Categorical Databases

Ryan Wisnesky Conexus Al $\Sigma \dashv \Delta \dashv \Pi$

July 28, 2023 SEMF

Introduction

- This talk describes a new algebraic (purely equational) way to formalize databases and migrate data based on category theory.
- Category theory was designed to migrate theorems from one area of mathematics to another, so it is a very natural language with which to describe migrating data from one schema to another.
- Research has culminated in an open-source ETL and data migration tool, CQL, available at categoricaldata.net.
- Outline:
 - Review of basic category theory.
 - Introduction to CQL.
 - CQL demo.
 - Optional: additional CQL constructions.
 - Extra slides: How CQL instances model the simply-typed λ -calculus.

Motivation / Background

- CQL is a 'category-theoretic' SQL, used as an ETL tool.
 - Users define schemas and mappings, which induce data transformations.
- CQL schema mappings must preserve data integrity constraints, requiring the use of an automated theorem prover at compile time.
 - CQL catches mistakes at compile time that existing ETL / data migration tools catch at runtime – if at all.
- Some projects using CQL:
 - NIST several projects.
 - DARPA BRASS project.
 - Empower Retirement.
 - Stanford Chemistry Department.
 - Uber/Tinkerpop
 - Fortune 50 energy and finance companies
 - and more

Category Theory

- A category C consists of (where "set" is understood naively):
 - ▶ a set of *objects*, Ob(C)
 - ▶ forall $X, Y \in \mathsf{Ob}(\mathcal{C})$, a set $\mathcal{C}(X, Y)$ of morphisms a.k.a arrows
 - ▶ forall $X \in \mathsf{Ob}(\mathcal{C})$, a morphism $\mathsf{id}_X \in \mathcal{C}(X,X)$
 - ▶ forall $X,Y,Z \in \mathsf{Ob}(\mathcal{C})$, a function $\circ \colon \mathcal{C}(Y,Z) \times \mathcal{C}(X,Y) \to \mathcal{C}(X,Z)$ s.t.

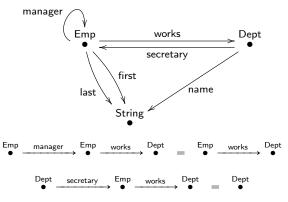
$$f \circ \mathsf{id} = f \qquad \mathsf{id} \circ f = f \qquad (f \circ g) \circ h = f \circ (g \circ h)$$

- The category Set has sets as objects and functions as arrows, and the "category" Haskell has types as objects and programs as arrows.
- ▶ A functor $F: \mathcal{C} \to \mathcal{D}$ between categories \mathcal{C}, \mathcal{D} consists of
 - ▶ a function $Ob(C) \rightarrow Ob(D)$
 - ▶ forall $X, Y \in \mathsf{Ob}(\mathcal{C})$, a function $\mathcal{C}(X, Y) \to \mathcal{D}(F(X), F(Y))$ s.t.

$$F(\mathsf{id}_X) = \mathsf{id}_{F(X)} \qquad F(f \circ g) = F(f) \circ F(g)$$

The functor P: Set → Set takes each set to its power set, and the functor
 List: Haskell → Haskell takes each type t to the type List t.

Example Categorical Schema and Database



Emp					
ID	mgr	works	first	last	
101	103	q10	Al	Akin	
102	102	×02	Bob	Во	
103	103	q10	Carl	Cork	

Dept			
ID	sec	name	
q10	101	CS	
×02	102	Math	

String	
ID	
Al	
Bob	

A CQL Schema: Code

```
entities
    Emp
    Dept
foreign keys
    manager : Emp -> Emp
    works : Emp -> Dept
    secretary : Dept -> Emp
attributes
    first last : Emp -> string
    name : Dept -> string
path equations
    manager.works = works
    secretary.works = Department
```

Categorical Semantics of Schemas and Instances

- The meaning of a schema S is a category $[\![S]\!]$.
 - $\mathsf{Ob}(\llbracket S \rrbracket)$ is the nodes of S.
 - Forall nodes X,Y, $[\![S]\!](X,Y)$ is the set of finite paths $X\to Y$, modulo the path equivalences in S.
 - ▶ Path equivalence in S may not be decidable! ("the word problem")
- A morphism of schemas (a "schema mapping") $S \to T$ is a functor $[\![S]\!] \to [\![T]\!]$.
 - It can be defined as an equation-preserving function:

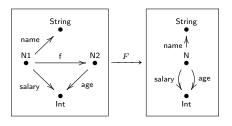
$$nodes(S) \rightarrow nodes(T)$$
 $edges(S) \rightarrow paths(T).$

- ▶ An S-instance is a functor [S] → Set.
 - It can be defined as a set of tables, one per node in S and one column per edge in S, satisfying the path equivalences in S.
- A morphism of S-instances $I \to J$ (a "data mapping") is a natural transformation $I \to J$.
 - ullet Instances on S and their mappings form a category, written S-inst.

