Question	Asker Name	Answer
Why not use the		
zoom chat instead of		I think Q&A is preferable. Allows for
the Q&A?	Viliam Vadocz	upvotes
If we are not allowed		
to peek into the		
objects, how do we define useful	Karthikeyan Natesan	
morphisms?	Ramamurthy	live answered
		Of course we first have to be aware of
		what our objects are to define meaningful
If we are not allowed		morphisms (and that is the crux when d
to peek into the		efining your category). Once you have that
objects, how do we		data settled down it is the morphisms that
define useful	Karthikeyan Natesan	allow you to have the bird's eye view on
morphisms?	Ramamurthy	your global (and also local) structure.
If we are not allowed		
to peek into the		
objects, how do we		I think this is rooted in the
define useful	Karthikeyan Natesan	https://ncatlab.org/nlab/show/Yoneda+lem
morphisms?	Ramamurthy	ma
If we are not allowed		'@Yivan yes, the spiritual essense of the
to peek into the		Yoneda lemma is that, at least from the
objects, how do we	Kenthillouge Natara	perspective of category theory, an object
define useful	Karthikeyan Natesan	has no internal essense, it is fully defined
morphisms?	Ramamurthy	by its relationships with all other objects.

[
If we are not allowed to peek into the objects, how do we define useful morphisms?	Karthikeyan Natesan Ramamurthy	But unless you define the category you have no Yoneda lemma. :-) So it's not going to help in this case. But yes, one of the gazillion ways of looking at Yoneda is to say that each object is uniquely determined by all its "generalised elements" I mentioned further below.
does g circle f need to	a da a da	P
be unique?	ashwath	live answered
If g and f are invertible, is it a category?	jules tsukahara	live answered
If g and f are invertible, is it a category?	jules tsukahara	Categories where every arrow is invertible is called a groupoid. As the name suggests it is a generalisation of a group, and has been around before the concept of a category has been defined.
Does category theory also deal with non- categories, or is the concept general enough to be "exhaustive"?	Giacomo Aldegheri	live answered
Does category theory also deal with non- categories, or is the concept general enough to be "exhaustive"?	Giacomo Aldegheri	Fun fact: you can construct a category over any graph

Does category theory		
also deal with non-		
categories, or is the		
concept general		
enough to be		'@Filip aka the free category generated by
"exhaustive"?	Giacomo Aldegheri	a quiver
	encenne / nacghen	
Does category theory		
also deal with non-		
categories, or is the		
concept general		
enough to be		i guess you need to add all self loops and
"exhaustive"?	Giacomo Aldegheri	make all arrow composable?
Does category theory		
also deal with non-		For example, a semigroup lacks an identity
categories, or is the		and itself can not be seen as a category.
concept general		However, you can often still define
enough to be		morphisms between two semi-groups, so
"exhaustive"?	Ciacomo Aldoghori	
exhaustive :	Giacomo Aldegheri	can form a category of all semigroups.
Does category theory		
also deal with non-		
categories, or is the		
concept general		
enough to be		is every category a subcategory of the free
"exhaustive"?	Giacomo Aldegheri	category on some quiver?
		······································
Does category theory		
also deal with non-		'@Matthew yes, with some asterisks. for
		example you need to define "sub" to mean
categories, or is the		
concept general		a quotient operation where you declare
enough to be		some morphisms to be identical to others,
"exhaustive"?	Giacomo Aldegheri	rather than a sub-graph.

Does category theory also deal with non- categories, or is the concept general enough to be "exhaustive"?	Giacomo Aldegheri	this is similar (in fact almost identical!) to how any finite group can be seen as isomorphic to a free group quotiented by some relations
Does category theory also deal with non- categories, or is the concept general enough to be "exhaustive"?	Giacomo Aldegheri	Yes, it should be. You can forget the category structure and just look at it as a graph. Then you can construct the "free" category over that graph. This doesn't make your original category a subcategory. But you can perform a suitable "quotient construction" as Tali says.
Does category theory also deal with non- categories, or is the concept general enough to be "exhaustive"?	Giacomo Aldegheri	So not as a subcategory but as a 'Quotient' Category by adding relations? Awesome, thanks for the help

		1
Does category theory also deal with non- categories, or is the concept general enough to be "exhaustive"?	Giacomo Aldegheri	'@Jules it's more that the morphisms of the free category represent *paths* of any finite length in the original graph. you can compose paths when they are head to tail. for example, the morphisms between objects <i>a</i> and <i>b</i> in the free category on a graph is the set of paths that begin at <i>a</i> and end at <i>b</i>
Does category theory also deal with non- categories, or is the concept general enough to be "exhaustive"?	Giacomo Aldegheri	'@Jules then the "empty path", which immediately starts and ends at a vertex <i>a</i> , is exactly the (unique) identity morphism in the category.
Does category theory also deal with non- categories, or is the concept general enough to be "exhaustive"?	Giacomo Aldegheri	'@Jules I don't refer to category theory at all but the way it works is visualized here (https://quivergeometry.net/path- groupoids/) and its the same idea
Does category theory also deal with non- categories, or is the concept general enough to be "exhaustive"?	Giacomo Aldegheri	'@Matthew exactly. you're welcome!
What do you mean by drops a lot of data? all are same?	Ibraheem Muhammad Moosa ashwath	What do you mean by drops a lot of data?

