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Many	years	ago	–	a	little	before	and	a	little	after	my	first	philosophical
“opus,”	Being	and	Event	(1988)	–	I	introduced	the	concept	of	the
conditions	of	philosophy,	which	you’ll	encounter	later	in	this	book.	The
aim	was	to	identify	precisely	the	real	types	of	creative	activity	of	which
humanity	is	capable	and	on	whose	existence	philosophy	depends.
Indeed,	it	is	clear	that	philosophy	was	born	in	Greece	because	in	that
country,	beginning,	at	any	rate,	in	the	fifth	century	BCE,	there	were
some	totally	new	ideas	about	mathematics	(deductive	geometry	and
arithmetic),	artistic	activity	(humanized	sculpture,	painting,	dance,
music,	tragedy,	and	comedy),	politics	(the	invention	of	democracy),
and	the	status	of	the	emotions	(transference-love,	lyric	poetry,	and	so
on).	So	I	suggested	that	philosophy	really	only	develops	when	new
advances	emerge	in	a	set	of	“truths”	(that’s	the	name	I	give	them	for
philosophical	reasons)	of	four	different	types:	science,	art,	politics,	and
love.	That’s	why	I	responded	positively	to	Nicolas	Truong’s	invitation
to	have	a	dialogue	with	him	in	praise	of	love,	and	then	in	praise	of
theater,	in	Avignon.	Likewise,	I	accepted	Gilles	Haéri’s	proposal	of	a
dialogue	in	praise	of	mathematics	in	the	setting	of	the	Villa	Gillet	in
Lyon.	The	first	two	conversations	resulted	in	books	published	in
Flammarion’s	“Café	Voltaire”	series.	[English	translations:	In	Praise	of
Love,	New	Press,	2012,	and	In	Praise	of	Theatre,	Polity,	2015.]	The
same	is	true	of	the	third,	which	is	the	subject	of	this	book.	All	that
remains	to	be	done	is	to	write	a	book	in	praise	of	politics,	and	I’m
considering	it.



I
Mathematics	Must	Be	Saved
Alain	Badiou,	you	are	what	I	would	call,	to	use	a	mathematical	term,
a	singularity	in	the	French	intellectual	landscape.

There’s	your	political	commitment,	of	course,	which	the	general
public	has	been	aware	of	since	2006,	with	the	success	of	De	quoi
Sarkozy	est-il	le	nom?	[translated	as	The	Meaning	of	Sarkozy,	Verso,
2010].	You	represent	one	of	the	last	great	figures	of	the	politically-
engaged	intellectual	today,	one	of	the	fiercest	critics	of	our	liberal
democracies,	and	the	tireless	defender	of	the	communist	Idea,	which
you	refuse	to	throw	out	with	the	bathwater	of	History.

But	from	a	more	specifically	philosophical	point	of	view,	the	body	of
work	you	have	produced	is	also	very	singular.	At	a	time	when
philosophy	has	retreated	into	specialization,	and,	in	so	doing,	has
renounced	its	original	ambitions,	you	have	consistently	attempted	to
restore	meaning	to	metaphysics	by	building	a	system	that	can	be
described	as	a	great	synthesis	on	the	world	and	on	being.	Now,	this
philosophy,	set	out	mainly	in	Being	and	Event,	and	later	in	Logics	of
Worlds,	is	based	to	a	very	large	extent	on	mathematics.	You	are	in
this	regard	one	of	the	rare	contemporary	philosophers	to	take
mathematics	really	seriously,	and	you	do	not	just	speak	about	it	as	a
philosopher	but	practice	it	almost	on	a	daily	basis.

Could	you	begin	by	telling	us	where	this	very	strong	relationship	with
mathematics	comes	from?

It’s	something	that	goes	back	to	before	I	was	even	born!	Simply
because	my	father	was	a	math	teacher.	So	there	was	the	mark	of	the
name	of	the	father,	as	Lacan	would	say.	Actually,	it	had	a	profound
effect	on	me,	because	I	heard	mathematics	spoken	about	in	my	family
–	by	my	father	and	my	older	brother,	by	my	father	and	colleagues	of
his,	etc.	–	in	a	sort	of	early	imprinting,	without	my	understanding	at
first	what	it	was	all	about	but	sensing	that	it	was	at	once	keenly	and
obscurely	interesting.	So	much	for	the	first,	prenatal	stage,	so	to	speak.

Later,	as	a	high-school	student,	I	was	fascinated	by	mathematics	as
soon	as	we	started	doing	a	few	really	complex	proofs.	I	must	say	that
what	really	captivated	me	was	the	feeling	that,	when	you	do	math,	it’s	a
bit	like	following	an	incredibly	twisted,	convoluted	path	through	a
forest	of	ideas	and	concepts,	and	yet,	at	a	given	moment,	the	path	leads



to	a	sort	of	beautiful	clearing.	I	was	struck	early	on	by	this	quasi-
esthetic	feeling	about	mathematics.	I	think	I	could	mention	a	few
theorems	of	plane	geometry	here,	in	particular	theorems	of	the
inexhaustible	geometry	of	the	triangle,	which	we	were	taught	in	grades
9	and	10.	I’m	thinking	of	Euler’s	line.	First	we	were	shown	that	the
three	altitudes	of	a	triangle	are	concurrent	in	a	point	H,	which	was
already	great.	And	then	that	the	three	perpendicular	bisectors	were
also	concurrent,	in	a	point	O	–	it	kept	getting	better	and	better!	And
finally	that	the	three	medians	were	concurrent,	too,	in	a	point	G!
Wonderful.	But	then	the	teacher	mysteriously	told	us	that	it	could	be
proved,	as	the	mathematical	genius	Euler	had	done,	that	these	points
H,	O,	and	G	were	moreover	all	on	the	same	line,	which	is	obviously
called	“the	Euler	line”!	This	alignment	of	three	fundamental	points,	as
the	behavior	of	the	characteristics	of	a	triangle,	was	so	unexpected,	so
elegant!	We	weren’t	given	the	proof,	because	it	was	considered	too
difficult	for	10th	grade,	but	our	interest	in	it	was	piqued.	I	was	thrilled
that	such	a	thing	could	be	proved.	There’s	this	idea	of	a	real	discovery,
of	an	unexpected	solution,	even	if	it	means	you	have	to	make	your	way
along	a	path	that’s	sometimes	a	little	hard	to	follow	but	where	you’re
ultimately	rewarded.	Later,	I	often	compared	mathematics	to	a	walk	in
the	mountains:	the	approach	is	long	and	hard,	with	lots	of	twists	and
turns	and	steep	climbs.	You	think	you’re	finally	there,	but	there’s	still
one	more	turn	…	You	sweat	and	strain,	but	when	you	reach	the	summit
of	the	pass,	the	reward	is	truly	beyond	compare:	that	amazement,	that
ultimate	beauty	of	mathematics,	that	hard-won,	utterly	unique	beauty.
That’s	why	I	continue	to	promote	mathematics	from	this	esthetic
perspective,	too,	noting	that	it’s	a	very	ancient	perspective,	since
Aristotle	in	fact	regarded	mathematics	as	a	discipline,	not	so	much	of
truth	as	of	beauty.	He	claimed	that	the	greatness	of	mathematics	was
esthetic,	far	more	than	ontological	or	metaphysical.

