
OVERVIEW We will go through a digest of six papers. I have broken
abstracts or introductions into numbered points. I have emboldened key
terms for ease of reading and I have underlined many technical terms.
I will be collecting feedback from the you on Zulip.

INSTRUCTIONS

• If you haven’t already done so, please create a Zulip account using
the link on the meetup.com meeting page.

• We will discuss readings on the Zulip thread entitled
#learning: reading groups / Statistics reading group.

• I will be collecting materials from you on the thread
#learning: reading groups / Statistics reading group—‘Housekeeping’

• I have numbered every point so that you can quickly note every
concept that is important to you.

• For each paper, please write down the author’s name followed by a
list of point numbers that are most interesting you.

• For each paper, please write at least one sentence relating the most
compelling points to your own work or interests

• Lastly, please pick the two papers you most want to read right away.

• Please list these two papers in the following fashion:

‘Top Papers: (1) AuthorName, (2) AuthorName’

• Submit all this information as a post on the thread
#learning: reading groups / Statistics reading group—‘Housekeeping’

• Next, I will decide which paper to read based on your feedback.

• Finally, we will revisit our chosen paper and briefly decide what sec-
tions to read.
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Your feedback will help us chart a roadmap through the material. We will
chat more on Zulip about that, as well as other topics such as contriv-
ing exercises for ourselves and writing posts on the Applied Category
Theory Wiki.
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What is a statistical model?
Peter McCullagh

1. This paper addresses two closely related questions,

2. “What is a statistical model?” and “What is a parameter?”

3. The notions that a model must “make sense,” and that a parameter
must “have a well-defined meaning” are...well understood [in prac-
tice], but absent from most formal theories...

4. In this paper, these concepts are defined in algebraic terms, using mor-
phisms, functors and natural transformations.

5. It is argued that inference on the basis of a model is not possible unless
the model admits a natural extension that includes the domain for
which inference is required.

6. For example, prediction requires that the domain include all future
units, subjects or time points.

7. Although it is usually not made explicit, every sensible statistical
model admits such an extension.

8. Examples are given to show why such an extension is necessary and
why a formal theory is required.

9. In the definition of a subparameter, it is shown that certain
parameter functions are natural and others are not.

10. Inference is meaningful only for natural parameters.

11. This distinction has important consequences for the construction of
prior distributions

12. and also helps to resolve a controversy concerning the Box-Cox model.
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Statistical Isomorphism Norman Morse and Richard Sacksteder

1. A statistical problem consists in part of a sample space and a set
of probability distributions on that space.

2. One can speak of the space and the set of probability distributions as
a “statistical system.”

3. ...different statistical systems...may be considered equivalent [if]
[stating] a...statistical problem in terms of either system gives the
statistician the same amount of...information with respect to the...problem.

4. This notion of equivalence has been given precise development in a
number of papers dealing with the concept of sufficiency and with the
“comparison of experiments,” as will be noted below.

5. .[It is] generally accepted that...Given a sample space and a [set of
parameterized probability distributions] on the space,

6. if there is a map [giving] each point of [one] sample space something
like a probability distribution on a second space,

7. and [there is] an induced set of probability distributions on the second
space corresponding to those given on the first,

8. then...the second space and the induced probability distributions [are]
second or induced statistical system,

9. and...the first system [is] sufficient for the second. Two systems are
“equivalent” if each is sufficient for the other.

10. ...The formal definition of statistical isomorphism which we give is not
convenient for determining whether two statistical systems are isomor-
phic...

11. .[We need a] complete set of invariants of the isomorphism classes.
Our main result, Theorem 2, provides such a set of invariants for dom-
inated statistical systems.

12. The invariants have a simple intuitive interpretation which we illustrate
in a simple case in this section.
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Probability Sheaves and the Giry Monad
Alex Simpson

1. I introduce the notion of probability sheaf,

2. which is a mathematical structure capturing the relationship between
probabilistic concepts (such as random variable) and sample spaces.

3. Various probability-theoretic notions can be (re)formulated in terms
of category-theoretic structure on the category of probability sheaves.

4. As a main example, I consider the Giry monad, which, in its original
formulation, constructs spaces of probability measures.