There is a unique one!	Franck Albinet	live answered
Constant fn?	Dobrik Georgiev	live answered
constant?	Victoria Klein	live answered
What does "up to isomorphism" mean in Cat theory? (i.e. what's an		
Isomorphism)	Dobrik Georgiev	Petar will explain that in a couple of slides
isn't what is in the object makes A different from B? if we ignore what is in the object then everything in a set become the smae? like a molecular graph has different atoms because what is inside atoms		In our context the sets themselves are the objects, what Petar is saying is that we won't talk about the elements of the sets, but the sets themselves differ from each
actually defines what type of atom it is?	Amina Mollaysa	other by things like cardinality
isn't what is in the object makes A different from B? if we ignore what is in the object then everything in a set become the smae? like a molecular graph has different atoms because what is inside atoms		Good point. This is why we need to carefully distinguish between being isomorphic and being equal. Isomers in
actually defines what type of atom it is?	Amina Mollaysa	Chemistry would be isomorphic (in a suitable sense), but not equal.

Г		
isn't what is in the object makes A different from B? if we ignore what is in the object then everything in a set become the smae? like a molecular graph has different atoms because what is inside atoms actually defines what type of atom it is?	Amina Mollaysa	"@Filip makes me think that a nice illustration of the maxim that "objects are defined by their relationships" for chemistry would be that nuclear isotopes manifest almost no chemical difference (except for slight changes in diffusion and reaction rates due to mass and maybe nuclear spin). so their chemical relationships with other molecules are the same, and we can treat them as the same kind of element "most of them time" because chemistry (=category theory) won't be able to tell the difference between them.
There is B		
morphisms like that?	yobibyte	live answered
cardinality of B could you give an example of a non- category that doesn't satisfy the compositionality axiom?	luchino_prince Piotr Piękos	live answered you can imagine a category with three objects A, B, C and two morphisms A->B and B->C and all of the identities, but no morphism A->C
could you give an example of a non- category that doesn't satisfy the compositionality axiom?	Piotr Piękos	live answered

could you give an example of a non- category that doesn't satisfy the compositionality axiom?	Piotr Piękos	That's kind of the "wrong" question as composition is considered to be part of the data.
could you give an example of a non- category that doesn't satisfy the compositionality axiom?	Piotr Piękos	but isn't it the case that you can always easily extend the universe of morphisms to contain the compositions?
could you give an example of a non- category that doesn't satisfy the compositionality		sure, but then you may be dealing with a different universe. for example, if you are trying to describe some phenomenon using categorical language and you discover that compositionality is not satisfied, you can "add it in yourself," but you have to acknowledge that the underlying
axiom? could you give an example of a non- category that doesn't satisfy the	Piotr Piękos	phenomenon was not actually categorical perhaps someone else can weigh in with
compositionality axiom?	Piotr Piękos	such a real-world example, i can't think of any at the moment

could you give an example of a non- category that doesn't satisfy the compositionality axiom?	Piotr Piękos	Yes, you have the right intuition. Given a graph, you can "extend" this graph and get a category. That construction is called the "free category" on the given graph. The true problem is that this free category becomes HUGE.
could you give an example of a non- category that doesn't satisfy the compositionality axiom?	Piotr Piękos	regardless of the real world example, i think i see it now more clearly, thanks. (If anyone has a non-trivial example, then I would still appreciate it)
could you give an example of a non- category that doesn't satisfy the		'@Piotr. Take as objects the points in space (say a torus = doughnuts), and the arrows to be be paths between the points. This does not form a category unless you are
compositionality axiom? could you give an example of a non- category that doesn't satisfy the compositionality axiom?	Piotr Piękos Piotr Piękos	very careful how you model continuous paths mathematically. e.g. the graph of lovers, the objects are people, and a connection between A and B means "A fells attraction to B" or "A likes B"

Descreibes 'inside of		
B' in a sense?	Shivam	live answered
Don't you still need to have some information about the set? In this case the cardinality?	Andrei Manolache	Just the set morphisms into and out of the object encode the cardinality.
Don't you still need to have some information about the set? In this case the cardinality?	Andrei Manolache	I see, but we still need to know something about the (unique) morphisms, isn't that equivalent to knowing the cardinality of the set?
feels similar to the notion that each point (X, Y) in R2 is isomorphic to the vector from the origin to to (X, Y)	Max Cembalest	
Might be useful for beginners to know: this concept of the a morphism that tells you about the contents of an object that technically category theory isn't allowed to directly "look inside" is called a "subobject classifier"	Tali Beynon	more precisely: the object for which the morphisms from other objects to it represent sub-objects of those objects, is called a sub-object classifier!