Next,	I	studied	contemporary	mathematics	in	greater	depth	by	taking
the	first	two	years	of	university	math.	This	was	from	1956	to	1958,	my
first	two	years	at	the	École	normale	supérieure.	I	combined	significant
philosophical	discoveries	I	made	there	(Hyppolite,	Althusser,	and
Canguilhem	were	my	professors	at	the	time)	with	the	math	courses	at
the	Sorbonne	and	substantive	discussions	with	the	math	students	at
the	École.	It	was	then,	probably	also	because	of	the	atmosphere	of
structuralism	and	the	1960s,	when	there	was	a	lot	of	buzz	about	formal
disciplines,	that	I	became	really	convinced	that	mathematics	was	in	a
very	close	dialectical	relationship	with	philosophy	–	at	least	my
conception	of	it,	because	mathematics	was	at	the	heart	of	my	concerns.



Structures	are	first	and	foremost	the	business	of	mathematicians.	At
the	very	end	of	his	seminal	book,	The	Elementary	Structures	of
Kinship,	the	great	anthropologist	Lévi-Strauss,	whom	I	was	reading
with	passionate	interest	at	the	time,	referred	to	the	mathematician
Weil	to	show	that	the	exchange	of	women	could	be	understood	by
using	the	algebraic	theory	of	groups.	Now,	at	that	time,	my
philosophical	approach	required	mastering	enormous	conceptual
constructions.	What’s	more,	because	of	its	esthetic	force	and	the
creativity	it	calls	for,	mathematics	requires	you	to	become	a	Subject
whose	freedom,	far	from	being	opposed	to	discipline,	demands	it.
Indeed,	when	you	work	on	a	mathematical	problem,	the	discovery	of
the	solution	–	and	therefore	the	creative	freedom	of	the	mind	–	is	not
some	sort	of	blind	wandering	but	rather	the	determination	of	a	path
that’s	always	lined,	as	it	were,	by	the	obligations	of	overall	consistency
and	demonstrative	rules.	You	fulfill	your	desire	to	find	the	solution	not
in	spite	of	the	law	of	reason	but	thanks	to	both	its	prohibitions	and	its
assistance.	Now,	this	is	what	I	had	begun	to	think,	first	in	conjunction
with	Lacan:	desire	and	the	law	are	not	opposites	but	dialectically
identical.	And	finally,	mathematics	combines	intuition	and	proof	in	a
unique	way,	which	the	philosophical	text	must	also	do,	as	far	as
possible.

I’ll	conclude	by	saying	that	this	back-and-forth	movement	between
philosophy	and	mathematics	produced	a	sort	of	split	in	me	…	and	all
my	work	may	be	nothing	but	the	attempt	to	overcome	this	split.	This	is
because	my	master	in	philosophy,	the	one	who	revealed	philosophy	to
me,	was	Sartre.	I	was	a	convinced	Sartrian.	But	frankly,	mathematics
and	Sartre,	as	you	know,	weren’t	exactly	compatible	…	He	even	had	a
vulgar	phrase	that	he	used	to	trot	out	all	the	time	when	he	was	young,
at	the	École	normale	supérieure:	“Science	is	zilch;	morality’s	an
asshole.”1	To	be	sure,	he	didn’t	stick	to	this	simplistic	maxim,	but	he
never	really	returned	to	the	sciences,	and	in	particular	to	the	formal
sciences.	So	the	conviction	grew	in	me	that	philosophy	should	be	able
to	preserve	the	dimension	of	the	subject,	the	dimension	of	the
politically	committed	subject,	that	sort	of	historical	drama	that
subjectivity	is	capable	of	being,	and	yet	to	integrate	mathematics	in	all
its	rational	force	and	splendor,	particularly	as	regards	the	doctrine	of
being.

I	could	almost	sum	everything	up	by	saying	that	it	is	the	overcoming	of
this	split	that	still	constitutes	my	relationship	to	mathematics	today.

Why	do	you	think	it’s	necessary	to	praise	mathematics	today?	After



all,	that	discipline	is	still	central	to	our	educational	system;	it’s	even
one	of	its	primary	selection	tools.	And	if	one	were	to	judge	by	the
recent	French	Fields	Medalist	–	bringing	to	11	the	number	of	our
winners	in	the	field,	right	after	the	United	States	–	one	might	even
think	that	mathematics	has	pride	of	place	in	France.	Do	you	have	the
contrary	feeling	that	it	is	under	threat?

Well,	you	know,	the	vast	majority	of	mathematicians	have	an
extremely	elitist	relationship	to	their	discipline.	They’re	fine	with
thinking	that	they’re	the	only	ones	who	understand	it,	and	that	that’s
just	the	way	it	is.	After	all,	they’re	people	who,	somewhat	out	of
necessity,	essentially	speak	only	to	those	who	are	able	to	understand
the	most	difficult	proofs	of	contemporary	mathematics,	in	other	words,
their	fellow	mathematicians	for	the	most	part.	So	we’re	talking	about	a
very	exclusive	world,	which	occasionally	attempts	to	reach	out	to	a
somewhat	wider	public,	as	does	the	2010	Fields	Medal	winner	Cédric
Villani,	and	as	did	the	renowned	mathematician	Henri	Poincaré	well
before	him,	but	that’s	still	the	exception.

So,	on	the	one	hand,	you’ve	got	an	inventive,	creative	mathematics,
confined	to	an	extremely	close-knit	and	international,	but	strongly
elitist,	world	of	intellectuals,	and,	on	the	other,	a	sort	of	school-	and
university-based	dissemination	of	mathematics,	the	use	of	which,	in
my	opinion,	has	become	increasingly	unclear	and	uncertain.	This	is
because	mathematics,	particularly	in	France,	really	is	used	as	a	method
of	selection	of	the	elites	via	the	entrance	exams	for	the	scientific
grandes	écoles.	As	the	math	students	used	to	put	it,	“We	really
crammed	our	asses	off	for	the	math	exam.”	But	in	the	end,	the	organic
purpose	of	all	this	is	still	essentially	a	selective	one.	This	situation	has
hurt	mathematics	in	terms	of	its	overall	relationship	to	public	opinion.
The	vast	majority	of	people,	once	they’ve	taken	a	number	of	relatively
easy	exams	in	school,	no	longer	have	any	real	connection	with
mathematics.	In	France,	it	must	be	said,	it	isn’t	part	of	ordinary
culture.	And	that,	as	far	as	I’m	concerned,	is	scandalous.

Mathematics	should	absolutely	be	considered	not	just	as	a	scholarly
discipline	tasked	with	selecting	the	people	who	will	be	engineers	or
government	ministers	but	as	something	that’s	extremely	interesting	in
and	of	itself.	Like	fine	arts,	like	cinema,	it	should	be,	for	reasons	I’ll
come	back	to,	an	integral	part	of	our	general	culture.	But,	clearly,	this
is	not	the	case	–	and	it’s	even	less	so	for	cinema,	which	is	perhaps	even
more	scandalous.	Because	of	this,	public	opinion	about	mathematics	is
split	between	a	sort	of	polite	respect	for	its	elitism	–	bolstered	by	the



usefulness	it	is	credited	with	having	in	physics	or	as	regards	technology
–	and	an	ignorance	that	can	be	summed	up	in	the	belief	“I	don’t	have
the	math	gene.”	To	make	a	bad	pun,	you	could	say	that	the	split	is
between	the	very	small	minority	of	“gene-iouses”	and	the	vast	majority
of	everyone	else.	I	think	this	situation	is	detrimental,	even	deplorable.
But	we’ll	see,	perhaps,	that	it’s	not	so	easy	to	reverse	this	state	of
affairs.	To	put	an	end	to	the	mathematicians’	elitism,	a	middle	way	has
to	be	found	between	the	understanding	of	formalisms	and	the
conceptual	aim.	And,	for	that	to	happen,	I	think	there	is	a	need	for
philosophy,	which	should	therefore	be	taught	a	lot	sooner.

