Categorical Databases

Ryan Wisnesky
Conexus Al
YHAAHII

July 28, 2023
SEMF

Introduction

» This talk describes a new algebraic (purely equational) way to
formalize databases and migrate data based on category theory.

» Category theory was designed to migrate theorems from one area of
mathematics to another, so it is a very natural language with which
to describe migrating data from one schema to another.

» Research has culminated in an open-source ETL and data migration
tool, CQL, available at categoricaldata.net.
» Outline:

» Review of basic category theory.

» Introduction to CQL.

» CQL demo.

» Optional: additional CQL constructions.

» Extra slides: How CQL instances model the simply-typed A-calculus.

N

39

Motivation / Background

» CQL is a 'category-theoretic’ SQL, used as an ETL tool.

» Users define schemas and mappings, which induce data transformations.

» CQL schema mappings must preserve data integrity constraints,
requiring the use of an automated theorem prover at compile time.

» CQL catches mistakes at compile time that existing ETL / data
migration tools catch at runtime — if at all.
» Some projects using CQL:
» NIST - several projects.
» DARPA BRASS project.
> Empower Retirement.
» Stanford Chemistry Department.
» Uber/Tinkerpop
» Fortune 50 energy and finance companies
» and more

39

Category Theory

> A category C consists of (where “set” is understood naively):

» a set of objects, Ob(C)
» forall X,Y € Ob(C), a set C(X,Y") of morphisms a.k.a arrows
» forall X € Ob(C), a morphism idx € C(X, X)

» forall X,Y,Z € Ob(C), a function o: C(Y, Z) x C(X,Y) — C(X, Z) s.t.

foid=f idof=Ff (fog)oh=fo(goh)

» The category Set has sets as objects and functions as arrows, and the ‘“category”
Haskell has types as objects and programs as arrows.

> A functor F': C — D between categories C, D consists of
» a function Ob(C) — Ob(D)
» forall X,Y € Ob(C), a function C(X,Y) — D(F(X), F(Y)) s.t.

F(idX):idF(X) F(fog)=F(f)oF(g)

> The functor P : Set — Set takes each set to its power set, and the functor
List : Haskell — Haskell takes each type t to the type List t.

39

Example Categorical Schema and Database

manager
(I;r\/np works Dept
° °

secretary

first
last
String
[]
Emp manager Emp works Dept Emp works Dept
° ° . e —— > o

Dept secretary Emp works Dept Dept

L] o [] = o

Emp String

Dept
ID || mgr | works | first | last °p D
- ID sec | name

101 103 ql0 Al Akin 10 01 S Al
102 || 102 | x02 | Bob | Bo 4 Bob

x02 102 | Math

103 103 ql0 Carl | Cork

5/39

A CQL Schema: Code

entities
Emp
Dept

foreign keys
manager : Emp -> Emp
works : Emp -> Dept
secretary : Dept —-> Emp

attributes
first last : Emp -> string
name : Dept -> string

path equations
manager .works = works
secretary.works = Department

6/39

Categorical Semantics of Schemas and Instances

» The meaning of a schema S is a category [S5].
» Ob([[S]) is the nodes of S.
» Forall nodes X, Y, [S](X,Y) is the set of finite paths X — Y, modulo
the path equivalences in S.
» Path equivalence in .S may not be decidable! (“the word problem”)
» A morphism of schemas (a “schema mapping”) S — T is a functor
[S] — [TT.
» It can be defined as an equation-preserving function:
nodes(S) — nodes(T) edges(S) — paths(T).

» An S-instance is a functor [S] — Set.

» It can be defined as a set of tables, one per node in S and one column
per edge in .S, satisfying the path equivalences in S.

> A morphism of S-instances I — J (a “data mapping") is a natural
transformation I — J.

» Instances on S and their mappings form a category, written S-inst.