Might be useful for beginners to know: this concept of the a morphism that tells you about the contents of an object that technically category theory isn't allowed to directly "look inside" is called a "subobject classifier"	Tali Beynon	live answered
Might be useful for beginners to know: this concept of the a morphism that tells you about the contents of an object that technically category theory isn't allowed to directly "look inside" is called a "subobject classifier"	Tali Beynon	Subobject classifiers are already a bit too restrictive. I think a better way to think about this is the notion of a "generalised element". So an arrow f: a -> b would be a generalised element of shape a in b. Would really need to draw some pictures here to make it more visual.
Might be useful for beginners to know: this concept of the a morphism that tells you about the contents of an object that technically category theory isn't allowed to directly "look inside" is called a "subobject classifier"	Tali Beynon	'@Filip you're right, thanks! an interesting example of that would be in the category of categories. a generalized element is then a diagram. which makes sense: diagrams are parts of a category as seen through a keyhole.

A graph can		
considered an object		
up to isomorphisms?		There's a category of graphs, whose
In that case, graph		objects are graphs and morphisms are
isomorphisms are the id morphisms on the		graph morphisms. The isomorphisms are a subset of morphisms. (Called the core
objects?	Alberto Colombo	subcategory)
If I understand		
correctly, the Set		
category has all the		
sets as its objects?		
How do we define the universe of sets, or do		
we even need to do		The universe is not a set, so you do not
that?	Oumar Kaba	need to define it in Set :)
If I understand correctly, the Set		
category has all the		
sets as its objects?		You might want to look at the concepts of
How do we define the		"small categories" and "large categories"
universe of sets, or do		that are designed to deal with these
we even need to do that?	Oumar Kaba	cardinality issues. I believe the category of sets is a large category.
If I understand		
correctly, the Set category has all the		Yeah there's some more specific theory to
sets as its objects?		dealing with cardinality issues in the
How do we define the		collection of objects of categories, they
universe of sets, or do		won't be needed for this introduction (but
we even need to do		by all means look it up if you find it
that?	Oumar Kaba	interesting!)

If I understand correctly, the Set category has all the sets as its objects? How do we define the universe of sets, or do we even need to do		This cannot be resolved. You can call them universes, cummulative hierarchies, classes You will run into these problems eventually. At some point your categories become too big for any form of set theory you want to use to model category theory. The only way out would be an axiomatic theory of categories. Bill Lawvere has developed some ideas iin this direction called ETCS: Elementary Theory
that? Do we consider all	Oumar Kaba	of the Category of Sets.
single-element sets the same object?	Viliam Vadocz	Not the same object, but isomorphic objects.
Does the category of sets have to include all functions from each set to each other set? (As in, are all morphisms included by definition)	Charles London	yes
Does the category of sets have to include all functions from each set to each other set? (As in, are all morphisms included by definition)	Charles London	live answered

Does there exist		
Hom(\emtpyset,		
\emptyset)		yes, the empty function petar just
morphism?	Dobrik Georgiev	mentioned.
Does there exist		
Hom(\emtpyset,		
\emptyset)		
morphism?	Dobrik Georgiev	live answered
· · ·	DODING GEOIGIEV	
Does there exist		
Hom(\emtpyset,		
\emptyset)		
morphism?	Dobrik Georgiev	0 ^ 0 = undefined, hence my question
Does there exist		
Hom(\emtpyset,		
\emptyset)		As in some other settings, the convention
morphism?	Dobrik Georgiev	0^0=1 should be used here
Does there exist		
Hom(\emtpyset,		0^0 is undefined only from a calculus
		-
\emptyset)		perspective. from a combinatorics/set
morphism?	Dobrik Georgiev	theoretic perspective is 1.
Does there exist		
Hom(\emtpyset,		
\emptyset)		All objects require an identity morphisms
morphism?	Dobrik Georgiev	so the homset can't be empty or undefined.
why can't we force		
B to be equal to 1?		
(for B ^ A =1)	ashwath	It's for all B
why can't we force		
B to be equal to 1?		For A to be an initial object, it needs to
1· · ·	ashwath	hold for all B
(for B ^ A =1)	asiiwatii	
so the morphisms in		
the opposite		
categories don't have		
to be inverses of the		
original morphisms?		
Axioms don't assume		
that	Piotr Piękos	live answered
original morphisms? Axioms don't assume	Piotr Piękos	live answered

	•	
What's the meaning of opposite category		
of set category? ie		What's the meaning of opposite category
what do the	Ibraheem	of set category? ie what do the morphisms
morphisms mean?	Muhammad Moosa	mean?
What's the meaning		
of opposite category		
of set category? ie		
what do the	Ibraheem	
morphisms mean?	Muhammad Moosa	live answered
What's the meaning		it is isomorphic to a boolean algebra
of opposite category		category, actually:
of set category? ie		https://math.stackexchange.com/questions
what do the	Ibraheem	/980933/what-is-the-opposite-category-of-
morphisms mean?	Muhammad Moosa	set
What's the meaning of opposite category of set category? ie what do the morphisms mean?	Ibraheem Muhammad Moosa	It's a purely formal construction. It might not have any immediate underlying meaning other than there exists a morphism A -> B whenever there exists a morphism B -> A in the original category.
What's the meaning of opposite category of set category? ie what do the morphisms mean?	Ibraheem Muhammad Moosa	Dual / opposite categories are a syntactic construction. But once you can establish an isomorphism (in fact equivalence is often suffient) with a concrete category, then you have what we like to call a duality.