Schema Mappings

A **schema mapping** $F: S \rightarrow T$ is an equation-preserving function:

$$nodes(S) \rightarrow nodes(T) \qquad \quad edges(S) \rightarrow paths(T)$$



$$F(\mathsf{Int}) = \mathsf{Int} \qquad F(\mathsf{String}) = \mathsf{String}$$

$$F(\mathsf{N1}) = \mathsf{N} \qquad F(\mathsf{N2}) = \mathsf{N}$$

$$F(\mathsf{name}) = [\mathsf{name}] \qquad F(\mathsf{age}) = [\mathsf{age}] \qquad F(\mathsf{salary}) = [\mathsf{salary}]$$

$$F(\mathsf{f}) = []$$

Functorial Data Migration

A schema mapping $F \colon S \to T$ induces three data migration functors:

▶ Δ_F : T-inst \to S-inst (like project)

$$S \xrightarrow{F} T \xrightarrow{I} \mathbf{Set}$$
$$\Delta_F(I) := I \circ F$$

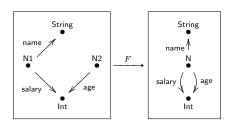
▶ Π_F : S-inst \to T-inst (right adjoint to Δ_F ; like join)

$$\forall I, J. \quad S\text{-inst}(\Delta_F(I), J) \cong T\text{-inst}(I, \Pi_F(J))$$

▶ Σ_F : S-inst → T-inst (left adjoint to Δ_F ; like outer union then merge)

$$\forall I, J. \quad S\text{-inst}(J, \Delta_F(I)) \cong T\text{-inst}(\Sigma_F(J), I)$$

Δ (Project)

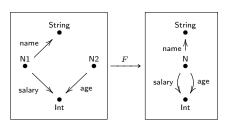


 $\stackrel{\Delta_F}{\longleftarrow}$

	N1	ı	1 2	
ID	name	salary	ID	age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

N					
ID	ID name salary				
а	Alice	\$100	20		
b	Bob	\$250	20		
С	Sue	\$300	30		

Π (Product)

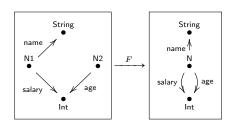


 Π_F

	N1	1	1 2	
ID	name	salary	ID	age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

		I	V			
•	ID	name	salary	age		
	a	Alice	\$100	20		
	b	Alice	\$100	20		
	С	Alice	\$100	30		
	d	Bob	\$250	20		
	е	Bob	\$250	20		
	f	Bob	\$250	30		
,	g	Sue	\$300	20		
	h	Sue	\$300	20		
	i	Sue	\$300	30		

Σ (Outer Union)



	N1	1	V2	
ID	Name	Salary	ID	Age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

			N	
$\stackrel{\Sigma_F}{\longrightarrow}$	ID	Name	Salary	Age
	a	Alice	\$100	$null_1$
	b	Bob	\$250	$null_2$
	С	Sue	\$300	$null_3$
	d	$null_4$	$null_5$	20
	е	$null_6$	$null_7$	20
	f	$null_8$	$null_9$	30

Unit of $\Sigma_F \dashv \Delta_F$

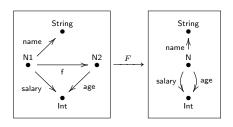
	N1	1	V2	
ID	Name	Salary	ID	Age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

	N				
	ID	Name	Salary	Age	
	а	Alice	\$100	$null_1$	
Σ_F	b	Bob	\$250	$null_2$	
	С	Sue	\$300	$null_3$	
	d	$null_4$	$null_5$	20	
	е	$null_6$	$null_7$	20	
Δ_F	f	$null_8$	$null_9$	30	

	N1		N2	
ID	Name	Salary	ID	Age
а	Alice	\$100	а	$null_1$
b	Bob	\$250	b	$null_2$
С	Sue	\$300	С	$null_3$
d	$null_4$	$null_5$	d	20
е	$null_6$	$null_7$	е	20
f	$null_8$	$null_9$	f	30