Schema Mappings

A schema mapping F': S — T is an equation-preserving function:

nodes(S) — nodes(T) edges(S) — paths(T')
Str.ing Stﬂng
namy name’ﬁ
N.l f N.2 F Q
salary\\\ /age salary\()/age
Int Int

F(Int) = Int F(String) = String
F(N1)=N F(N2) =N
F(name) = [name] F'(age) = [age] F'(salary) = [salary]
F(f) =1

Functorial Data Migration

A schema mapping F': S — T induces three data migration functors:
» Ap: T-inst — S-inst (like project)

SLTHI-Set

Ap(I) := IoF

» IIp: S-inst — T-inst (right adjoint to Ap; like join)

VI,J. S-inst(Ap(I),J) =~ T-inst(I,11p(J))

» 3 S-inst — T-inst (left adjoint to Ap; like outer union then merge)

VI,J. S-inst(J, Ap(I)) = T-inst(Sp(J), I)

A (Project)

String String
[] []
namy name,ﬁ
N1 N2 F N
[] [] _— []
salary\\ /age salaryﬁ)/age
[] []
Int Int
N1 N2
ID || name | salary ID || age A ID || name | salary | age
1 Alice $100 4 20 | <Z[a Alice $100 20
2 Bob $250 5 20 Bob $250 20
3 Sue $300 6 30 Sue $300 30

10/39

IT (Product)

String String
[] []
namy name’ﬁ
N1 N2 F N
[] [] E— []
salary\\ /age salaryﬁ)age
[] [
Int Int
ID || name | salary | age
a Alice $100 20
N1 N2 b Alice $100 20
ID || name | salary ID || age . C Alice $100 30
1 Alice $100 4 20 | 5[d Bob $250 20
2 Bob $250 5 20 e Bob $250 20
3 Sue $300 6 30 f Bob $250 30
g Sue $300 20
h Sue $300 20
i Sue $300 30

11/39

3. (Outer Union)

String
[]

namy
N1

Int

salary\\ /age

String
°

name,ﬁ
N
L]

salary g)/age
°

Int

N1 N2
ID || Name | Salary ID || Age
1 Alice $100 4 20
2 Bob $250 5 20
3 Sue $300 6 30

N
ID || Name | Salary | Age
a Alice $100 | nully
b Bob $250 nulls
c Sue $300 nulls
d nully nulls 20
e nullg nully 20
f nullg nully 30

12/39

Unit of Xp - Ap

N1 N2
ID || Name | Salary ID || Age
1 Alice $100 4 20
2 Bob $250 5 20
3 Sue $300 6 30

[

N1 N2
ID || Name | Salary || ID Age
a Alice $100 a nully
b Bob $250 b nully
c Sue $300 c nulls
d nully nulls d 20
e nullg nully e 20
f nulls nully f 30

N

ID || Name | Salary | Age
a Alice $100 nully
b Bob $250 | nulls
c Sue $300 | nulls
d nully nulls 20
e nullg null; 20

f nulls nullg 30

13 /39

A Foreign Key

String String
[] []
namy name,ﬁ
N1 N2 F N
[] T [] []
salary\\ /age salaryﬁ)/age
[] []
Int Int
N1 N2 N
ID || name | salary | f ID || age 1{—2 ID || name | salary | age
1 [Alice [$100 [4|[4] 20 | ——=5[a [Alice | $100 | 20
2 Bob $250 | 5 5 20 b Bob $250 20
3 Sue $300 | 6 6 30 Sue $300 30

14 /39

Queries

A query Q : S — T is a schema X and mappings F': S — X and
G:T—-X.

evalg = Agollp coevalg = Ap o Xg

These can be specified using comprehension notation similar to SQL.