You	mentioned	mathematical	applications,	which	are	in	fact
ubiquitous	throughout	the	contemporary	world,	even	though	most
people	don’t	understand	a	whole	lot	about	them	or	aren’t	even
necessarily	aware	of	them.

There’s	no	question	that	that’s	a	paradoxical	situation:	mathematics,
today,	is	everywhere.	The	new	means	of	communication,	which	are	so
fetishized,	are	based	entirely	on	binary	language,	new	algorithms,
prime	number	coding,	and	so	on	and	so	forth.	However,	the	vast
majority	of	users	have	no	idea	what	any	of	it	means.

I	think	this	paradox	can	be	clarified	by	introducing	the	question	of
teaching	here.	What	are	actually	the	respective	roles,	in	the
development	of	thought,	of	knowledge	(for	example,	proficiency	in	the
formal	language	of	mathematics),	and	the	presentation	of	that
knowledge	(for	example,	the	real,	personal	interest	that	we	take	in
considering	the	use	and	implications	of	these	formalisms)?	Knowing
and	thinking,	or	even	loving	what	we	know,	aren’t	the	same.	They’re
not	immediately	identical	to	each	other.	What’s	the	relationship
between	them?	This	is	the	key	question	of	transmission.	And,	as	you
know,	philosophy	has	always	taken	an	interest	in	this	question.	Right
from	its	beginnings.	Plato	and	Aristotle	saw	themselves	as	educators.
Actually,	they	regarded	philosophy,	for	the	most	part,	as	a	didactic,
pedagogic	enterprise,	which	may	produce	new	knowledge,	of	course,
but	above	all	sheds	light	on	established	knowledge	and	integrates	it
into	a	new	subjectivity.	This	is	perfectly	the	case	with	mathematics,	to
which	Plato,	although	dealing	with	the	most	advanced	knowledge	of
his	time,	assigned	a	general	function	in	the	development	of	thought,	of
whatever	kind.	Actually,	I’m	convinced	that	philosophy	shows	us	that
the	question	of	the	transmission	of	knowledge	is	relatively
homogeneous,	regardless	of	the	particular	form	of	knowledge
considered.	Because,	ultimately,	the	problem	of	the	transmission	of



knowledge	is	above	all	to	convince	those	to	whom	you’re	speaking	that
it’s	interesting,	that	they	can	be	enthralled	by	it.	That’s	the	generic
problem	of	all	education.	You	have	to	convince	the	people	you’re
speaking	to	that	they	have	good	reason	to	be	interested	in
mathematics,	for	example.	To	be	interested	in	it	–	as	in	many	other
types	of	knowledge	–	not	for	the	upward	mobility	it	promises	but	for
itself,	for	the	food	for	thought	it	provides.	And	this	is	so	for	anyone
you’re	addressing,	without	making	them	think	that	some	people	can
understand	and	others	can’t.

Does	this	contemporary	ignorance	of	mathematics	seem	to	be	the
most	widely	shared	commodity	in	the	world,2	including	by	your
fellow	philosophers?

It’s	a	divided	state	of	affairs.	Unfortunately,	most	philosophers,	having
minimal	mathematics	training	(often	no	more	than	formal	logic,
moreover),	opt	for	Anglo-Saxon	analytic	philosophy,	or	even	its
scientific	satellite,	cognitivism.	Analytic	philosophy	focuses	on	the
linguistic	distinction	between	statements	that	make	sense	and	are
reasonable,	and	those	it	considers	devoid	of	sense,	in	particular
virtually	all	philosophical	statements	since	Plato,	which	are	regarded
as	“metaphysics”	and	are	consequently	irrelevant.	Cognitivism
attempts	to	reduce	all	questions	of	thought	or	action	to	the
experimental	study	of	brain	mechanisms.	However	interesting	the
handful	of	results	obtained	by	these	approaches	may	be,	I	can’t	regard
them	as	philosophy.	They	are	academic	studies	lacking	any	existential,
political,	or	esthetic	interest,	which	means:	unusable	for	philosophy
conceived	of	as	the	illumination	of	real	life.	Or	else,	as	is	often	the	case
in	France,	mathematical	culture	encourages	people	to	enroll	in	an
academic	“specialization”	such	as	the	history	of	the	sciences	or
epistemology.	This	also	amounts	to	a	renunciation	of	the	true
ambitions	that	ought	to	animate	a	philosophical	enterprise,	which	are
organized	around	the	question	of	the	meaning	of	life,	of	involvement	in
truths,	of	what	a	life	worthy	of	the	name	can	be.	Apart	from	these	two
–	in	my	opinion!	–	dead	ends,	virtually	everyone	studying	philosophy
has	practically	no	mathematical	culture	and	thinks	that	the	chief,	if	not
the	only,	mainstay	of	their	work	is	the	history	of	philosophy.

The	main	result	of	all	this	is	that	the	real	life	of	mathematics	and	the
real	life	of	philosophy	tend	to	be	totally	separate	from	each	other.	And
that’s	a	new	situation,	at	least	compared	with	the	more	than	2,000
years	of	philosophy’s	existence.

Indeed,	even	though	mathematics	and	philosophy	were	closely	linked



very	early	on	–	and	we’ll	get	back	to	this	later	–	they	are	developing
differently	today.

There’s	the	phenomenon	I	just	mentioned.	But	there’s	also	what	might
be	called	the	social	or	public	development	of	the	two	groups	in
question.	The	contemporary	mathematician	is	usually	someone	who
works	on	an	extremely	complex	and	sophisticated	regional	area	of
specialization	in	mathematics.	To	be	on	his	or	her	level,	that	is,	to	be
able	to	talk	about	it	with	him	or	her	as	an	equal,	is	often	something,	as
I	said,	that	less	than	a	dozen	people	are	capable	of.	Mathematical
elitism	where	creativity	is	concerned	is	extremely	exclusive;	it’s	the
most	exclusive	of	all	possible	elitisms.	Today,	given	the	state	of	its
dissemination,	you	can’t	just	go	into	mathematics	whenever	you	feel
like.	It’s	not	like	inherited	wealth:	it’s	not	passed	down,	and	average	or
already	great,	or	even	very	great,	knowledge	isn’t	sufficient.	As	a	result,
mathematics	has	become	very	inaccessible.	Strictly	external	references
exist	and	are	reported	in	the	press:	someone	who	has	discovered
something	very	important	will	win	the	Fields	Medal,	with	the	approval
of	his	tiny	community,	and,	moreover,	amid	a	widespread	lack	of
comprehension.

When	it	comes	to	philosophy,	the	problem	is	the	exact	opposite,	since
just	about	anyone	can	be	considered	a	philosopher	now.	Ever	since
philosophers	have	become	“new,”	people	are	very	undemanding	where
they’re	concerned,	even	at	a	basic	level,	I	can	assure	you!	In	Plato’s,
Descartes’,	and	Hegel’s	time,	or	even	in	the	late	nineteenth	century,	the
knowledge	requirement	for	claiming	you	were	a	“philosopher”
concerned	virtually	all	the	different	types	of	knowledge	and	the
political,	scientific,	and	esthetic	discoveries	of	the	time,	while,	today,
all	you	need	to	have	are	opinions	and	the	right	connections	in	the
media	to	make	people	think	those	opinions	are	universal,	whereas
they’re	totally	banal.	Yet	the	difference	between	universality	and
banality	should	be	crucial,	after	all,	for	a	philosopher.