Is there any intuitive way to think about the opposite of a category we already		probaly in the language of sets would be
have familiarity with?	Matthew Pugh	useful for me :)
		Once Petar introduced functors, there's a nice example in the pre-image set. This
		gives a functor Set^{op} \to Set, mapping
Is there any intuitive		set X to the powerset PX, and a function f:X
way to think about		->Y to a function PY -> PX, mapping a
the opposite of a		subset U \subseteq Y to its pre-image f^{-
category we already		1}(U). To flip the direction, we need the
have familiarity with?	Matthew Pugh	opposite category.

		1
		Maybe not the most intuive way of thinking about opposite categories, but it is at the heart of what categorical duality is: Think of a formal definition of the theory of a category; i.e. the language and a basic set
		of syntactic rules, like you would define a programming language. If you now do the following operation on this fromal theory: switch domain and codomain of each
		arrow. You end up with the same theory. On your model side this means, that every
		model the theory, i.e. a concrete category
Is there any intuitive		(a particular implementation of your
way to think about the opposite of a		programming language) comes with a sister model, the opposite category.
category we already		This is the mother of all dualities in
have familiarity with?	Matthew Pugh	mathematics and beyond.
Is there any intuitive		
way to think about		
the opposite of a		
category we already		'@Filip well said! it really is kind of an
have familiarity with?	Matthew Pugh	instance of metamatemathical guage fixing
you get a surjective A		
—> C?	Max Cembalest	
composition is a		
function	Piotr Piękos	
You will have A->C		
defined	yobibyte	
All elements of C can		
be mapped from A?	Milena Djordjevic	
fg is surjective if f	Matthaw Duch	
and g are surjective	Matthew Pugh	

'@Filip isn't that construction a non- category when you choose shortest paths, however when you look at the picture upto homotopy invariance on a surface without holes that becomes a category as Piotr mentioned You get transitivity?	Abdullah Canbolat Fredi Mino	Even if you would choose paths as continuous maps [0,1] -> torus (not necessarily shortest), then you would not get an associative composition. Yes, you can pass to homotopy classes, but you can also be more clever with your parameterisation to make this work.
codomain of the		
composition would be		
same as g	Nilay	
It will follow		
associative rule	Zarreen	
Clarification: Sets in Set cat. do not need to be of the same		
type?	Dobrik Georgiev	i.e. we can have sets of numbers, pairs, etc.
Clarification: Sets in Set cat. do not need to be of the same		
type?	Dobrik Georgiev	In the Set cat, there's no typing of the sets.
Clarification: Sets in Set cat. do not need to be of the same type?	Dobrik Georgiev	Well, there kind of is, becasue each set is its own type. (See categorical logic/Mitchel-Benabou language)
Is it always possible to define an opposite category? At least in Set it seems that it is only possible if all the functions are isomorphic? Or is C^op no longer Set?	Charles London	As in, it is no longer required that morphisms are functions?

ls it always possible		
to define an opposite		the Op construction is purely formal
category? At least in		the arrows in SetOp are just "formally"
Set it seems that it is		reversing the arrows from Set, but they do
only possible if all the functions are		not actually represent going "backwards", and they do not have to be isomorphisms
isomorphic? Or is		in fact, in SetOp, /every/ arrow gets turned
C^op no longer Set?	Charles London	around, including non-invertible functions
ls it always possible		
to define an opposite		
category? At least in		
Set it seems that it is only possible if all the		
functions are		
isomorphic? Or is		
C^op no longer Set?	Charles London	Thank you!
ls it always possible		
to define an opposite		
category? At least in		
Set it seems that it is only possible if all the		
functions are		
isomorphic? Or is		
C^op no longer Set?	Charles London	live answered

		1
Is it always possible to define an opposite category? At least in Set it seems that it is only possible if all the functions are isomorphic? Or is C^op no longer Set?	Charles London	Yeah, as Daniel says you can see it as just choosing the opposite convention for what an arrowhead means. Kind of like how with groups you can choose group multiplication to be left-to-right or right-to-left, switching the convention can be compensated by moving to the "opposite group". it's a kind of discrete gauge choice if you are inclined to take a physics perspective.
Is it always possible to define an opposite category? At least in Set it seems that it is only possible if all the functions are isomorphic? Or is		At its heart categorical duality is due to the self-duality of the theory of a category. I have elaborated that in a bit more depth
C^op no longer Set?	Charles London	further above.
projections are surjections right?	Ibraheem Muhammad Moosa	projections are surjections right?
projections are surjections right?	Ibraheem Muhammad Moosa	yes
projections are surjections right?	Ibraheem Muhammad Moosa	live answered
projections are surjections right?	Ibraheem Muhammad Moosa	In the category of sets, yes.
Is it sensible to think of the Cartesian product as, say, cartesian coordinates with some minimal number of dimensions?	leva	(as an example)