String String
[J L]
namy name&
N1 f N2 | @ N
e —— = o |[«— °

\ / salary \(D/age
salary age
L] L]
Int

Int

N1 -> select nl.name as name, nl.salary

as salary
from N as nil

N2 -> select n2.age as age
from N as n2

f -> {n2 -> n1}

15/39

A Foreign Key

String String
° []
namy name,ﬁ
N1 Q N
[] %. <« []
salary\ /ge salary\(D/age
Int I:t
Nl N2 C’U[LLQ
ID || name | salary | f ID || age ‘—l ID || name | salary | age
1 || Alice | $100 | 4 || 4 || 20 | ——>[a || Alice | $100 | 20
2 Bob $250 | 5 5 20 Bob $250 20
3 Sue $300 | 6 6 30 Sue $300 30

16

39

CQL Demo

» CQL implements A, X, II, and more in software.
» Commercial support / services: conexus.com

17 /39

Interlude - Additional Constructions

» What is “algebraic” here?

» CQL vs SQL.

» Pivot.

» Non-equational data integrity constraints.
» Data integration via pushouts.

» CQL vs comprehension calculi.

18 /39

Why “Algebraic”?

» A schema can be identified with an algebraic (equational) theory.
Emp Dept String : Type first last : Emp — String name : Dept — String

works : Emp — Dept mgr: Emp — Emp secr : Dept — Emp
Ve : Emp. works(manager(e)) = works(e) Vd : Dept. works(secretary(d)) = d

» This perspective makes it easy to add functions such as
+ :Int,Int — Int to a schema. See Algebraic Databases.

» An S-instance can be identified with the initial algebra of an algebraic
theory extending S.

101 102 103 : Emp q10 x02 : Dept
mgr(101) = 103 works(101) = q10

» Treating instances as theories allows instances that are infinite or
inconsistent (e.g., Alice=Bob).

19/39

CQL vs SQL

» Data migration triplets of the form
EF o HG o AH
can be expressed using (difference-free) relational algebra and keygen,

provided:

» Fis a discrete op-fibration (ensures union compatibility).
» G is surjective on attributes (ensures domain independence).
» All categories are finite (ensures computability).

» The difference-free fragment of relational algebra can be expressed
using such triplets. See Relational Foundations.

» Such triplets can be written in “foreign-key aware” SQL-ish syntax.

» For arbitrary F, X can be implemented using canonical /deterministic
chase (fire all active triggers across all rules at once.)

20/39

Pivot (Instance < Schema)

last

101 Afirst _ Al Akin
[) []
hame works
last
Math 102 first Bob Bo
[) []
name works
Omgr
last
works 103 frer Carl ™ Cork
mgr
Emp
Dept
ID mgr | works | first | last D er:1ame
101 103 ql0 Al Akin 10 TS
102 || 102 | x02 | Bob | Bo 202 o
103 103 ql0 Carl | Cork

21/39

Richer Constraints

» Not all data integrity constraints are equational (e.g., keys).
» A data mapping ¢ : A — E defines a constraint: instance I satisfies
w if for every o : A — [there existsan e : ' — [st a = e o .

A—1

» Most constraints used in practice can be captured the above way. E.g.,

Vdy,ds : Dept. name(dl) = name(dg) —dy = do
is captured as
A(Dept) = {d1,d2} A(name)(d;) = A(name)(d2)

E(Dept) = {d} ¢(d1) = o(dp) = d
» See Database Queries and Constraints via Lifting Problems and
Algebraic Model Management.

Algebraic Property Graphs with Product Schemas

String Trip
° °

¢UserT l‘z’Trip

f:
User Kit— User x User
° °

~—
snd
User x User
ID fst | snd
(wi,ur) || wr | w
(u1,u2) U1 U User Trio String
(ur,uz) || ur | w3 ID || Guser D o ID
(ug,ur) || w2 | w U1 Alice 7 o r:) Alice
(ug,u2) || us | w2 Us Bob f/l EL 2 Bob
(u2,u3) || uz | us us || Chaz = (s, us) Chaz
(ug,ur) || us | w
(U.‘h Uz) us U2
(us,uz) || us | us

23 /39

Algebraic Property Graphs with Sum Schemas

String Trip
. .