It	is	alleged	that	it	has	become	impossible	to	have	such	extensive
knowledge	today.	But	that’s	not	so.	Naturally,	we	can’t	master	the
whole	extent	of	the	field	of	the	sciences,	or	the	whole	of	the	world’s
artistic	production,	or	all	political	inventions	without	exception.	But
we	can,	and	we	must,	know	enough	about	them,	have	a	sufficiently
deep	and	broad	experience	of	them,	to	be	able	to	legislate
philosophically.	However,	many	“philosophers”	today	fall	far	short	of
this	minimal	standard,	especially	when	it	comes	to	the	science	that	has
always	been	the	most	important	one	for	philosophy,	namely,



mathematics.

This	is	a	fairly	recent	state	of	affairs,	inasmuch	as	it	only	developed	in
the	late	1970s	and	early	1980s.	It	has	seriously	damaged	the	image,	the
idea,	the	conception,	of	the	philosopher.	A	philosopher	has	become
merely	a	consultant	in	anything	and	everything.	I	myself,	I	must	admit,
am	exposed	to	this	corrupting	temptation.	When	I	wrote	Ethics	in	the
early	1980s,	I	received	a	lot	of	invitations	to	give	banking	ethics
seminars.	I’m	saying	this	seriously	–	I	can	produce	the	documents!
These	people	couldn’t	have	cared	less	about	either	my	opinions	or	my
commitments:	since	I	had	talked	about	ethics,	they	thought	it	was	only
normal	for	me	to	be	in	the	service	of	what	they	regard	as	the	heart,	the
living	center,	of	society	–	the	bank!

So	the	divergence	between	mathematics	and	philosophy	also	stems
from	the	fact	that	philosophy,	owing	to	the	shallow,	reactionary	figure
of	“the	new	philosopher,”	has	undergone	an	incredible	trivialization	of
its	status.	The	philosophy	media	stars	are,	it	must	be	said,	and	strictly
in	terms	of	the	knowledge	required	to	talk	about	what	they	talk	about,
idiots.	In	mathematics,	they’d	be	considered	the	equivalent	of	a	very
average	high-school	senior.	This	is,	incidentally,	an	important	virtue	of
mathematics:	it’s	impossible	to	have	frauds	of	that	sort	in	it.	But	the
flip	side	of	that	virtue	is	that	mathematics	has	become	out	of	reach,	or
the	object	of	bitter	indifference,	because	of	its	elitist	isolation	from	the
other	regimes	of	knowledge.	Obviously,	with	such	a	rigorous	selection
process,	we	haven’t	had	any	“new	mathematicians,”	that’s	for	sure.
And	I	don’t	see	how	there	could	be	any.	A	“new	mathematician,”	even
today,	is	someone	who	proves	–	either	with	great	difficulty	or
brilliantly	–	previously	unknown	theorems,	and	you	can’t	produce
imitations	or	fakes	of	those,	it’s	absolutely	impossible.

So	we’re	dealing	with	a	degree	of	separation	between	mathematics	and
philosophy	that	would	have	astonished	most	of	our	great	classical	or
modern	ancestors,	many	of	whom,	and	some	of	the	most	famous	ones,
I	should	point	out,	were	also	great	mathematicians.	Descartes	was	a
foundational	mathematician,	the	inventor	of	analytic	geometry,	which
is	a	sort	of	unification	of	geometry	and	algebra:	he	showed	how	a	curve
in	space,	hence	a	geometric	object,	can	be	represented	by	an	equation.
Leibniz	was	a	mathematical	genius,	the	founder	of	modern	differential
and	integral	calculus.	The	last	ones	who	even	came	close	to	them	lived
sometime	in	the	nineteenth	century:	perhaps	Frege,	perhaps
Dedekind,	perhaps	Cantor	in	some	respects,	or	Poincaré,	who	was
certainly	the	last	great	figure	of	that	particular	model.	There	was	also	a



philosophical	school	in	France,	between	1920	and	the	1960s,	that	was
proficient	in	mathematics	and	yet	did	not	succumb	to	the	siren	song	of
so-called	analytic	philosophy.	Its	members	included	Bachelard,
Cavaillès,	Lautman,	and	Desanti.	But	today,	the	separation	is	very
advanced,	even	though	twenty	or	thirty	years	after	me	there	has	arisen
a	new	generation	of	philosophers,	and	of	a	few	mathematicians,	too
(Tristan	Garcia,	Quentin	Meillassoux,	Patrice	Maniglier,	et	al.),	a	very
promising	generation,	generally	speaking,	thanks	to	its	rediscovery	of
metaphysics.	Some	of	them	have	mastered	a	significant	part	of	the
field	of	contemporary	mathematics	without	immediately	reducing	it	to
a	sort	of	linguistic	positivism	or	a	mere	history	of	the	sciences.	I’m
thinking	in	particular	of	Charles	Alunni,	René	Guitart,	Yves	André,
and,	more	recently,	Elie	During	and	David	Rabouin.	I’m	obviously
forgetting	–	or	else	I	don’t	know	about,	which	I	hope	is	the	case	–
many	other	talented	people	in	the	upcoming	generations.

In	fact,	part	of	my	efforts	specifically	related	to	metaphysics	are
devoted	to	trying	to	overcome	–	with	the	help	of	everyone	who	has	the
means	and	the	desire	to	do	so	today	–	this	deadly	separation	between
everything	that	goes	by	the	name	of	philosophy	and	the	tremendous
intellectual	discoveries	of	contemporary	mathematics.

1.	Cited	in	Simone	de	Beauvoir,	The	Prime	of	Life,	trans.	Peter	Green
(Harmondsworth:	Penguin,	1965),	43;	translation	modified.

2.	Cf.	Descartes:	“Common	sense	is	the	most	widely	shared	commodity
in	the	world.”



II
Philosophy	and	Mathematics,	or	the	Story	of
an	Old	Couple
I’d	like	for	us	to	explore	in	greater	detail	the	links	between	philosophy
and	mathematics.	You	mentioned	a	moment	ago	that	they	were	an
old	couple.	Plato	had	already	inscribed	over	the	entrance	to	his
Academy:	“Let	no	one	ignorant	of	geometry	enter	here.”	How	would
you	account	for	this	close	association?

Mathematics	and	philosophy	have	indeed	been	connected	right	from
their	beginnings,	even	to	the	point	where	a	variety	of	particularly
famous	philosophers	–	Plato,	but	also	Descartes,	Spinoza,	Kant,	and
Searle	–	categorically	declared	that	without	mathematics	there	would
have	been	no	philosophy.	So	mathematics	was	conceived	of	very	early
on	–	and	entirely	explicitly	in	Plato’s	case	–	as	a	sort	of	precondition	in
order	for	rational	philosophy	to	come	into	being.	Why?	Simply	because
mathematics	exemplified	a	knowledge	process	that	“held	up	on	its
own,”	so	to	speak.	In	other	words,	when	you’ve	got	a	proof,	well,	you’ve
got	a	proof!	This	is	nothing	like	when	truth	is	proclaimed	by	a	priest,	a
king,	or	a	god.	The	priest,	the	king,	or	the	god	is	right	because	they’re	a
priest,	a	king,	or	a	god.	What’s	more,	if	you	disagree	with	them,	they’ll
let	you	know	about	it	…	Whereas	for	mathematicians	it’s	completely
different:	they	have	to	construct	a	knowledge	process	that	will	be
shown	to	their	colleagues	and	rivals.	And	if	their	proof	is	false,	they’ll
be	told	so.