	1	
Is it sensible to think of the Cartesian product as, say, cartesian coordinates with some minimal number of dimensions?	leva	In that X would then be something of higher dimensionality containing both dimensions A and B
Is it sensible to think of the Cartesian product as, say, cartesian coordinates with some minimal number of dimensions?	leva	I think that's sensible.
Are there any cases where we want to define "isomorphism between morphisms"?	Yivan Zhang	Yes, if you want to study 2-category theory.
Are there any cases where we want to define "isomorphism between morphisms"?	Yivan Zhang	That'd be in a bicategory / 2-category, which is out of the scope of this course so far. Key example: homotopies can be isomorphisms between continuous functions.
Are there any cases where we want to define "isomorphism between morphisms"?	Yivan Zhang	Thanks! I only know the names, but I haven't encountered a problem in machine learning where we need to go that far yet, hence the question.
So if I understand correctly, AxB is only defined up to isomorphism?	Oumar Kaba	live answered

r		
after Petar said AxB is minimal, i wonder if box topology can be considered as a product object in the category of point set topology	Abdullah Canbolat	That's one valid choice of topology for products in Top.
after Petar said AxB is minimal, i wonder if box topology can be considered as a product object in the category of point set topology	Abdullah Canbolat	And is also the caretesian product in the category of topological spaces and continuous maps as arrows.
after Petar said AxB is minimal, i wonder if box topology can be considered as a product object in the category of point set topology	Abdullah Canbolat	however box topology does not preserve topological properties for arbitrary products, do we need another definition for arbitrary product category or is this definition enough to cover these
after Petar said AxB is minimal, i wonder if box topology can be considered as a product object in the category of point set topology	Abdullah Canbolat	Sorry, I am not quite sure what you are refering to here. What matters is the universal property. Maybe we mean different things by box topology. I have taken that to mean product topology.

		[]
		umm no, box topology refers to the topology where products of open sets are
after Petar said AxB		in the topology, but the product topology is
is minimal, i wonder		the weakest topology that the projection
if box topology can be considered as a		mappings are continuous. for infinite products of topologies therefore product
product object in the		topology is weaker than box topology and
category of point set		for example compactness on box topology
topology	Abdullah Canbolat	is not preserved
after Petar said AxB		
is minimal, i wonder if box topology can be		
considered as a		
product object in the		
category of point set topology	Abdullah Canbolat	what i was asking about this infinite product of topological objects.
after Petar said AxB		
is minimal, i wonder		
if box topology can be		
considered as a		Oher is that see as the infinite and et
product object in the category of point set		Okay, in that case no; the infinite product will carry the intial topology w.r.t the
topology	Abdullah Canbolat	projections, not thee box topology.
after Petar said AxB		
is minimal, i wonder		
if box topology can be considered as a		
product object in the		
category of point set		
topology	Abdullah Canbolat	ok, thank you :)

	1	
Is the coproduct a set of sets?	Siavash Sakhavi	It's the disjoint union of sets, which is not the same.
Is the coproduct a set of sets?	Siavash Sakhavi	Noted. Thank you
union	Jeffrey Nickerson	Close, but it's a disjoint union
Are there objects that are self-duals in the		When taking the opposite of a category we're inverting the morphisms but keeping
set category?	Oumar Kaba	the objects the same
Are there objects that are self-duals in the set category?	Oumar Kaba	OK makes sense, then to reformulate, are there objects such that the morphisms are preserved when taking the dual?
Are there objects that are self-duals in the set category?	Oumar Kaba	Endmorphisms, yes, as they have the same domain and codomain.
all possible combinaitons of elements a set which is combination of A and B?	Amina Mollaysa	

Category theory is		
called often as a		
general math		
language, what		
means we could use		
it to express any		
math concept without		
additional words. Can		
we express word		
"any" in product		
definition in a		
categorical way?		The universal quantifier appears as the
What we can use -		right adjoint to the pullback. It's not so
natural		easy to elaborate here but feel free to ask
transformation?	Stanislav Kapulkin	for more details on Zulip!
Category theory is		
called often as a		
general math		
language, what		
means we could use		
it to express any		
math concept without additional words. Can		
we express word		
"any" in product		
definition in a		In general we have what we call
categorical way?		Categorical Logic, where we can interpret
What we can use -		theories in (fractions of) first order logic.
natural		How much we can interpret depends on
transformation?	Stanislav Kapulkin	how much stuff we can do in said category.
Can the product be		
defined as an object		
with two diagrams,		
with $A \rightarrow A \times B \rightarrow A$		In general, cartesian categories don't have
for inclusion,		an inclusion. This is true for bicartesian
projection and		categories, in which the product and
identity , and also for		coproduct are the same. Example: vector
B?	Shivam	spaces.
isn't B^A the same as		B^A lives in the category, Hom(A, B) is a
Hom(A,B)?	jules tsukahara	set.

