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Yoneda lemma 

 

We begin with an intuitive introduction to the mathematical content of Yoneda lemma (Lawvere 

and Rosebrugh, 2003, pp. 175-176, 249).  With simple illustrations of figures-and-incidences 

(along with [its dual] properties-and-determinations) interpretations of mathematical objects, we 

prove the Yoneda lemma (Lawvere and Schanuel, 2009, pp. 361, 370-371).  Broadly speaking, 

Yoneda lemma is about [properties of] objects [of a category] and their mutual determination. 

First, let us consider a function 

f: A → B 

We can think of the function f as (i) a figure of shape A in B, i.e., an A-shaped figure in B.  For 

example, in the category of graphs, a map 

d: D → G 

from a graph D (consisting of one dot) to any graph G is a D-shaped figure in G, i.e., a dot in the 

graph G.  We can also think of the same function f as (ii) a property of A with values in B, i.e., a 

B-valued property of A (Lawvere and Schanuel, 2009, pp. 81-85).  For example, with sets, say, 

Fruits = {apple, grape) and Color = {red, green}, a function 

c: Fruits → Color 

(with c (apple) = red and c (grape) = green) can be viewed as Color-valued property of Fruits. 

 Now let us consider two figures: an X-shaped figure in A 
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xA: X → A 

and a Y-shaped figure in A 

yA: Y → A 

Given a transformation from the shape X to the shape Y, i.e. an X-shaped figure in Y 

xY: X → Y 

we find that the X-shaped figure in Y (xY) induces a transformation of a Y-shaped figure in A 

into an X-shaped figure in A via composition of maps 

yA ◦ xY = xA 

(where ‘◦’ denotes composition) displayed as a commutative diagram 

 

 

 

showing the transformation of a Y-shaped figure in A (yA) into an X-shaped figure in A (xA) by 

an X-shaped figure in Y (xY) via composition of maps. 

As an illustration, consider an object (of the category of graphs) i.e., a graph G (shown 

below): 

 

 

X 

Y 

A 

xA = yA ◦ xY 

xY 

yA 
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and a shape graph [arrow] A with exactly one arrow ‘a’, along with its source ‘s’ and target ‘t’, 

as shown: 

 

along with an A-shaped figure in G 

aG: A → G 

displayed as: 

 

 

 

with, say, 

aG (a) = a1 

This A-shaped figure in G, i.e. the graph map aG maps the [only] arrow ‘a’ in the shape graph A 

to the arrow ‘a1’ in the graph G, while respecting the source (s) and target (t) structure of the 

arrow ‘a’, i.e., with arrow ‘a’ in shape A mapped to arrow ‘a1’ in the graph G, the source ‘s’ and 

A 
a 

s t 

d3 

G 

a1 a2 

d1 d2 

A 
a 

s t 

aG 

d3 

G 

a1 a2 

d1 d2 



4 
 

target ‘t’ of the arrow ‘a’ are mapped to the source ‘d1’ and target ‘d3’ of arrow ‘a1’, respectively.  

Next, consider another shape graph [dot] D with exactly one dot ‘d’ 

 

along with a D-shaped figure in A 

dA: D → A 

with 

dA (d) = s 

i.e., the graph map dA maps the dot ‘d’ in the graph D to the dot ‘s’ in the graph A, i.e. the source 

dot ‘s’ of the arrow ‘a’, as shown below: 

 

 

This graph map dA from shape D to shape A induces a transformation of the (above) A-shaped 

figure in graph G 

aG: A → G 

into a D-shaped figure in G 

dG: D → G 

via composition of graph maps 

dG = aG ◦ dA 

dA 

D 
d 

s A t 
a 

D 
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i.e., dG (d) = aG ◦ dA (d) = aG (s) = d1  

as depicted below (Lawvere and Schanuel, 2009, pp. 149-150): 

 

 

 

 

In general, every X-shaped figure in Y transforms a Y-shaped figure in A into an X-

shaped figure in A i.e., every map 

xY: X → Y 

induces a map in the opposite direction (contravariant; Lawvere, 2017; Lawvere and Rosebrugh, 

2003, p. 103; Lawvere and Schanuel, 2009, p. 338) 

A
xY: AY → AX 

where AY is the map object of the totality of all Y-shaped figures in A, AX is the map object of 

the totality of all X-shaped figures in A, and with the map A
xY of map objects defined as 

A
xY (yA: Y → A) = yA ◦ xY = xA: X → A 

assigning a map xA in the map object AX to each map yA in the map object AY.  Thus, the figures 

in an object A of all shapes (all X-shaped figures in A for every object X of a category) along 

with their incidences 
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A
xY: AY → AX 

induced by all changes of figure shapes 

xY: X → Y 

(i.e. every map in the category) together constitute the geometry of figures in A, i.e., a complete 

picture of the object A.  Summing up, we have the complete characterization of the geometry of 

every object A of a category in terms of the figures of all shapes (objects of the category) and 

their incidences (induced by the maps of the category) in the object A (Lawvere and Schanuel, 

2009, pp. 370-371). 

