Definition 1 (Complete lattice). A complete lattice is a partially ordered set $(\mathcal{L}, \leq)^1$ where all subsets $S \subseteq \mathcal{L}$ have a infimum and a supremum denoted by $\inf S$ and sup *S* respectively. We use \mathcal{L} to refer to the lattice and its underlying set.

Definition 2 (\mathcal{L} -relation). Given a complete lattice \mathcal{L} and a set X, an \mathcal{L} -relation on X is a function $d : X \times X \to \mathcal{L}$. We often refer to the pair (X, d) as a \mathcal{L} -space, and we will also use a single bold-face symbol X to refer to a \mathcal{L} -space with underlying set X and \mathcal{L} -relation d_X .²

A **nonexpansive** (or short) map from **X** to **Y** is a function $f : X \to Y$ between the underlying sets of **X** and **Y** that does not increase the distance between points:

$$\forall x, x' \in X, \quad d_{\mathbf{Y}}(f(x), f(x')) \le d_{\mathbf{X}}(x, x'). \tag{1}$$

The identity maps $id_X : X \to X$ and the composition of two nonexpansive maps are always nonexpansive³, therefore we have a category whose objects are \mathcal{L} -spaces and morphisms are nonexpansive maps. We denote it by \mathcal{L} **Rel**.

- **Definition 3** (\mathcal{L} -structure). Given a complete lattice \mathcal{L} , an \mathcal{L} -structure⁴ is a set X equipped with a family of binary relations $R_{\varepsilon} \subseteq X \times X$ indexed by $\varepsilon \in \mathcal{L}$ satisfying
- **monotonicity** in the sense that if $\varepsilon \leq \varepsilon'$, then $R_{\varepsilon} \subseteq R_{\varepsilon'}$, and
- **continuity** in the sense that for an *I*-indexed family of elements $\varepsilon_i \in \mathcal{L}_i$

$$\bigcap_{i\in I} R_{\varepsilon_i} = R_{\delta}, \text{ where } \delta = \inf_{i\in I} \varepsilon_i.$$

Intuitively⁵ $(x, y) \in R_{\varepsilon}$ should be interpreted as bounding the distance from x to y above by ε . Then, monotonicity means the points that are at a distance below ε are also at a distance below ε' when $\varepsilon \leq \varepsilon'$. Continuity means the points that are at a distance below a bunch of bounds ε_i are also at distance below the infimum of those bounds $\inf_{i \in I} \varepsilon_i$.

The names for these conditions come from yet another equivalent definition (this time more directly equivalent). Organising the data of an \mathcal{L} -structure into a function $R : \mathcal{L} \to \mathcal{P}(X \times X)$ sending ε to R_{ε} , we can recover monotonicity and continuity by seeing $\mathcal{P}(X \times X)$ as a complete lattice like in **??**. Indeed, monotonicity is equivalent to *R* being a monotone function between the posets (\mathcal{L}, \leq) and $(\mathcal{P}(X \times X), \subseteq)$, and continuity is equivalent to *R* preserving infimums, which in turn is equivalent to *R* being a continuous functor between these posets viewed as posetal categories.⁶

A morphism between two \mathcal{L} -structures $(X, \{R_{\varepsilon}\})$ and $(Y, \{S_{\varepsilon}\})$ is a function $f : X \to Y$ satisfying

$$\forall \varepsilon \in \mathcal{L}, \forall x, x' \in X, (x, x') \in R_{\varepsilon} \implies (f(x), f(x')) \in S_{\varepsilon}.$$
 (2)

This should feel similar to nonexpansive maps. Let us call \mathcal{L} **Str** the category of \mathcal{L} -structures.

Proposition 4. Given a complete lattice \mathcal{L} , the categories \mathcal{L} **Rel** and \mathcal{L} **Str** are isomorphic.

¹ i.e. \mathcal{L} is a set and $\leq \subseteq \mathcal{L} \times \mathcal{L}$ is a binary relation on \mathcal{L} that is reflexive, transitive and antisymmetric.

² We will try to match the symbol for the space and the one for its underlying set only modifying the former with mathbf.

³ Fix three \mathcal{L} -spaces **X**, **Y** and **Z** with two nonexpansive maps $f : X \to Y$ and $g : Y \to Z$, we have by nonexpansiveness of g then f:

$$d_{\mathbf{Z}}(g \circ f(x), g \circ f(x')) \le d_{\mathbf{Y}}(f(x), f(x'))$$
$$\le d_{\mathbf{X}}(x, x').$$

⁴ We borrow the name "structure" from the very abstract notion of relational structure used in [?, ?, ?].

⁵ The proof of Proposition 4 will shed more light on these objects by equating them with \mathcal{L} -spaces.