isn't B^A the same as		
Hom(A,B)?	jules tsukahara	in the category of sets, yes.
isn't B^A the same as		
Hom(A,B)?	jules tsukahara	live answered
isn't B^A the same as		but, in the general case, B^A is an object,
Hom(A,B)?	jules tsukahara	not a set.
isn't B^A the same as	J	
	jules tsukahara	so not a subset of Mor(C).
Hom(A,B)?	Jules isukallara	
isn't B^A the same as		it doesn't even need to be a set in a more
Hom(A,B)?	jules tsukahara	weird category.
isn't B^A the same as		ok i'll need to check the definition in details
Hom(A,B)?	jules tsukahara	later, thanks
		The idea of exponentials is that they a
		rethe objects representing the set of all
isn't B^A the same as		
		morphisms *internally* to the category as
Hom(A,B)?	jules tsukahara	one of its objects.
Is it the case that B^A		No, that'd require that for any X there's a
is some sort of a		unique map X -> B^A, but by currying, any
terminal object?	Dobrik Georgiev	map X x A -> B gives such a map.
How are Hom(A,B)		
and the exponential		Yes: Hom(A, B) is isomorphic as a set to
B^A related?	Federico	Hom(1, B^A)
D Arelated.		
How are Hom(A,B)		number of elements in the set. so
and the exponential		$ HOM(A, B) = B ^ A $. But please
B^A related?	Federico	double check
currying	Brian Lee	
currying?	Daniel Gonzalez Cedre	
currying	Viliam Vadocz	
currying	Jeffrey Nickerson	
Empty?	Franck Albinet	
empty and power?		
Lempty and howers	volodymyr ky	

Why was the ease		
Why was the case		
\emptyset was terminal in Rel?	Debrik Coorgiou	live answered
	Dobrik Georgiev	
In the set category, why don't we define a morphism going from any set to the empty set?	Oumar Kaba	set functions must have outputs defined for their inputs, and there must be an output defined for /every/ input if you take a nonempty domain A and try to define a function with codomain \emptyset, you run into a problem because you can't define outputs for any of the inputs from A
In the set category, why don't we define a morphism going from any set to the		
empty set?	Oumar Kaba	live answered
In the set category,		A follow up, to the above question. Was it
why don't we define		'our' decision to define morphisms as fns
a morphism going		in Set category? Or are other categories on
from any set to the		sets, with different morphisms definition,
empty set?	Oumar Kaba	that still satisfy axioms of category?

		
		i think the natural categorization of set theory is the one that makes the functions into morphisms precisely because, in other areas of math, the transformations between objects are formalized as set functions with additional properties or restrictions
		in this way, the Set category as defined gives a good introduction to category theory because it has many of the interesting objects and constructions that show up in other areas
In the set category,		i'm sure you can take other definitions for
why don't we define		morphisms in Set, but they would be
a morphism going		harder to interpret without already being
from any set to the		familiar with some cat theory (i would
empty set?	Oumar Kaba	imagine)
In the set category, why don't we define a morphism going from any set to the empty set?	Oumar Kaba	You could for example use relations between two sets as morphisms: so objects are sets and arrows are relations. Composition is composition of relations.
there's only one object	leva	
There is one object	luchino_prince	
one object	Flaviu lepure	
one element	Walker# Ian A	
the id	Flaviu lepure	

anyone see a possible application of groupoids into geometric deep learning?	caio	anyone see a possible application of groupoids into geometric deep learning?
anyone see a possible application of groupoids into geometric deep learning?	caio	live answered
more objects, under some conditiomns, would give us a groupoid	luchino_prince	
slightly tengential question: is there a process in CT which relates things like the category induced by a single group BG to the category of all groups Grp?	jules tsukahara	I might look to Lawvere theories, operads, and similar things.
slightly tengential question: is there a process in CT which relates things like the category induced by a single group BG to the category of all groups Grp?	jules tsukahara	I guess you could think of the functor Groups -> Cats, mapping a group as an object G in the category of groups, to the category BG, which is an object in the category of categories.
What about about defining categories for groups using elements of a set as objects and a group action for morphisms?	Oumar Kaba	That also works and is called the action groupoid of the group acting on itself.

F		
What about about defining categories for groups using elements of a set as objects and a group action for morphisms?	Oumar Kaba	Interesting, thank you!
What about about defining categories for groups using elements of a set as objects and a group action for morphisms?	Oumar Kaba	'@Oumar from a graph theory perspective, a graph that generates that category you just defined is called a Cayley graph. generalizing it to actions on other sets gives interesing edge-colored graphs: https://quivergeometry.net/action- groupoids/
Can we get opposite vategory with a functor?	Ibraheem Muhammad Moosa	Can we get opposite vategory with a functor?
Can we get opposite vategory with a functor?	Ibraheem Muhammad Moosa	When there's a functor C -> C^{op}, this functor is called the dagger and the category is called a dagger category. Key example: vector spaces with the (conjugate) transpose.
Can we get opposite vategory with a functor?	Ibraheem Muhammad Moosa	You can consider any Functor F: C-> D also as a functor F:C^op -> D^op
kinda like a group homomorphism where the operation in both groups is composition?	senri	kinda like a group homomorphism where the operation in both groups is composition?