Let us now examine how figures of a shape X in an object A are transformed into figures 

of the [same] shape X in an object B.  We find that an A-shaped figure in B 

aB: A → B 

induces a transformation of an X-shaped figure in A 

xA: X → A 

into an X-shaped figure in B 

xB: X → B 

via composition of maps 

aB ◦ xA = xB 

displayed as a commutative diagram (shown below): 
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X xB = aB ◦ xA 

A B 

xA 

aB 

 

 

 

showing the transformation of an X-shaped figure in A (xA) into an X-shaped figure in B (xB) by 

an A-shaped figure in B (aB) via composition of maps.  Thus, every map 

aB: A → B 

induces a map in the same direction (covariant; Lawvere and Rosebrugh, 2003, pp. 102-103, 

109; Lawvere and Schanuel, 2009, p. 319) 

aB
X: AX → BX 

where AX is the map object of all X-shaped figures in A, BX is the map object of all X-shaped 

figures in B, and with the map aB
X defined as 

aB
X (xA: X → A) = aB ◦ xA = xB: X → B 

assigning a map xB in the map object BX to each map xA in the map object AX.  Thus, the totality 

of maps aB
X of map objects (for all objects and maps of the category) induced by a map aB from 

A to B constitutes a covariant transformation of the figure geometry of object A into that of B, 

i.e., specifies how figures-and-incidences in A are transformed into figures-and-incidences in B. 

 Putting together these two transformations: (i) the covariant transformation of X-shaped 

figures in A into X-shaped figures in B induced by an A-shaped figure in B, and (ii) the 

contravariant transformation of Y-shaped figures in A into X-shaped figures in A induced by an 

X-shaped figure in Y, we obtain the diagram (Lawvere and Schanuel, 2009, p. 370): 
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A 

Y 

X 

B xY 

xB 

xA 

yB 

aB 

yA 

 

 

 

 

from which we notice that there are two paths to go from a Y-shaped figure in A (yA) to an X-

shaped figure in B (xB): 

Path 1. First we map the Y-shaped figure in A (yA) into an X-shaped figure in A (xA) along the 

X-shaped figure in Y (xY) via composition of the maps 

yA ◦ xY 

and then map the composite X-shaped figure in A (yA ◦ xY) into an X-shaped figure in B along 

the A-shaped figure in B (aB) via composition 

aB ◦ (yA ◦ xY) 

Path 2. First we map the Y-shaped figure in A (yA) into a Y-shaped figure in B (yB) along the A-

shaped figure in B (aB) via composition of the maps 

aB ◦ yA 

and then map the composite Y-shaped figure in B (aB ◦ yA) into an X-shaped figure in B along 

the X-shaped figure in Y (xY) via composition 

(aB ◦ yA) ◦ xY 
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Based on the associativity of composition of maps (Lawvere and Schanuel, 2009, pp. 370-371), 

we find that 

aB ◦ (yA ◦ xY) = (aB ◦ yA) ◦ xY 

i.e., the two paths of transforming a Y-shaped figure in A 

yA: Y → A 

into an X-shaped figure in B give the same map 

aB ◦ yA ◦ xY = xB: X → B 

Since the associativity of composition of maps hold for all maps of any category (Lawvere and 

Schanuel, 2009, p. 17), we find that every A-shaped figure in B induces a covariant 

transformation of the figure geometry of A into the figure geometry of B.  More explicitly, each 

A-shaped figure in B 

aB: A → B 

induces a commutative diagram (of maps of map objects) 

 

 

 

satisfying 

aB
X ◦ A

xY = B
xY ◦ aB

Y 

AX BX 
aB

X 

A
xY B

xY 

aB
Y 

AY BY 
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for every map in the category, and hence a natural transformation (compatible with the 

composition of maps) of the figure geometry of A into the figure geometry of B.  To see the 

commutativity, consider a Y-shaped figure in A, i.e. a map yA of the map object AY and evaluate 

the above two composites: 

aB
X ◦ A

xY (yA) = aB
X (yA ◦ xY) = aB ◦ (yA ◦ xY) 