So	from	very	early	on,	from	the	time	of	ancient	Greece,	mathematics
was	a	world	in	which	things	considered	to	be	true,	to	be	proven,	could
circulate	provided	they	were	validated	and	accepted	by	the	community
of	people	who	were	“knowledgeable	about	it,”	and	not	just	because	of
the	authority	stemming	from	the	mathematician’s	calling	himself	a
“mathematician.”	On	the	contrary,	the	mathematician	was	somebody
who,	for	the	first	time,	introduced	a	universality	completely	free	of	any
mythological	or	religious	assumptions	and	that	no	longer	took	the
form	of	a	narrative	but	of	a	proof.	Truth	based	on	a	narrative	is
“traditional”	truth,	of	a	mythological	or	revealed	type.	Mathematics
swept	aside	all	the	traditional	narratives:	the	proof	depended	only	on	a
rational	demonstration,	shown	to	everyone	and	refutable	in	its	very
principle,	so	that	someone	who	had	put	forward	a	hypothesis	that	was
ultimately	proved	to	be	false	had	to	accept	that	he	was	wrong.	In	that



sense,	mathematics	is	part	of	democratic	thought,	which	moreover
appeared	in	Greece	at	the	same	time.	And	philosophy	could	only	be
constituted	in	its	–	always	threatened	–	autonomy	from	the	religious
narrative	thanks	to	this	formal	support,	which	no	doubt	concerned	a
limited	area	of	intellectual	activity	but	one	that	had	totally
independent	norms,	explicit	norms,	which	everyone	could	know.	A
proof	had	to	be	a	proof,	and	that	was	all.	So	it’s	true	that,	from	the	very
outset,	there	were	close	links	between	mathematics,	democracy	(in	the
sense	of	political	modernity,	as	opposed	to	the	traditional	authorities),
and	philosophy.

So,	in	historical	terms,	mathematics	originated	before	philosophy?

It’s	a	complex	and	poorly	documented	story.	I	share	the	historian	and
philosopher	of	science	Arpad	Szabo’s	view:	if	you	look	closely	at	the
thinking	of	Parmenides	or	the	whole	“Eleatic”	school	(so-called
because	it	was	made	up	of	the	citizens	of	Elea),	prior	to	Socrates	and
Plato,	hence	dating	back	to	the	fifth	century	BCE,	you	can	see	the	deep
trace	of	methods	of	thought	that	would	reach	their	full	realization	in
mathematics.	This	is	the	case	with	reductio	ad	absurdum,	which	I
consider	to	be	decisive	in	the	intellectual	power	created	by	the
mathematics	of	that	time.	I	explored	this	issue	in	detail	in	my	1985–6
seminar	devoted	to	Parmenides.	Roughly	speaking,	reductio	ad
absurdum	amounts	to	proving	that	a	proposition	p	is	true	not	by
directly	“constructing”	its	truth	from	already	established	truths	but	by
demonstrating	that	its	opposite	proposition,	i.e.,	the	proposition	not-p,
is	necessarily	false.	You	then	apply	the	principle	of	the	excluded
middle:	“Given	p,	a	well-formed	proposition	(one	that	obeys	the
syntactic	rules	of	the	system	in	question),	either	p	is	true	or	not-p	is
true.

There	is	no	third	possibility.”	This	is	a	remarkable	process	because	it
proves	a	truth	by	operating	entirely	within	a	false	hypothesis.	Indeed,
how	can	it	be	proved	that	not-p	is	false?	Simply	by	assuming	that	it	is
true	and	by	deriving	from	this	hypothesis	consequences	that	contradict
already	established	truths.	You	then	apply	the	principle	of	non-
contradiction:	since	not-p	contradicts	a	proposition	–	let’s	say	q	–	that
is	true,	and	since	two	contradictory	propositions	can’t	both	be	true,
not-p	has	to	be	false.	And	therefore	p	has	to	be	true.

You	can	see	the	amazing	path	of	the	proof.	You	want	to	prove	that	p	is
true,	and	you	have	your	reasons	for	this	(it’s	your	hypothesis).	To	that
end,	you	fabricate	the	fiction	“not-p	is	true,”	which	you	hope	is	false!
And	to	feed	your	hope,	you	draw	consequences	from	this	fiction,	thus



operating	with	implacable	logic	within	what	you	think	is	false,	until
you	come	up	against	a	consequence	that	explicitly	contradicts	a
proposition	that	was	previously	proved	to	be	true.	This	controlled,
regulated	navigation	between	the	true	and	the	false	is,	to	my	mind,
completely	characteristic	of	nascent	mathematics,	of	the	break	it
introduces	with	respect	to	any	revealed	truth	or	truth	whose	force	is
only	poetic.	Now,	this	is	a	“tone”	we	find	in	Parmenides.	And	the
reason	we	do	is	that,	in	order	to	prove	that	being	is,	that	this	is	the
fundamental	truth,	he	first	proves	that	not-being	is	not.	He	therefore
uses	reasoning	by	the	absurd.	My	conclusion	is	categorical:	rational
philosophy	and	mathematics	originated	at	the	same	time,	nor	could	it
have	been	otherwise.

You	pointed	out	that,	subsequent	to	the	Greeks,	the	classical
philosophers	always	took	a	very	close	interest	in	mathematics.	Did	it
really	have	an	influence	on	their	systems	of	thought?

It’s	interesting	to	consider	the	reasons	the	philosophers	themselves
gave	to	explain	the	importance	of	mathematics.

Let’s	consider	Descartes,	the	founder	of	modern	philosophy.	As	I
pointed	out,	he	was	a	very	great	mathematician.	What	he	took	from
mathematics	in	terms	of	his	specifically	philosophical	project	is	clear:
it	was	the	ideal	of	the	proof.	For	him,	the	philosophical	text	had	to	take
the	form	of	those	“long	chains	of	reasoning”	that	are	the	essence	of
mathematics.	But	it	could	also	be	said	that	he	used	the	detour	through
the	absurd.	Indeed,	to	prove	the	existence	of	something,	the	existence
of	the	outside	world,	he	didn’t	proceed	directly	but	instead	invented
the	fiction	of	an	“absolute	doubt,”	a	“hyperbolic”	doubt,	which	would
amount	to	asserting	the	nothingness	of	all	truth	and	experience.	And
he	then	observed	that	the	very	fact	of	doubting	could	not	itself	be
doubted.	This	is	the	famous	“cogito”	argument,	which	established	a
“point”	of	truth	(the	“I	exist”)	through	negation	of	the	absolute
negation	that	is	doubt.	Furthermore,	to	prove	the	existence	of	God,
Descartes	would	explicitly	provide	several	different	proofs	that	were,
generally	speaking,	positive	ones	this	time.	For	instance,	from	the	fact
that	it	is	certain	that	I	have	an	idea	of	the	infinite,	whereas	I	am	finite,
it	follows	that	there	must	be	an	infinite	being	that	created	this	idea	in
me.	The	details	of	the	proof	are	more	complex,	more	“mathematical,”
in	a	word	…	With	Descartes,	mathematics	is	ubiquitous,	as	the
paradigm	of	rational	thought.