		1
kinda like a group		
homomorphism		
where the operation		
in both groups is		
composition?	senri	Yes, great analogy!
kinda like a group		
homomorphism		
where the operation		Exactly: functors between categories BG ->
in both groups is		BH for groups B and H are exactly group
composition?	senri	homoms
		Not necessarily, see
is the Functor		https://math.stackexchange.com/questions
surjective? or not		/3288868/is-a-full-functor-not-necessarily-
necessarily	Siavash Sakhavi	surjective-in-terms-of-objects
is the Functor		
surjective? or not		
necessarily	Siavash Sakhavi	Noted. Thank you
Can the necessary		
Can the necessary functor conditions be		
described as saying		We also need that this map preserves the
that the functor must		identities and composition. Just saying that
always map to a valid		there is a map between morphisms of the
category?	Lucas	right type is not sufficient.
How is A x B defined		
as a morphism?	Siavash Sakhavi	Could you rephrase your question?
How is A x B defined		Is the product of two objects in a category
as a morphism?	Siavash Sakhavi	just a definition?
		yes, this is a construction that is defined by
		the diagram given earlier in the lecture,
How is A x B defined		but it does not always exist in every
as a morphism?	Siavash Sakhavi	category
How is A x B defined		
as a morphism?	Siavash Sakhavi	Noted. Thank you.
	Siavasii Sakilavi	NOLEU. THATK YOU.

	1	
How is A x B defined as a morphism?	Siavash Sakhavi	to be clear: this is the definition of an /object/ in the category
		Yes, and no. You can either think of it as a*property* of a category, the fact that you can form products. You can also define it as a part of structure, i.e. mapping any two
How is A x B defined		objects to a particular choice of their
as a morphism?	Siavash Sakhavi	cartesian product.
How is A x B defined as a morphism?	Siavash Sakhavi	That mapping is actually an example of a bifunctor
Just wanted to say that this is the clearest explanation I've ever had of these concepts I've ever		
come across	leva	Thank you!
Just wanted to say that this is the clearest explanation I've ever had of these concepts I've ever	lovo	concurring with this; this is a great and concise lecture
come across	leva	
Just wanted to say that this is the clearest explanation I've ever had of these concepts I've ever come across	leva	Thanks! I'll make sure Petar gets this message.
Wil you very briefly		
say what message		
passing is?	Martha Lewis	live answered

It make sense to consider an "inverse" of a functor?	Lorenzo Giusti	Yes, although it's more common to see the more general idea of "adjoints".
		, , , , , , , , , , , , , , , , , , ,
It make sense to consider an "inverse" of a functor?	Lorenzo Giusti	Absolutely, a loose but very important notion thereof are called adjunctions, which are out of scope for this course.
It make sense to consider an "inverse" of a functor?	Lorenzo Giusti	At the functor level you do have a notion of isomorphism (think of the category of (small) categories as objects and fucntors as arrows) or that of an quivalence, or that of adjjunctions as pointed out above.
It make sense to consider an "inverse" of a functor?	Lorenzo Giusti	Thanks! This provides a very concrete sense on how to dive into the abstract fields of math
In the example, it seems like all the possible functors from S_3 to V have exactly the same "structure". Is there a way to call them isomorphic?	Oumar Kaba	They're not all isomorphic; for example, there is a functor mapping S_3 to the trivial vector space. But there is a structure theorem; every such functor decomposes into irreducible representations and there are only 3 of them.

		1
In the example, it seems like all the possible functors from S_3 to V have exactly the same "structure". Is there a way to call them isomorphic?	Oumar Kaba	For a given group G, there is a category of (linear) representations of G, RepG, whose objects are representations and morphisms are linear equivariant maps. This gives a notion of isomorphism between represntations. But as Andrew says, these examples are not iso.
In the example, it seems like all the possible functors from S_3 to V have exactly the same "structure". Is there a way to call them		
isomorphic?	Oumar Kaba	Thanks!
https://arxiv.org/abs/ 2203.15544	R Jhirad	
Cylinder	Shivam	
functors??	Flaviu lepure	
cylinder?	Matthew Pugh	
cross product of circle and line somwwhat?	Karthikeyan Natesan Ramamurthy	
but then if you go from this cyliner to the line you may end up same effect as just ignoring the circle and mapping		You might, but see the Fourier transform for an example where you get something
the line, no?	Amina Mollaysa	interesting :)

[
This could be something very close to a concept called Fourier-Mukai transform Why do the sets need to be finite?	Federico Giacomo Aldegheri	We're still working out the theoretical connections but we certainly believe there is considerable shared DNA here :) live answered
Within the category of Set is it meaningful to say the set of points of a circle. Isn't the structure which makes a circle a circle forgotten within Set?	Matthew Pugh	If you want to take the illustration literally, you're right that it should take place in the category of topological spaces instead. (the actual paper uses finite sets with no topology)
Within the category of Set is it meaningful to say the set of points of a circle. Isn't the structure which makes a circle a circle forgotten within Set?	Matthew Pugh	That makes sense, thankyou
Why product, not coproduct? (in this cylinder example)	Yivan Zhang	We're looking for a way to "mix" the signals, which the coproduct doesn't accomplish.
How does a generic set W give the shape of a tensor?	Martha Lewis	Technically a tensor shape has a little more structure than just being a finite set, but you can think of a square tensor shape as a product of two finite sets, for example.