B
xY ◦ aB

Y (yA) = B
xY (aB ◦ yA) = (aB ◦ yA) ◦ xY 

Again, according to the associativity of the composition of maps 

aB ◦ (yA ◦ xY) = (aB ◦ yA) ◦ xY = aB ◦ yA ◦ xY 

and hence both composites map each Y-shaped figure in A (a map in the map object AY)  

yA: Y → A 

to the X-shaped figure in B (a map in the map object BX) 

aB ◦ yA ◦ xY = xB: X → B 

Since we have the above commutativity for every shape (object) and figure (map), i.e. for all 

objects and maps of the category, we conclude that an A-shaped figure in B corresponds to a 

natural transformation (respectful of figures-and-incidences) of the figure geometry of A into the 

figure geometry of B. 

 Now we formally show that every A-shaped figure in B 

aB: A → B 

of a category C can be represented as a natural transformation 
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n
aB: C (–, A) → C (–, B) 

from the domain functor C (–, A) constituting the figure geometry of the object A to the 

codomain functor C (–, B) constituting the figure geometry of the object B, which is the core 

mathematical content of the Yoneda lemma (Lawvere and Rosebrugh, 2003, p. 249): “maps in 

any category can be represented as natural transformations” (Lawvere and Schanuel, 2009, p. 

378).  Since natural transformations represent structure-preserving maps between objects, the 

domain (codomain) functor of a natural transformation represents the domain (codomain) object 

of the structure-preserving map. 

 Let us define the (domain) functor 

C (–, A): C → C 

as: for each object X of the category C 

C (–, A) (X) = AX 

where AX is the map object of all X-shaped figures in A 

xA: X → A 

and, for each map 

xY: X → Y 

of the category C 

C (–, A) (xY: X → Y) = A
xY: AY → AX 
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where AY is the map object of all Y-shaped figures in A, and with the map A
xY of map objects 

defined as 

A
xY (yA: Y → A) = yA ◦ xY = xA: X → A 

assigning a map xA in the map object AX to each map yA in the map object AY.  Thus the functor 

C (–, A): C → C 

in assigning to each map 

xY: X → Y 

(of the domain category C) its [induced] map [of map objects] 

C (–, A) (xY: X → Y) = C (–, A) (Y) → C (–, A) (X) = A
xY: AY → AX 

(of the codomain category C) is contravariant, i.e. a transformation of a shape X into a shape Y 

induces a transformation (in the opposite direction) of Y-shaped figures in A into X-shaped 

figures in A (Lawvere and Rosebrugh, 2003, pp. 236-237). 

Now, we check to see if C (–, A) preserves identities, i.e. whether 

C (–, A) (1X: X → X) = 1C (–, A) (X) 

for every object X.  Evaluating 

C (–, A) (1X: X → X) = A
1X: AX → AX 

at a map 

xA: X → A 
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we find that 

A
1X (xA: X → A) = (xA ◦ 1X) = xA: X → A 

(for every map xA in the map object AX).  Next, evaluating 

1C (–, A) (X) = 1
AX: AX → AX 

at the map 

xA: X → A 

we find that 

1
AX (xA: X → A) = (xA ◦ 1X) = xA: X → A 

(for every map xA in the map object AX).  Since 

A
1X = 1

AX 

i.e. 

C (–, A) (1X: X → X) = 1C (–, A) (X) 

for every object X of the category C, we say C (–, A) preserves identities. 

Next, we check to see if C (–, A) preserves composition.  Since C (–, A) is contravariant, 

we check whether 

C (–, A) (yZ ◦ xY) = C (–, A) (xY) ◦ C (–, A) (yZ) 

where yZ: Y → Z.  Evaluating 
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C (–, A) (yZ ◦ xY) = A
(yZ ◦ xY)

 

at any map zA in the map object AZ, we find that 

A
(yZ ◦ xY)

 (zA) = zA ◦ (yZ ◦ xY) 

Next, we evaluate 

C (–, A) (xY) ◦ C (–, A) (yZ) = (A
xY ◦ A

yZ)  

also at the map zA 

(A
xY ◦ A

yZ) (zA) = A
xY (zA ◦ yZ) = (zA ◦ yZ) ◦ xY 

Since 

zA ◦ (yZ ◦ xY) = (zA ◦ yZ) ◦ xY 

by the associativity of the composition of maps, we have composition preserved 

C (–, A) (yZ ◦ xY) = C (–, A) (xY) ◦ C (–, A) (yZ) 

Having checked that 

C (–, A): C → C 

with 

C (–, A) (X) = AX 

C (–, A) (xY: X → Y) = A
xY: AY → AX 

where A
xY (yA) = yA ◦ xY, is a contravariant functor, we consider another contravariant functor 
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C (–, B): C → C 

with 

C (–, B) (X) = BX 

C (–, B) (xY: X → Y) = B
xY: BY → BX 

where B
xY (yB) = yB ◦ xY. 