5. I show that the Giry monad generalises to the category of
probability sheaves, where it turns out to have a simple, purely
category-theoretic definition.
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The Algebra and Machine Representation of Statistical Models
Evan Patterson

1. This dissertation takes steps toward digitizing and systematizing...
statistical models and data analyses.

2. Using tools from...categorical logic, a precise analogy is drawn be-
tween [statistical models] and [logical models]...

3. Statistical theories, being algebraic structures, are amenable to ma-
chine representation and are equipped with morphisms that for-
malize the relations between different statistical methods.

4. ...a software system for creating machine representations of data
analyses, in...Python or R programs, is designed and implemented.

5. The representations aim to capture the semantics of data analyses,
independent of the programming language and libraries in which
they are implemented.

6. ...The necessary background in category theory is presented in Chapter
2.

7. ...In Chapters 3 and 4, I develop the algebra of statistical theories,
[models], and their morphisms.

8. ...In the second major part, I describe the design and implementation
of a software system for creating semantic representations of data
science workflows.

9. Chapter 5 [is] on the analysis of data science code...

10. In Chapter 6, I present the Data Science Ontology and a procedure
for the semantic enrichment of idealized computer programs.

11. The concluding Chapter 7 describes limitations of the work, suggests
directions for future work, and offers a general outlook on how the
structuralist approach to data analysis might transform the scien-
tific process.
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Categorical Probability and Stochastic Dominance in Metric Spaces
Paolo Perrone

Disclaimer: There is a lot of overlap between this thesis and papers co-
authored by Perrone and Fritz. We can select readings from this dissertation,
or corresponding papers, depending on interest and other factors. Think of
this outline as a multi-source summary.

1. In this work we introduce...category-theoretical concepts...to study
probability distributions on metric spaces and ordered metric
spaces.

2. The leading themes in this work are Kantorovich duality [Vil09,
Chapter 5],

3. Choquet theory [Win85, Chapter 1],

4. and the categorical theory of monads and their algebras [Mac00, Chap-
ter VI].

5. ...Probability monads[, discussed in Chapter 1,] can be interpreted
as a categorical tool to talk about random elements of a space [and
their convex combinations].

6. ...to every monad corresponds an adjunction.

7. For probability monads, this adjunction can be interpreted in terms
of Choquet theory.

8. In Chapter 2 we define a probability monad on the category of
complete metric spaces and 1-Lipschitz maps called the Kantorovich monad...

9. This monad assigns to each complete metric space X its Wasserstein space
PX, which is itself a complete metric space.

10. In Chapter 3 we extend the Kantorovich monad of Chapter 2 to
metric spaces equipped with a partial order. The order is inherited
by the Wasserstein space, and is called the stochastic order.

11. ...we define a compatibility condition of the order with the met-
ric...We call the spaces with this property L-ordered spaces
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12. ...In Chapter 4 we study a different order between probability mea-
sures, which [points] in the direction of increasing randomness.

13. ...we develop a new categorical formalism to describe operations
evaluated partially.

14. ...the partial evaluation order is equivalent to the order known in
the literature as the convex [order] or Choquet order.

15. ...we study the relation between these partial evaluation orders and
convex functions

16. ...[we] derive a [new] general duality result valid on all ordered
Banach spaces

17. ...for every two probability measures p and q over A,
∫
fdp ≤

∫
fdq for

all convex monotone functions f if and only if p �l q for the lax partial
evaluation order.
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A synthetic approach to Markov kernels, conditional independence
and theorems on sufficient statistics
Tobias Fritz

1. We develop Markov categories as a framework for synthetic proba-
bility and statistics...

2. ...we treat the following concepts in purely abstract categorical terms:

3. conditioning and disintegration;

4. various versions of conditional independence and its standard prop-
erties;

5. conditional products;

6. almost surely;

7. sufficient statistics;

8. versions of theorems on sufficient statistics due to Fisher-Neyman,
Basu, and Bahadur.

9. ...[This approach] provides a uniform treatment of...

10. discrete probability theory,

11. measure-theoretic probability with general measurable spaces,

12. Gaussian probability,

13. Markov processes of either of these kinds, and many others.
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