		
Could you go over		
what exactly W, X, Y		
and Z represent in		
that diagram again?	Euan Ong	live answered
Ok, thanks!	Martha Lewis	
What does + mean in		
V + V^2?	Ricardo Carnieri	live answered
Sorry, what paper is		GNN are Dynamic Programmers -
Petar talking about?	jules tsukahara	NeurIPS'22
Sorry, what paper is		
Petar talking about?	jules tsukahara	https://arxiv.org/abs/2203.15544
	,	
Sorry, what paper is		Not this one, the one on Expressive GNN
Petar talking about?	jules tsukahara	and reasonning on triplets
How can we use		
functors to learn		
symmetries between		See eg Bruno's paper
certain categories?	Nicolás	https://arxiv.org/abs/2009.06837
Is there a way to 'fix		
message passing'		
without making the		
complexity O(n^3)?		
Or provably that's the		
minimum.	Dobrik Georgiev	live answered
who was the author		
mentioned in the		
expressive graph		
neural networks		
comment?	Tali Beynon	live answered
Could the		
improvement comes		
from more		line energy and
parameters of V^3?	Phúc Lê	live answered
Could the		
improvement comes		
from more		
parameters of V^3?	Phúc Lê	live answered

		1
Couldn't you argue		
that computing two		
different		
representations for		
edges just amounts		
to doubling the		
number of channels		
and disallowing		
interactions between		
the two subsets of		
channels?	Oumar Kaba	live answered
Can you recomment		
more basic sources	Cohootion Thomas	
about your last topic	Sebastian Thomas	live energy and
(message passing)?	(dida)	live answered
Can you recomment		
more basic sources		
about your last topic	Sebastian Thomas	
(message passing)?	(dida)	Thanks!
Very nice lecture.	Karthikeyan Natesan	
Thanks Petar.	Ramamurthy	
Thank you!	Filip Bar	
thanks for the great		
lecture :)	Julius Gruber	
Thank you, Petar!	Adel Ardalan	
Thanks for an		
amazing lecture! A		
small request: i think Zoom spits out the		
content of the Q&A		
as a text file to the		
host. Could it be		
preserved and		
provided on Zulip later?	Tali Rovnan	
	Tali Beynon	
Thank you	Flaviu lepure	
Can you tell us a bit		
more about the CLRS		
algorithmic reasoning		
benchmark if time		
permits? I didin't		
quite catch what it		
was.	jules tsukahara	live answered

		1
thanks for the		
lecture! it was		
fantastic	Daniel Gonzalez Cedre	
thank you, it was a		
great lecture	Piotr Piękos	
	-	
On what type of task		
do you expect this		
extension of		
Geometric Deep		
Learning to be used? I		
don't know I was able		
to be clear, seems to		
me that any task		
related to eucledian		
spaces has groups as		
their transformations	luchino_prince	
Thanks for the great		
lecture by the way!	jules tsukahara	
Thank you for the		
great lecture!	Oumar Kaba	
Thank you, Petar!	Jorge Hernandez	
what is the		
coexponential object		
in set?	Matthew Pugh	live answered
Thank you, great		
	Nikita Iserson	
Thanks! Super clear	Martha Louis	
lecture :)	Martha Lewis	
Fantastic lecture -		
thank you	HAMZA GIAFFAR	
The also feather least	Nike of Kous ¥	
Thanks for the lecture!		
is there a categorical		
way to think about		
random walks in		
GNNs?	Jeffrey Nickerson	live answered

	1
Jeffrey Nickerson	Weirdly I just bought this book: https://www.cambridge.org/core/books/ra ndom-walks-and-heat-kernels-on- graphs/5B375D343025BCE91C682D49CDDB 3A1A
Franck Albinet	live answered
Karthikeyan Natesan Ramamurthy	
Samuel Célineau	In the tonic of this lecture
Samuel Gelineau Phúc Lê	In the topic of this lecture
	Franck Albinet Karthikeyan Natesan Ramamurthy Samuel Gélineau

is there a link between what you presented here and Haggai Maron's characterization of linear equivariant maps in graphs?	Oumar Kaba	
Has anyone looked at the neural assembly calculus via the framework of category theory? Reference: https://www.pnas.org /doi/10.1073/pnas.20 01893117	Alisa Leshchenko	That looks very interesting!
Has anyone looked at the neural assembly calculus via the framework of category theory? Reference: https://www.pnas.org /doi/10.1073/pnas.20 01893117	Alisa Leshchenko	live answered
Are there any works that have looked into either disentanglement of representations in DNNs from a categorical theory perspective?	Aishwarya Balwani	
Where will the slide	Ibraheem	
be available?	Muhammad Moosa	Where will the slide be available?
Thank you!	R Jhirad	
thank you!	senri	thank you!