⁶ Limits in a posetal category are always computed by taking the infimum of all the points in the diagram. *Proof.* Given an \mathcal{L} -relation (X, d), we define the binary relations $R^d_{\varepsilon} \subseteq X \times X$ by

$$(x, x') \in R^d_{\varepsilon} \Longleftrightarrow d(x, x') \le \varepsilon.$$
(3)

This family satisfies monotonicity because for any $\varepsilon \leq \varepsilon'$ we have

$$(x,x') \in R^d_{\varepsilon} \stackrel{(3)}{\longleftrightarrow} d(x,x') \leq \varepsilon \implies d(x,x') \leq \varepsilon' \stackrel{(3)}{\Longleftrightarrow} (x,x') \in R^d_{\varepsilon'}$$

It also satisfies continuity because if $(x, x') \in R_{\varepsilon_i}$ for all $i \in I$, then $d(x, x') \leq \varepsilon_i$ for all $i \in I$. By definition of infimum, we must have $d(x, x') \leq \inf_{i \in I} \varepsilon_i$, hence $(x, x') \in R_{\inf_{i \in I} \varepsilon_i}$. We conclude the forward inclusion (\subseteq) of continuity holds, the converse (\supseteq) follows from monotonicity.

Any nonexpansive map $f : (X, d) \to (Y, \Delta)$ in \mathcal{L} **Rel** is also a morphism between the \mathcal{L} -structures $(X, \{R_{\varepsilon}^{d}\})$ and $(Y, \{R_{\varepsilon}^{\Delta}\})$ because for all $\varepsilon \in \mathcal{L}$ and $x, x' \in X$, we have

$$(x,x') \in R^d_{\varepsilon} \stackrel{(3)}{\longleftrightarrow} d(x,x') \leq \varepsilon \stackrel{(1)}{\Longrightarrow} \Delta(f(x),f(x')) \leq \varepsilon \stackrel{(3)}{\longleftrightarrow} (f(x),f(x')) \in R^{\Delta}_{\varepsilon}$$

It follows that the assignment $(X, d) \mapsto (X, \{R_{\varepsilon}^{d}\})$ is a functor $F : \mathcal{L}\mathbf{Rel} \to \mathcal{L}\mathbf{Str}$ acting trivially on morphisms.

Given an \mathcal{L} -structure $(X, \{R_{\varepsilon}\})$, we define the function $d_R : X \times X \to \mathcal{L}$ by

$$d_R(x,x') = \inf \left\{ \varepsilon \in \mathcal{L} \mid (x,x') \in R_{\varepsilon} \right\}.$$

Note that monotonicity and continuity of the family $\{R_{\varepsilon}\}$ imply⁷

$$d_R(x, x') \le \varepsilon \iff (x, x') \in R_{\varepsilon}.$$
(4)

This allows us to prove that a morphism $f : (X, \{R_{\varepsilon}\}) \to (Y, \{S_{\varepsilon}\})$ is nonexpansive from (X, d_R) to (Y, d_S) because for all $\varepsilon \in \mathcal{L}$ and $x, x' \in X$, we have

$$d_R(x,x') \leq \varepsilon \stackrel{(4)}{\longleftrightarrow} (x,x') \in R_{\varepsilon} \stackrel{(2)}{\Longrightarrow} (f(x),f(x')) \in S_{\varepsilon} \stackrel{(4)}{\longleftrightarrow} d_S(f(x),f(x')) \leq \varepsilon,$$

hence putting $\varepsilon = d(x, x')$, we obtain $d_S(f(x), f(x')) \leq d_R(x, x')$. It follows that the assignment $(X, \{R_\varepsilon\}) \mapsto (X, d_R)$ is a functor $G : \mathcal{L}Str \to \mathcal{L}Rel$ acting trivially on morphisms.

Observe that (3) and (4) together say that $R_{\varepsilon}^{d_R} = R_{\varepsilon}$ and $d_{R^d} = d$, so *F* and *G* are inverse to each other on objects. Since both functors do nothing to morphisms, we conclude that *F* and *G* are inverse to each other, and that \mathcal{L} **Rel** $\cong \mathcal{L}$ **Str**. \Box

⁷ The converse implication (\Leftarrow) is by definition of infimum. For (\Rightarrow), continuity says that

$$R_{d_R(x,x')} = \bigcap_{\varepsilon \in \mathcal{L}, (x,x') \in R_{\varepsilon}} R_{\varepsilon},$$

so $R_{d_R(x,x')}$ contains (x,x'), then by monotonicity, $d_R(x,x') \le \varepsilon$ implies R_{ε} also contains (x,x').