¢User T l/ ¢Trip

User /ﬂ> User+User
))

T
inl
User + User
- ID User o String
!“:(”1) D [dum | inl nr = il D
::|E53 ur || Alice | inl(uy) | inr(ur) o |n¢|5(T;Z) Alice
inr(u;) Us Bob | inl(u2) | inr(uz) . nr(uz) Bob
- . u3 Chaz | inl(us) | inr(us) - Chaz
inr(uz)
inr(us)

24 /39

Pushouts

» A pushout of p,q is f, g s.t. for every f’, g’ there is a unique m s.t.:

% a

&

» The category of schemas has all pushouts.

» For every schema S, the category S-inst has all pushouts.

» Pushouts of schemas, instances, and X are used together to integrate
data - see Algebraic Data Integration.

25 /39

Using Pushouts for Data Integration

» Step 1: integrate schemas. Given input schemas S, S2, an overlap
schema S, and mappings F}, Fb:

F o F
S1 <+ 8385,
we propose to use their pushout T as the integrated schema:
S BTes,

» Step 2: integrate data. Given input Si-instance I;, Ss-instance I,
overlap S-instance I and data mappings h1: X (I) — I; and
he : ¥, (I) — I, we propose to use the pushout of:

Bgy (h1) g, (he)
EGl(Il) G(l_ ' (EG10F1(I) = 2G20F2(I)) GQ_) ’ EGQ(IQ)

as the integrated T-instance.

26

39

Schema Integration

Observation Observation g1 Method
[] o []
f g
92
Person Type Person Type
° ° ° °
Observation Observation g1 Method
[] o []
f g
92
Person Gender Type Person Gender Type
e —> o ° ° D) °

27 /39

Data Integration

Observation Type
1D f g ID
BP
Wt
|
Gender Type
1D ID
F BP
M Wt
HR
Observation Person
D f g ID h
o5 Peter BP Paul M
06 Paul HR Peter M
oy Peter Wt

Method Type
ID g2 ID
my BP BP
mo BP Wt
ms Wt
my Wt
Observation Person
ID f gl 1D
o1 Pete mi Jane
02 Pete mo Pete
03 Jane ms
04 Jane my
|
Method Observation
ID g2 ID gl
nully BP 01 Peter mq
nulls Wt 09 Peter mo
nulls HR 03 Jane ms3
my BP 04 Jane my
mo BP o5 Peter nully
ms Wt 06 Paul nulls
my Wt o7 Peter nulls
Gender Type Person
1D 1D 1D h
F BP Jane nully
M Wt Paul M
nully HR Peter M

28 /39

Quotients for Integration

» In practice, rather than providing entire schema mappings and
instance transforms to define pushouts, it is easier to provide
equivalence relations and use quotients. In CQL:

schema T = S1 + 82 /
S1_0Observation = S2.0bservation
S1_Person = S2_Patient
S1_0bsType = S2_Type
S1_f = S2_f
Sl_g = S2_gl1.52_g2

instance J = sigma F1 Il + sigma F2 I2 /
Peter = Pete
BloodPressure = BP
Wt = BodyWeight

29 /39

Conclusion

» We described a new algebraic (equational) approach to databases
based on category theory.

» Schemas are categories, instances are set-valued functors.
» Three adjoint data migration functors, 3, A, IT manipulate data.
» Instances on a schema model the simply-typed A-calculus.
» Our approach is implemented in CQL, an open-source project,
available at categoricaldata.net. Collaborators welcome!

30

39

Partial Bibliography

» Patrick Schultz, Ryan Wisnesky. Algebraic Data Integration. (JFP-PlanBig 2017)

> Patrick Schultz, David I. Spivak, Christina Vasilakopoulou,, Ryan Wisnesky.
Algebraic Databases. (TAC 2017)

> Patrick Schultz, David I. Spivak, Ryan Wisnesky. Algebraic Model Management:
A Survey. (WADT 2016)

» David I. Spivak, Ryan Wisnesky. Relational Foundations for Functorial Data
Migration. (DBPL 2015).