With the two functors C (–, A) and C (–, B) representing the [figure geometry of] objects 

A and B, respectively, we now show that every structure-preserving map 

aB: A → B 

is represented by a natural transformation 

n
aB: C (–, A) → C (–, B) 

More explicitly, given a map aB, we can construct a natural transformation n
aB.  A natural 

transformation n
aB from the functor C (–, A): C → C to the functor C (–, B): C → C assigns to 

each object X of the domain category C (of both domain and codomain functors) a map 

aB
X: AX → BX  

(in the common codomain category C) from the value of the domain functor at the object X, i.e. 

C (–, A) (X) = AX to the value of the codomain functor at X, i.e. C (–, B) (X) = BX; and to each 

map xY: X → Y (in the common domain category C), a commutative square (in the common 

codomain category C) shown below: 
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satisfying 

aB
X ◦ A

xY = B
xY ◦ aB

Y 

(Lawvere and Rosebrugh, 2003, p. 241; Lawvere and Schanuel, 2009, pp. 369-370).  We have 

already seen that with the composition-induced maps (of map objects): 

A
xY (yA) = yA ◦ xY 

aB
X (xA) = aB ◦ xA 

aB
Y (yA) = aB ◦ yA 

B
xY (yB) = yB ◦ xY 

the required commutativity: 

aB
X ◦ A

xY (yA) = aB
X (yA ◦ xY) = aB ◦ (yA ◦ xY) 

B
xY ◦ aB

Y (yA) = B
xY (aB ◦ yA) = (aB ◦ yA) ◦ xY 

is given by the associativity of the composition of maps 

AX BX 
aB

X 

A
xY B

xY 

aB
Y 

AY BY 
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aB ◦ (yA ◦ xY) = (aB ◦ yA) ◦ xY = aB ◦ yA ◦ xY 

Thus, each A-shaped figure in B (aB) is a natural transformation (n
aB; homogenous with respect 

to composition of maps) of the figure geometry C (–, A) of A into the figure geometry C (–, B) 

of B. 

Furthermore, we can obtain the set |BA| of all A-shaped figures in B based on the 1-1 

correspondence between A-shaped figures in B and the points (i.e. maps with terminal object T 

of the category C as domain; Lawvere and Schanuel, 2009, pp. 232-234) of the map object BA.  

This 1-1 correspondence, which follows from the universal mapping property defining 

exponentiation, along with the fact that the terminal object T is a multiplicative identity 

(Lawvere and Schanuel, 2009, pp. 261-263, 313-314, 322-323), involves the following two 1-1 

correspondences between three maps: 

 

 

 

Yoneda lemma says, in terms of our figures-and-incidences characterization of objects, 

that the set |BA| of A-shaped figures in B 

aB: A → B 

is isomorphic to the set |C (–, B)C (–, A)| of natural transformations 

n
aB: C (–, A) → C (–, B) 

of the figure geometry of A into that of B.  The required isomorphism of sets 

T → BA 

T × A → B 

A → B 
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|BA| = |C (–, B)C (–, A)| 

follows from the 1-1 correspondence between A-shaped figures in B and the natural 

transformations (compatible with all figures and their incidences) of the figure geometry of A 

into that of B, which we have already shown (see also Lawvere and Rosebrugh, 2003, p. 104, 

174). 

 Dually, a map 

A → B 

viewed as a B-valued property on A induces a natural transformation 

C (B, –) → C (A, –) 

of the function algebra of B into that of A (Lawvere and Rosebrugh, 2003, p. 249).  Here also the 

proof of Yoneda lemma involves two transformations: (i) Contravariant: a map from an object A 

to an object B induces a transformation of properties of B into properties of A, for each type 

(object) of the category, and (ii) Covariant: a map from a type T to a type R (of properties) 

induces a transformation of T-valued properties into R-valued properties, for every object of the 

category.  The calculations involved in proving Yoneda lemma in this case of function algebras 

are same as in the case of figure geometries, except for the reversal of arrows due to the duality 

between function algebra and figure geometry (Lawvere and Rosebrugh, 2003, p. 174; Lawvere 

and Schanuel, 2009, pp. 370-371).  More specifically, function algebras and figure geometries 

are related by adjoint functors (Lawvere, 2016). 
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