Let’s	take	Spinoza,	still	in	the	seventeenth	century.	He	began	his	Ethics
by	saying	that	if	mathematics	hadn’t	existed,	man	would	have



remained	in	ignorance,	in	particular	because	he	would	have	continued
to	explain	everything	by	“final	causes,”	mythologies,	or	the	influence	of
supernatural	powers.	Spinoza	himself	thus	inscribed	his	ethics	in	the
idea	that	it	was	in	a	certain	sense	a	possible	consequence	of	the
existence	of	mathematics.	The	key	role	of	mathematics,	in	his	view,
was	to	have	discredited	explanations	by	final	causes,	to	have	expelled
from	the	philosophical	field	finality,	which	was	still	so	important	in	the
Aristotelian	tradition,	and	to	stick	to	deductive	reasonings.	Spinoza
distinguished	three	types	of	knowledge,	as	indeed	Plato	had	done.	The
first	is	a	combination	of	sensory	and	imaginative	representation,	or
what	could	be	called	ordinary	ignorance.	The	second	is	methodical
conceptual	knowledge,	the	step-by-step	proof,	and	mathematics	is	the
paradigm	of	this.	The	third	type	is	the	intuitive	knowledge	of	God,	who
is	the	name	of	Nature	or	the	All,	and	this	is	specifically	philosophical
knowledge.	But	Spinoza	made	it	clear	that	without	access	to	the	second
type,	reaching	the	third	type	would	be	out	of	the	question.	What’s
more,	he	organized	his	book	in	the	exact	same	way	as	the
mathematical	treatises	of	his	time	were	organized,	on	the	model	of
Euclid’s	Elements:	definitions,	postulates,	propositions,	etc.
Philosophy	was	thus	set	out	more	geometrico,	in	the	geometric	mode.
That	goes	to	show	how	close	a	connection	there	is	between	philosophy
and	mathematics.

A	hundred	years	later,	what	did	Kant	say	about	mathematics?	In	the
introduction	to	his	Critique	of	Pure	Reason,	he	repeated	how
absolutely	necessary	mathematics	was	in	order	for	philosophy	to	exist,
especially	critical	philosophy,	which,	in	the	spirit	of	the
Enlightenment,	he	intended	to	found.	There	would	have	been	no	point
to	the	critical	question	he	raised	–	“Where	does	the	universality	of	the
sciences	come	from?”	–	if	there	had	been	no	science,	nor	would	there
have	been,	as	Newton	is	the	proof,	any	natural	science	if	there	had
been	no	mathematics.	He	also	added,	and	this	has	always	touched	me,
that	the	invention	of	mathematics	resulted	from	“the	happy	inspiration
of	a	single	man,”3	who,	in	his	mind,	was	Thales.	So	Kant	also	wanted	to
show	that	the	emergence	of	mathematics	was	not	a	historical	necessity
but	a	creative	contingency.	Mathematics	was	not	created	so	that	Kant
could	ask	the	critical	question	of	where	rational	universality	came
from;	it	was	created	by	chance,	one	day,	from	the	happy	inspiration	of
a	single	man,	as	though	it	was	a	kind	of	serendipitous	esthetics.	But
this	serendipity	created	the	possibility	of	the	critical	question,	which
defines	the	philosophical	enterprise.

But	another	point	still	needs	to	be	added,	which	anticipates	the



interplay	between	the	two	possible	conceptions	of	mathematics	I’ll
discuss	in	a	moment,	conceptions	that	have	been	competing	with	each
other	for	hundreds	of	years:	the	realist	(or	Platonic)	conception,	which
holds	that	the	object	of	mathematics	exists	outside	of	us,	and	the
formalist	conception,	which	holds	that	mathematics	is	a	pure	creation,
and	in	particular	the	creation	of	a	special	formal	language.	Kant’s
conception	of	mathematics	is	an	“a	prioric”	conception,	meaning	that
the	organization	of	mathematical	thinking	does	not	originate	in
concrete	experience	but	is	prior	to	it;	it	exists,	with	regard	to
experience,	a	priori	and	not	a	posteriori.	In	a	nutshell,	Kant	claims
that	what	is	at	stake	in	the	formal	sciences	–	and	also,	though	this	is	a
different	question,	in	the	experimental	sciences	–	is	the	subjective
organization	of	human	knowledge,	of	what	he	calls	“the	transcendental
subject.”	If	rationality	is	universal,	in	Kant’s	view	it	is	not	so	because	it
touches	a	real	but	rather	because	it	refers	to	a	universal	structure	of
cognitive	subjectivity	itself.	If	everyone	is	in	agreement	about	a
mathematical	proof,	it’s	not	because	it	refers	to	anything	that	touches
the	thing	in	itself	or	the	real	of	the	world;	it’s	because	the	structure	of
the	human	mind	obeys	a	single	paradigm,	such	that	what	will	be	a
proof	for	one	person	will	be	a	proof	for	another.	I	think	this	is	a
sophisticated	version	of	the	formalist	thesis.	Later,	for	Wittgenstein,
mathematics	would	only	be	one	language	game	among	others,	which
should	not	be	absolutized.	Kant	wouldn’t	say	as	much,	since	he
considered	mathematics	to	be	really	universal	and	irrefutable	for
minds	like	ours.	But	it’s	a	formalism	nonetheless,	a	transcendental
formalism:	mathematics	isn’t	universal	because	it	thinks	formal
structures	of	being	qua	being	but	because	it	is	a	language	that’s	coded
in	the	same	way	for	everyone.	However,	for	Kant,	as	for	Descartes	and
Spinoza,	mathematics,	once	invented	by	Thales,	paved	the	infinite	way
for	science,	and	if	it	didn’t	exist	–	after	all,	human	beings	existed	for
tens	of	thousands	of	years	before	the	Greeks	invented	demonstrative
geometry	and	arithmetic	–	the	philosophical	question	(where	do
universally	true	judgments	come	from?)	couldn’t	have	been	formulated
or	answered.

You	seem	to	be	suggesting	a	sort	of	priority	of	mathematics	over
philosophy.

There	are	only	two	approaches	when	it	comes	to	this	issue,	only	one	of
which,	as	far	as	I’m	concerned,	is	valid.	I	think	the	basic	relationship
between	philosophy	and	mathematics	is	actually	a	reverential
relationship,	so	to	speak.	There	is	something	about	philosophy	that
defers	to	mathematics.	If	indeed	philosophy	does	not	defer	to



mathematics,	then	it	neglects	it	or	rejects	it;	it	thinks,	as	does
Wittgenstein,	that	there	is	nothing	in	mathematics	that	concerns
human	existence	–	this	is	the	second	approach	I	was	talking	about,
which	I	completely	disagree	with.	There	are	no	half-measures.	To	be
sure,	we	know	full	well	that	“new	philosophers”	are	utterly
uninterested	in	mathematics.	They’re	interested	in	public	opinion,	in
the	Muslim	religion,	in	“totalitarianism,”	in	the	cantonal	elections,	in
lots	of	things,	but	not	in	mathematics.	And	in	my	view	that’s	an
offense.	It’s	an	offense	against	the	imperative	of	rationality	that	was
slowly	worked	out	and	established	by	the	great	history	of	philosophy,
regardless	of	the	ultimate	conclusions,	assertions,	and	positions	of	the
various	philosophers.	Between	Plato’s	passion	for	mathematics	and
Hegel’s	harsh	critique	of	the	strictly	mathematical	concept	of	infinity
there	is	a	huge	gulf.	But	Hegel	was	knowledgeable	about	the
mathematics	of	his	times,	namely,	the	work	of	Euler.	In	his	Logic,	he
devoted	a	perspicacious	note	to	differential	calculus.	I	don’t	have
anything	against	the	various	assessments	of	the	importance	of
mathematics,	but	I	do	have	something	against	the	indifference	to	it
and	the	ignorance,	which	in	my	opinion	are	such	serious	offenses	that
they	preclude	anyone	from	calling	him-	or	herself	a	philosopher,	even
with	the	epithet	“new”	attached	to	the	word.	And	I	even	went	so	far	as
to	speak	about	a	reverential	relationship,	because	philosophy	cannot
just	run	into	mathematics	by	accident	or	as	though	it	were	just	some
ordinary	topic	of	epistemology.	It	can	only	be	seized	by	mathematics	at
its	very	beginning.	As	the	science	of	being,	mathematics	is	crucial	right
from	the	start,	as	soon	as	one	gets	into	philosophy.	I	agree
wholeheartedly	with	the	maxim	of	Plato’s	academy,	which	I	am	repeat-
ing	on	my	own	behalf:	“Let	no	one	ignorant	of	geometry	enter	here.”
And	“here”	is	not	just	an	academy;	it’s	philosophy	itself.