 $\mid \eta \mid$

A Foreign Key



 Π_F, Σ_F

	N1				1 2
ID	name	salary	f	ID	age
1	Alice	\$100	4	4	20
2	Bob	\$250	5	5	20
3	Sue	\$300	6	6	30

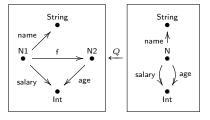
	N				
	ID	name	salary	age	
→	a	Alice	\$100	20	
	b	Bob	\$250	20	
	С	Sue	\$300	30	

Queries

A query $Q:S \to T$ is a schema X and mappings $F:S \to X$ and $G:T \to X$.

$$eval_Q \cong \Delta_G \circ \Pi_F \quad coeval_Q \cong \Delta_F \circ \Sigma_G$$

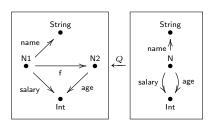
These can be specified using comprehension notation similar to SQL.



N1 -> select n1.name as name, n1.salary as salary from N as n1

N2 -> select n2.age as age from N as n2

A Foreign Key



N1				ı	J 2
ID	name	salary	f	ID	age
1	Alice	\$100	4	4	20
2	Bob	\$250	5	5	20
3	Sue	\$300	6	6	30

^{eval}Q			N
\leftarrow $coeval_Q$	ID	name	salary
$\xrightarrow{coevai_Q}$	а	Alice	\$100
	b	Bob	\$250
	С	Sue	\$300

age

20

20

30

CQL Demo

- CQL implements Δ, Σ, Π , and more in software.
 - Commercial support / services: conexus.com

Interlude - Additional Constructions

- ▶ What is "algebraic" here?
- CQL vs SQL.
- Pivot.
- Non-equational data integrity constraints.
- Data integration via pushouts.
- CQL vs comprehension calculi.

Why "Algebraic"?

▶ A schema can be identified with an algebraic (equational) theory.

```
\label{eq:continuous} \mbox{Emp Dept String}: \mbox{Type} \qquad \mbox{first last}: \mbox{Emp} \rightarrow \mbox{String} \qquad \mbox{name}: \mbox{Dept} \rightarrow \mbox{String} \mbox{works}: \mbox{Emp} \rightarrow \mbox{Dept} \qquad \mbox{mgr}: \mbox{Emp} \rightarrow \mbox{Emp} \qquad \mbox{secr}: \mbox{Dept} \rightarrow \mbox{Emp} \forall e: \mbox{Emp. works}(\mbox{manager}(e)) = \mbox{works}(e) \qquad \forall d: \mbox{Dept. works}(\mbox{secretary}(d)) = d
```

- This perspective makes it easy to add functions such as
 + : Int, Int → Int to a schema. See Algebraic Databases.
- ▶ An S-instance can be identified with the initial algebra of an algebraic theory extending S.

```
\label{eq:mgr} \begin{array}{lll} 101 \ 102 \ 103 : \mathsf{Emp} & \mathsf{q}10 \ \mathsf{x}02 : \mathsf{Dept} \\ \\ \mathsf{mgr}(101) = 103 & \mathsf{works}(101) = \mathsf{q}10 & \dots \end{array}
```

 Treating instances as theories allows instances that are infinite or inconsistent (e.g., Alice=Bob).

CQL vs SQL

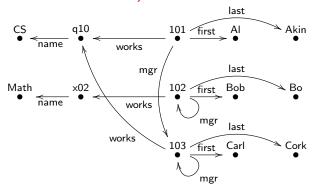
Data migration triplets of the form

$$\Sigma_F \circ \Pi_G \circ \Delta_H$$

can be expressed using (difference-free) relational algebra and keygen, provided:

- *F* is a discrete op-fibration (ensures union compatibility).
- *G* is surjective on attributes (ensures domain independence).
- All categories are finite (ensures computability).
- ► The difference-free fragment of relational algebra can be expressed using such triplets. See *Relational Foundations*.
- Such triplets can be written in "foreign-key aware" SQL-ish syntax.
- For arbitrary F, Σ_F can be implemented using canonical/deterministic chase (fire all active triggers across all rules at once.)