31/39

Extra Slides

32/39

CQL is “one level up” from LINQ
» LINQ

» Schemas are collection types over a base type theory
Set (Int x String)
» Instances are terms
{(1,C9)} u {(2,Math)}

» Data migrations are functions

m1: Set (Int x String) — Set Int

» CQL
» Schemas are type theories over a base type theory
Dept, name: Dept — String
» Instances are term models (initial algebras) of theories
dy,dp: Dept, name(d;) = CS, name(dy) = Math

» Data migrations are functors

Apept: (Dept, name: Dept — String) -inst — (Dept) - inst

33/39

Part 2

» For every schema S, S-inst models simply-typed A-calculus (STLC).
» The STLC is the core of typed functional languages ML, Haskell, etc.

» We will use the internal language of a cartesian closed category, which
is equivalent to the STLC.

» Lots of “point-free” functional programming ahead.

» The category of schemas and mappings is also cartesian closed - see
talk at Boston Haskell.

34 /39

Categorical Abstract Machine Language (CAML)

» Types t:
tu=1]txt|t

» Terms f,g:
ide 1t — 1 Oe:t—1 w;,t:sxt—ns 7T§,t18><t—>t
s fis—u g:u—t fis—ot g:s—u
evals;:t° x s —t
gof:s—t (f,g):s—>txu

fisxu—ot
Af s —t"

» Equations:
idof=f foid=f folgoh)=(fog)oh Oof=0

o (fig)=f wo(f9)=9g (w'ofimtof)=1
evalo Aform',m%) = f Mevalo (for',7%) = f

35/39

Programming CQL in CAML

» For every schema S, the category S-inst is cartesian closed.

» Given a type ¢, you get an S-instance [¢].
» Given a term f:t — t/, you get a data mapping [f] : [t] — [t'].
» All equations obeyed.

» S-inst is further a topos (model of higher-order logic / set theory).

» We consider the following schema in the examples that follow:

Im

36 /39

Programming CQL in CAML: Unit

» The unit instance 1 has one row per table:

a b
ID || f ID
X X X

» The data mapping (); : t — 1 sends every row in t to the only row in
1. For example,

a b 3 5
q= P FIIID o, P D [|=1
p |l a q — -
r t t

Ot
p;q,r,t—x

37/39

Programming CQL in CAML: Products

» Products s x t are computed row-by-row, with evident projections

ml:isxt—sand w2 :s xt—t. For example:

a b

a b a b ID f ID
ID || f ID “ ID || f ID B (1,a) (3.¢) (3.¢)
13 3 a || c c T ab [Go | B4
3 4 b c d (2,3) (3,0) (4,0)
(2.b) || (3.¢) (4.d)

» Given data mappings f : s — t and g : s — u, how to define
(f,g) : s >t x uis left to the reader.
> hint: try it on 7! and 72 and verify that (7!, 7?) = id.

38/39

Programming CQL in CAML: Exponentials

» Exponentials t® are given by finding all data mappings s — t:

» Defining eval and X are left to the reader.

a b a b
ID || f ID ID || f ID _
1[[3 3 a c ||
3 4 b d
a
ID f
1—a,2—-b3—>cd—d | 3—cd—d b
1—b2—a,3—cd—d | 3—cd—d ID
l—a,2—a,3—cd—d | 3—cd—d 3—cd—c
1—-b2—-b3—cd—d 3—cd—d 3—c,d—d
1—a,2—-b3—d4d—c || 3—dd—c 3—d,d—c
1—b2—a,3—dd—c || 3—dd4—c 3—d,4—d
l—a,2—a,3—d4d4—c | 3—dd—c
1—»b2—b3—->d4d—c || 3—>dd—c

39/39