Another	important	issue	is	the	fact	that,	to	a	great	extent,	mathematics
escapes	the	singularity	of	languages.	Naturally,	when	you	teach
mathematics	in	China,	you	speak	Chinese,	but,	ultimately,
mathematics	in	and	of	itself	belongs	to	no	one	language.	There	is	a	sort
of	mathematical	language,	but	it’s	not	French	or	English	or	Chinese.	In
a	way,	this	language,	which	can	always	be	formalized	and	reduced	to	a
series	of	signs	in	accordance	with	fixed	rules,	is	beyondlanguage.	But
philosophy	has	always	been	concerned	about	the	problem	of	the
multiplicity	of	languages,	since	it	can	always	wonder:	“What	does	my
thinking	owe	to	this	language	that	is	particular?	Doesn’t	the
particularity	of	a	language	make	my	supposedly	universal	discourse
less	universal	than	it	aspires	to	be?”	And	it	is	well	known	that	there	are



even	a	few	philosophers	who	were	tempted	to	say:	“Yes,	but	certain
languages	have	universal	significance.”	Some	suggested	German	while
others	–	often	the	same	ones	–	suggested	Greek.	It	is	absolutely
remarkable	that	Descartes	should	be	one	of	the	rare	philosophers	to
say	that	this	question	was	of	no	interest	to	him	and	to	explicitly	claim
that	Reason	can	be	understood	in	the	same	way	in	any	language,	even,
he	said,	in	“low	Breton.”	But	this	question	of	languages	is	a	problem,
like	it	or	not.	Mathematics,	however,	is	a	thought	process	that	bypasses
the	particularity	of	language.	Why?	Because	one’s	native	language,
one’s	everyday	language,	is	not,	strictly	speaking,	the	language	of
mathematics.	It	is	the	language	used	in	explaining	it,	or	in	learning	it,
which	is	not	the	same	thing.

But	don’t	go	thinking	I	think	philosophy	should	admire,	and	even
revere,	mathematical	language	exclusively.	Not	at	all!	Mathematics	is
concerned	with,	or	latches	onto,	the	most	formal,	abstract,	universally
quasi-empty	dimension	of	being	as	such.	It’s	easy	to	claim,	as	we’ll	see
later	on,	that	everything	that	exists	forms	a	multiplicity.	So	I’ll	argue
that,	since	mathematics	is	the	general	theory	of	the	different	forms	in
which	multiplicities	acquire	a	certain	consistency,	it	is	a	theory	of	that
which	is,	not	insofar	as	it	is	this	or	that,	but	simply	insofar	as	it	is.	Yet,
the	relationship	of	thought	to	being	qua	being	is	certainly	not	the
whole	of	subjects’	relationship	to	the	world,	absolutely	not.
Mathematics	is	not	the	science	of	the	difference	between	autumn
foliage	and	a	summer	sky;	all	it	says	is	that,	in	any	case,	all	of	that	is
multiplicities,	forms	that	have	something	in	common:	the	fact	of	being,
quite	simply.	And	it	is	the	abstract	forms	of	this	“common”	that
mathematics	attempts	to	think.

This	is	a	philosophically	necessary,	but	certainly	not	sufficient,
experiment.	I	for	my	part	use	poetry	at	least	as	much.	Poetry	is	the
other	extreme	of	language,	because	poetry	is	what	delves	into	language
so	as	to	force	it	to	name	what	it	couldn’t	name	before.	And	so	poetry
burrows	into	the	native	language,	into	the	particularity	of	a	given
language.	But	within	this	particularity	of	the	language	it	will	engage	in
description,	transposition,	metaphorical	comparison,	and	so	on,	to
such	an	extent	that,	in	the	end,	it,	too,	will	touch	something	universal.
It	could	be	said	that	the	poem	amplifies	the	particularity	of	the
language	to	its	limit,	to	the	point	of	beyondlanguage,	while
mathematics	from	the	outset	operates	outside	the	particularity	of
languages.	Two	contrasting	paths	but	both	leading	to	the	real,	to
universality.



But	are	the	mathematics	that	are	being	developed	in	India,	in	France,
or	in	China	today	all	the	same?	Are	they	really	impervious	to	cultural
or	linguistic	specificities?	If	so,	that	would	confirm	the	admirable
universality	that	you	were	talking	about.

Ultimately,	yes.	If	there’s	a	genuine	Internationale,	today,	it	is	really
that	of	mathematicians.	They	no	doubt	speak	English,	as	everybody
does,	among	themselves,	but	above	all	they	“speak	mathematics”	–	as
in	fact	we	all	should	be	able	to	speak	“communist	politics”	someday,
even	if	in	English	…	There	are	of	course	schools	of	mathematics,
“historical	moments”	in	mathematics,	with	national	overtones.	Let’s
not	forget	that	in	the	Middle	Ages	Baghdad	was	the	indisputable
capital	of	mathematical	thinking.	And	I	can	give	a	few	other	random
examples.	At	the	time	of	the	French	Revolution	or	Napoleon,	a	brilliant
French	school	of	geometry	grew	up	around	Monge.	In	the	mid-
nineteenth	century,	Germany	shone	its	brightest,	with	Riemann,
Dedekind,	and	Cantor.	In	the	1920s	and	1930s,	the	Polish	school	of
mathematical	logic,	featuring	Tarski	in	particular,	was	altogether
remarkable.	In	the	wake	of	the	truly	extraordinary	Ramanujan,	we	can
speak	even	today	of	an	amazing	Indian	school	of	number	theory.	In
that	area,	moreover,	the	English,	from	Hardy	to	Wiles,	have	not	lagged
behind.	Many	other	Russian,	Italian,	American,	Brazilian,	Hungarian,
etc.	examples	could	be	cited.	It’s	clear	that	mathematics	has	gradually
brought	founding	geniuses	to	light	in	practically	every	region	of	the
world.	But,	every	time	it	has	done	so,	their	work	has	been
enthusiastically	adopted	by	the	worldwide	fraternity	of
mathematicians,	without	issues	of	language	and	culture	coming	into
the	picture	in	any	significant	way.	Thus,	we	could	say,	yes,
mathematics	obviously	and	inexorably	cuts	across	national
particularities,	without	ever	getting	caught	in	them,	as	all	truth
procedures,	including	the	seemingly	most	“cultural”	ones,	such	as	the
arts	and,	of	course,	politics,	should,	and	will,	do.	This	is	an	additional
reason	why	philosophy,	which	has	created	universality	as	its	own
value,	should	revere	the	Mathematicians’	Internationale.

We	may	nevertheless	have	the	impression	today	that	this	dialogue
between	mathematics	and	philosophy,	or	this	reverence	you	were
talking	about,	has	been	doubly	shattered:	you	noted	the	fact	that
philosophers	have	little	interest	in	mathematics	but,	by	the	same
token,	many	leading	scientists,	physicists,	and	mathematicians
practice	their	discipline	uncritically.	As	though	a	sort	of	positivism
had	taken	hold,	allowing	people	to	do	mathematics	or	the	sciences
without	reflecting	on	their	universality,	their	own	particular	truth.