Pivot (Instance ⇔ Schema)



Emp				
ID	mgr	works	first	last
101	103	q10	Al	Akin
102	102	×02	Bob	Во
103	103	q10	Carl	Cork

Dept		
ID name		
q10	CS	
x02	Math	

Richer Constraints

- Not all data integrity constraints are equational (e.g., keys).
- A data mapping $\varphi:A\to E$ defines a constraint: instance I satisfies φ if for every $\alpha:A\to I$ there exists an $\epsilon:E\to I$ s.t $\alpha=\epsilon\circ\varphi$.

Most constraints used in practice can be captured the above way. E.g.,

$$\forall d_1, d_2 : \mathsf{Dept.} \; \mathsf{name}(d_1) = \mathsf{name}(d_2) \to d_1 = d_2$$

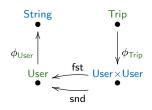
is captured as

$$A(\mathsf{Dept}) = \{d_1, d_2\} \qquad A(\mathsf{name})(d_1) = A(\mathsf{name})(d_2)$$

$$E(\mathsf{Dept}) = \{d\} \qquad \varphi(d_1) = \varphi(d_2) = d$$

 See Database Queries and Constraints via Lifting Problems and Algebraic Model Management.

Algebraic Property Graphs with Product Schemas



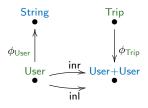
User imes User			
ID	fst	snd	
(u_1,u_1)	u_1	u_1	
(u_1, u_2)	u_1	u_2	
(u_1, u_3)	u_1	u_3	
(u_2, u_1)	u_2	u_1	
(u_2, u_2)	u_2	u_2	
(u_2, u_3)	u_2	u_3	
(u_3, u_1)	u_3	u_1	
(u_3, u_2)	u_3	u_2	
(u_3, u_3)	u_3	u_3	

User			
ID $\phi_{\sf User}$			
u_1	Alice		
u_2 Bob			
u_3	Chaz		

Trip		
ID	ϕ_{Trip}	
t_1	(u_1, u_2)	
$t_2 (u_1, u_3)$		

String
ID
Alice
Bob
Chaz

Algebraic Property Graphs with Sum Schemas



User + User
ID
$inl(u_1)$
$inl(u_2)$
$inl(u_3)$
$inr(u_1)$
$inr(u_2)$
$inr(u_3)$

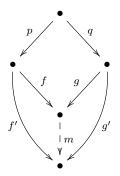
User				
ID	$\phi_{\sf User}$	inl	inr	
u_1	Alice	$inl(u_1)$	$inr(u_1)$	
u_2	Bob	$inl(u_2)$	$inr(u_2)$	
u_3	Chaz	$inl(u_3)$	$inr(u_3)$	

Trip				
ID ϕ_{Trip}				
t_1	$inl(u_1)$			
t_2	$inr(u_2)$			

String
ID
Alice
Bob
Chaz

Pushouts

A pushout of p, q is f, g s.t. for every f', g' there is a unique m s.t.:



- The category of schemas has all pushouts.
- ▶ For every schema S, the category S-inst has all pushouts.
- Pushouts of schemas, instances, and Σ are used together to integrate data see *Algebraic Data Integration*.

Using Pushouts for Data Integration

Step 1: integrate schemas. Given input schemas S_1 , S_2 , an overlap schema S, and mappings F_1, F_2 :

$$S_1 \stackrel{F_1}{\leftarrow} S \stackrel{F_2}{\rightarrow} S_2$$

we propose to use their pushout T as the integrated schema:

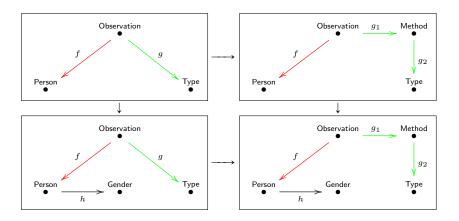
$$S_1 \stackrel{G_1}{\to} T \stackrel{G_2}{\leftarrow} S_2$$

▶ Step 2: integrate data. Given input S_1 -instance I_1 , S_2 -instance I_2 , overlap S-instance I and data mappings $h_1: \Sigma_{F_1}(I) \to I_1$ and $h_2: \Sigma_{F_2}(I) \to I_2$, we propose to use the pushout of:

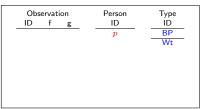
$$\Sigma_{G_1}(I_1) \stackrel{\Sigma_{G_1(h_1)}}{\leftarrow} \left(\Sigma_{G_1 \circ F_1}(I) = \Sigma_{G_2 \circ F_2}(I) \right) \stackrel{\Sigma_{G_2(h_2)}}{\rightarrow} \Sigma_{G_2}(I_2)$$

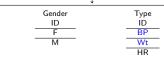
as the integrated T-instance.

