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" Definition 1 (Complete lattice). A complete lattice is a partially ordered set (£, <)*

where all subsets S C £ have a infimum and a supremum denoted by infS and
sup S respectively. We use L to refer to the lattice and its underlying set.

" Definition 2 (L-relation). Given a complete lattice £ and a set X, an L-relation on

-

X is a function d : X x X — L. We often refer to the pair (X,d) as a L-space, and
we will also use a single bold-face symbol X to refer to a £-space with underlying
set X and L-relation dx.>

A nonexpansive (or short) map from X to Y is a function f : X — Y between the
underlying sets of X and Y that does not increase the distance between points:

Vx,x' € X, dy(f(x), f(x')) < dx(x,x'). (1)

The identity maps idx : X — X and the composition of two nonexpansive maps
are always nonexpansive3, therefore we have a category whose objects are L-spaces

" and morphisms are nonexpansive maps. We denote it by LRel.

-

Definition 3 (L-structure). Given a complete lattice £, an L-structure? is a set X
equipped with a family of binary relations R C X x X indexed by ¢ € L satisfying

* monotonicity in the sense that if ¢ < ¢/, then R, C Ry, and

* continuity in the sense that for an I-indexed family of elements ¢; € £,

ﬂ Re; = R;, where 6§ = infe;.
icl el

Intuitively> (x,y) € R, should be interpreted as bounding the distance from x to
y above by e. Then, monotonicity means the points that are at a distance below &
are also at a distance below ¢ when ¢ < ¢. Continuity means the points that are
at a distance below a bunch of bounds ¢; are also at distance below the infimum of
those bounds inf;c €;.

The names for these conditions come from yet another equivalent definition (this
time more directly equivalent). Organising the data of an £-structure into a function
R: L — P(X x X) sending ¢ to R, we can recover monotonicity and continuity by
seeing P (X x X) as a complete lattice like in ??. Indeed, monotonicity is equivalent
to R being a monotone function between the posets (£, <) and (P (X x X), C), and
continuity is equivalent to R preserving infimums, which in turn is equivalent to R
being a continuous functor between these posets viewed as posetal categories.®

A morphism between two L-structures (X, {R.}) and (Y, {S¢}) is a function f :
X — Y satisfying

Ve e L,Vx, X' € X, (x,x') € Re = (f(x),f(x')) €S.. (2)

This should feel similar to nonexpansive maps. Let us call L£Str the category of
L-structures.

Proposition 4. Given a complete lattice L, the categories LRel and LStr are isomorphic.

*ie. Lisasetand < C £ x L is a binary re-
lation on L that is reflexive, transitive and anti-
symmetric.

> We will try to match the symbol for the space
and the one for its underlying set only modify-
ing the former with mathbf.

3 Fix three L-spaces X, Y and Z with two non-
expansive maps f : X - Yand g: Y — Z, we
have by nonexpansiveness of g then f:

dz(go f(x),g0 f(x')) < dy(f(x) f(x))

< dx(x,x).

4 We borrow the name “structure” from the very

abstract notion of relational structure used in [?,
?2,?].

5The proof of Proposition 4 will shed more
light on these objects by equating them with £-
spaces.

6 in a posetal category are always com-

puted by taking the infimum of all the points in
the diagram.
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Proof. Given an L-relation (X, d), we define the binary relations R? C X x X by
(x,x') € R <= d(x,x') <. (3)
This family satisfies monotonicity because for any ¢ < ¢’ we have

(x,x') € RY L d(x,x')<e = d(x,x') <¢ L, (x,x') € RY.
It also satisfies continuity because if (x,x") € Ry, for all i € I, then d(x,x") < ¢
for all i € I. By defintion of infimum, we must have d(x,x’) < infic;¢;, hence
(x,%") € Ring,,¢;-
converse (2) follows from monotonicity.

We conclude the forward inclusion (C) of continuity holds, the

Any nonexpansive map f : (X,d) — (Y, A) in LRel is also a morphism between
the L-structures (X, {R%}) and (Y, {R2}) because for all ¢ € £ and x,x’ € X, we
have

(x,x) € R < d(x,x) <o L A(f(x), f() <e < (F(x), f(x))) € R

It follows that the assignment (X,d) ~— (X, {R¢}) is a functor F : LRel — LStr
acting trivially on morphisms.
Given an L-structure (X, {R.}), we define the function dg : X x X — L by

dr(x,x') =inf{e e L] (x,x") € Re}.
Note that monotonicity and continuity of the family {R.} imply”7
dr(x,x') < e <= (x,x') € R.. (4)

This allows us to prove that a morphism f : (X, {R;}) — (Y, {S¢}) is nonexpansive
from (X,dg) to (Y,ds) because for all ¢ € £ and x,x" € X, we have
d ! 4) / (2) ! 4) /

R(x,X) <e = (x,x) € Re = (f(x), f(x)) € Se <= ds(f(x), f(x)) <,
hence putting ¢ = d(x, x"), we obtain ds(f(x), f(x")) < dg(x,x"). It follows that the
assignment (X, {R}) — (X,dr) is a functor G : LStr — LRel acting trivially on
morphisms.

Observe that (3) and (4) together say that RgR = Reand dps = d, so F and G are
inverse to each other on objects. Since both functors do nothing to morphisms, we
conclude that F and G are inverse to each other, and that LRel = LStr. O

7 The converse implication (<) is by definition
of infimum. For (=), continuity says that

RdR(x,x’) = ﬂ Re,
ecL,(x,x")ERe

80 Ry (x,y) contains (x,x), then by monotonic-
ity, dgr(x,x’) < ¢ implies R, also contains (x, x’).