Schema Integration



Data Integration





Observation						
ID	f	g				
05	Peter	BP				
06	Paul	HR				
-07	Peter	Wt				

Perso	n	
ID	h	
Paul	М	-
Peter	М	
Peter	N	1

	Method	ŀ	Type
	ID .	g2	ID
	m_1	3P	BP
	m_2	3P	Wt
Ξ	m_3	Νt	
	m_4	Νt	
			_
	Observat	ion	Person
ID	f	g1	ID
o_1	Pete	m_1	Jane
o_2	Pete	m_2	Pete
o_3	Jane	m_3	
o_4	Jane	m_1	_

		Ψ.		
Meth	od		Observat	ion
ID	g2	ID	f	g1
$null_1$	BP	$\overline{o_1}$	Peter	m_1
$null_2$	Wt	02	Peter	m_2
$null_3$	HR	03	Jane	m_3
m_1	BP	o_4	Jane	m_1
m_2	BP	05	Peter	$null_1$
m_3	Wt	06	Paul	$null_2$
m_4	Wt	07	Peter	$null_3$

Gender	
ID	
F	
М	•
$null_4$	

C---

Type ID
BP
Wt
HR

Person					
ID	h				
Jane	$null_4$				
Paul	M				
Peter	М				

Quotients for Integration

In practice, rather than providing entire schema mappings and instance transforms to define pushouts, it is easier to provide equivalence relations and use quotients. In CQL:

```
schema T = S1 + S2 /
  S1 Observation = S2.Observation
  S1_Person = S2_Patient
  S1_0bsType = S2_Type
  S1_f = S2_f
 S1_g = S2_g1.S2_g2
instance J = sigma F1 I1 + sigma F2 I2 /
  Peter = Pete
  BloodPressure = BP
  Wt = BodyWeight
```

Conclusion

- We described a new algebraic (equational) approach to databases based on category theory.
 - Schemas are categories, instances are set-valued functors.
 - Three adjoint data migration functors, Σ, Δ, Π manipulate data.
 - Instances on a schema model the simply-typed λ -calculus.
- Our approach is implemented in CQL, an open-source project, available at categoricaldata.net. Collaborators welcome!

Partial Bibliography

- ▶ Patrick Schultz, Ryan Wisnesky. Algebraic Data Integration. (JFP-PlanBig 2017)
- Patrick Schultz, David I. Spivak, Christina Vasilakopoulou,, Ryan Wisnesky.
 Algebraic Databases. (TAC 2017)
- Patrick Schultz, David I. Spivak, Ryan Wisnesky. Algebraic Model Management: A Survey. (WADT 2016)
- David I. Spivak, Ryan Wisnesky. Relational Foundations for Functorial Data Migration. (DBPL 2015).

Extra Slides

CQL is "one level up" from LINQ

- LINQ
 - Schemas are collection types over a base type theory

Instances are terms

$$\{(1,\mathsf{CS})\} \cup \{(2,\mathsf{Math})\}$$

Data migrations are functions

$$\pi_1$$
: Set (Int × String) \rightarrow Set Int

- CQL
 - Schemas are type theories over a base type theory

Dept, name: Dept
$$\rightarrow$$
 String

Instances are term models (initial algebras) of theories

$$d_1, d_2$$
: Dept, $name(d_1) = CS$, $name(d_2) = Math$

Data migrations are functors

$$\Delta_{\mathsf{Dept}} \colon (\mathsf{Dept}, \mathsf{name} \colon \mathsf{Dept} \to \mathsf{String}) \operatorname{-} \mathsf{inst} \to (\mathsf{Dept}) \operatorname{-} \mathsf{inst}$$

Part 2

- For every schema S, S-inst models simply-typed λ -calculus (STLC).
- The STLC is the core of typed functional languages ML, Haskell, etc.
- We will use the internal language of a cartesian closed category, which is equivalent to the STLC.
- ▶ Lots of "point-free" functional programming ahead.
- The category of schemas and mappings is also cartesian closed see talk at Boston Haskell.

Categorical Abstract Machine Language (CAML)

▶ Types *t*:

$$t ::= 1 \mid t \times t \mid t^t$$

▶ Terms f, g:

$$id_{t}: t \to t \qquad ()_{t}: t \to 1 \qquad \pi_{s,t}^{1}: s \times t \to s \qquad \pi_{s,t}^{2}: s \times t \to t$$

$$eval_{s,t}: t^{s} \times s \to t \qquad \frac{f: s \to u \quad g: u \to t}{g \circ f: s \to t} \qquad \frac{f: s \to t \quad g: s \to u}{(f,g): s \to t \times u}$$

$$\frac{f: s \times u \to t}{\lambda f: s \to t^{u}}$$

Equations:

$$\begin{split} id \circ f &= f \qquad f \circ id = f \qquad f \circ (g \circ h) = (f \circ g) \circ h \qquad () \circ f = () \\ \pi^1 \circ (f,g) &= f \qquad \pi^2 \circ (f,g) = g \qquad (\pi^1 \circ f, \pi^2 \circ f) = f \\ eval \circ (\lambda f \circ \pi^1, \pi^2) &= f \qquad \lambda (eval \circ (f \circ \pi^1, \pi^2)) = f \end{split}$$

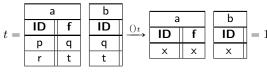
Programming CQL in CAML

- \triangleright For every schema S, the category S-inst is cartesian closed.
 - Given a type t, you get an S-instance [t].
 - Given a term $f: t \to t'$, you get a data mapping $[f]: [t] \to [t']$.
 - All equations obeyed.
- ► S-inst is further a topos (model of higher-order logic / set theory).
- ▶ We consider the following schema in the examples that follow:

Programming CQL in CAML: Unit

▶ The unit instance 1 has one row per table:

▶ The data mapping $()_t: t \to 1$ sends every row in t to the only row in 1. For example,



$$p, q, r, t \xrightarrow{()_t} x$$

Programming CQL in CAML: Products

Products $s \times t$ are computed row-by-row, with evident projections $\pi^1: s \times t \to s$ and $\pi^2: s \times t \to t$. For example:

							a	.	b	
а		b		а		b		ID	f	ID
ID	f	ID	×	ID	f	ID	_	(1,a)	(3,c)	(3,c)
1	3	3		a	С	С	_	(1,b)	(3,c)	(3,d)
2	3	4		b	С	d		(2,a)	(3,c)	(4,c)
								(2,b)	(3,c)	(4,d)

- Given data mappings $f:s \to t$ and $g:s \to u$, how to define $(f,g):s \to t \times u$ is left to the reader.
 - ▶ hint: try it on π^1 and π^2 and verify that $(\pi^1, \pi^2) = id$.

Programming CQL in CAML: Exponentials

• Exponentials t^s are given by finding all data mappings $s \to t$:

а	а		b		а		
ID	f	ID	1	ID	f	ID	_
1	3	3		a	С	С	
2	3	4		b	С	d	

a	
ID	f
$1 \mapsto a, 2 \mapsto b, 3 \mapsto c, 4 \mapsto d$	$3 \mapsto c, 4 \mapsto d$
$1 \mapsto b, 2 \mapsto a, 3 \mapsto c, 4 \mapsto d$	$3 \mapsto c, 4 \mapsto d$
$\boxed{1 \mapsto a, 2 \mapsto a, 3 \mapsto c, 4 \mapsto d}$	$3 \mapsto c, 4 \mapsto d$
$1 \mapsto b, 2 \mapsto b, 3 \mapsto c, 4 \mapsto d$	$3 \mapsto c, 4 \mapsto d$
$1 \mapsto a, 2 \mapsto b, 3 \mapsto d, 4 \mapsto c$	$3 \mapsto d, 4 \mapsto c$
$1 \mapsto b, 2 \mapsto a, 3 \mapsto d, 4 \mapsto c$	$3 \mapsto d, 4 \mapsto c$
$1 \mapsto a, 2 \mapsto a, 3 \mapsto d, 4 \mapsto c$	$3 \mapsto d, 4 \mapsto c$
$1 \mapsto b, 2 \mapsto b, 3 \mapsto d, 4 \mapsto c$	$3 \mapsto d, 4 \mapsto c$

b	
ID	_
$3 \mapsto c, 4 \mapsto c$	
$3 \mapsto c, 4 \mapsto d$	Ī
$3 \mapsto d, 4 \mapsto c$	
$3 \mapsto d, 4 \mapsto d$	

• Defining eval and λ are left to the reader.