How	do	you	explain	this?

It’s	the	philosophers’	fault.	Frankly,	I	absolve	the	mathematicians!
There	are	surely	some	philosophers	among	them:	as	I	said,	in	the	past,
from	Descartes	to	Poincaré,	that	was	an	established	fact,	but	it’s	still
the	case	today.	In	the	area	of	mathematics	I	know	best,	modern	set
theory,	I	can	say,	for	example,	that	Woodin’s	meditation	on	the
different	meanings	of	the	word	“infinite”	–	Woodin	being	without
doubt	the	most	impressive	specialist	of	what’s	called	“descriptive	set
theory,”	namely,	the	fine	structure	theory	of	real	numbers	–	has	an
undeniable	philosophical	quality	to	it.	That	said,	mathematicians	have
always	been	entitled	to	do	mathematics	day	and	night	for	their	own
personal	satisfaction,	or	for	the	satisfaction	of	showing	off	to	the
handful	of	fellow	mathematicians	who	understand	the	same	thing	as
they	do.	So	they	can	delve	deep	into	a	difficult	problem	without	asking
themselves	every	time	whether	mathematics	is	an	ontology	or	a
language	game.	I	forgive	them	their	shared	negligence	of	philosophy,
because	by	devoting	their	lives	to	such	an	arduous,	seemingly
thankless,	or	grueling	pursuit,	they	are	rendering	an	invaluable	service
to	humanity	as	a	whole.

Besides,	we	have	to	face	facts:	there	are	plenty	of	mathematicians	who
are	weirdos,	tortured	or	strange	personalities.	Take,	for	example,
Grigory	Perelman,	that	absolutely	brilliant	contemporary	Russian
mathematician	who	proved	a	100-yearold	conjecture	that	had	resisted
the	efforts	of	a	host	of	leading	experts.	Well,	he	lives	as	a	hermit	in	a
cabin	in	the	woods,	is	cut	off	for	the	most	part	from	the	outside	world,
talks	only	to	his	elderly	mother,	refused	the	Fields	Medal,	the	honor
coveted	by	the	whole	mathematical	community,	and	so	on.	He’s	a
mystic,	actually,	and	he	is	in	that	sense	a	sort	of	spiritualist
philosopher,	in	the	Russian	tradition.	The	two	greatest	founding
geniuses	of	set	theory	and	mathematized	logic,	Cantor	and	Gödel,	were
both	very	strange.	The	former	wrote	to	the	Pope	to	verify	the
orthodoxy	of	his	thinking	of	the	infinite,	then	invented	a	new	theory
according	to	which	Shakespeare	wasn’t	Shakespeare.	The	latter	was
afraid	that	some	of	his	colleagues	were	poisoning	his	tap	water.	Just
look	at	a	young	genius	like	Évariste	Galois,	who	invented	the	algebraic
theory	of	groups	and,	more	generally,	the	constructive	spirit	of	modern
algebra.	He	was	a	typically	Romantic	character,	who,	when	arrested	for
rebellion	in	the	spirit	of	“The	Three	Glorious	Days”	of	1830,	wrote
down	his	amazing	thoughts	day	and	night	in	prison	and	died	in	1832,
at	the	age	of	20,	in	a	stupid	duel	over	a	girl	who,	as	he	wrote	to	his	best
friend	just	before	getting	himself	killed,	wasn’t	really	worth	it.	Sure,



there	were	also	towering	geniuses,	like	Gauss	and	Poincaré,	who	were
serious	academics,	thoughtful	people	who	were	well	established	in
their	social	world.	But	mathematicians,	like	poets,	can	also	be
anarchistic	and	romantic,	or	contemplative	and	withdrawn,	people,
because	what	ultimately	matters	in	mathematics	is	inventiveness,
which	often	comes	to	them,	after	long	nights	of	slow	and	uncertain
work,	in	the	form	of	a	sort	of	lucky	intuition.	There’s	a	famous	text	in
which	Poincaré	explains	that	a	problem	he’d	been	sweating	over	for
weeks	and	weeks	suddenly	became	clear	to	him	as	he	was	putting	his
foot	onto	the	step	of	a	bus.	That’s	what	mathematics	is	about,	too.	So
let’s	not	give	it	a	hard	time.	There	are	no	“new	mathematicians”	whose
only	desire	is	to	bolster	the	dominant	reactionary	politics	–	that’s
something	at	least.

So	it’s	the	philosophers’	fault	if	philosophy	and	mathematics	have
parted	company?

Absolutely.	And	not	just	because	of	their	partial	deterioration	but
because,	from	a	certain	point	on,	philosophers	–	for	pretexts	and
reasons	that	should	be	examined	–	gave	up	thinking	that	philosophy
could	assume	all	of	what	I	call	its	conditions,	which	I	reduce	to	four
“types,”	these	being	for	me	different	kinds	of	what	I	call	truths:	the
sciences,	cognitive	truths;	the	arts,	sensible	truths;	politics,	collective
truths;	and	love,	existential	truths.	Most	professional	philosophers	of
our	time	have	given	up	thinking	that	philosophy	–	as	it	clearly	claimed
to	do	in	Hegel’s	time,	or	still	later	in	the	time	of	Auguste	Comte,	Searle,
or	Bachelard	–	requires,	and	this	is	a	strict	minimum,	as	extensive	a
relationship	as	possible	with	this	very	complex	system	of	conditions.
Our	professional	philosophers	have	given	up	thinking	that	the	idea	of	a
specialized	philosophy	actually	made	no	sense.	That	philosophy	might
be	the	philosophy	of	this	or	that,	that	it	might	have	special	“objects,”	is
what	Lacan	called	the	“discourse	of	the	university,”	in	the	worst	sense
of	the	term.	Philosophy	is	philosophy,	or,	in	other	words,	something
that	entertains	a	special	and	comprehensive	relationship	with	the
sciences,	the	arts,	politics,	and	love.	So	there	has	been	a	serious
capitulation	on	the	part	of	philosophers.

When	did	this	capitulation,	this	“separation”	between	mathematics
and	philosophy,	occur	in	historical	terms?

In	my	opinion,	there	was	a	turning	point	that	began	in	the	late
nineteenth	century,	a	turning	point	that	I	would	term	anti-
philosophical	in	a	certain	way,	with	brilliant	personalities	like
Nietzsche	or	Wittgenstein,	big	stars	whose	genius	I	acknowledge	but



who	moved	philosophy’s	agenda	in	a	direction	that	had	not	been	its
direction	since	Plato.	In	particular,	it	was	they	who	abandoned	the	idea
that	the	comprehensive	and	systematic	nature	of	philosophy	had	to	be
accepted,	and	this	resulted	in	the	risk	of	an	indifference	to
mathematics.	In	my	view,	this	rupture	is	especially	serious	in	that	the
mathematics	in	use	from	the	late	nineteenth	century	on	was	in	fact
mathematics	that	drastically	changed	many	things	in	the	most
essential	philosophical	concepts.

Could	you	give	us	an	example?

I’ll	focus	on	the	concept	of	infinity,	its	history,	and	the	contemporary
state	of	the	question	and	its	consequences.	On	this	issue	alone,
breathtakingly	new	and	important	research	has	been	carried	out	in
mathematics	over	the	past	fifty	years.	If	you’re	not	familiar	with	it,
what	happens	is	that,	when	you	say	the	word	“infinity,”	you	actually
have	no	idea	what	you’re	talking	about,	because	the	mathematicians
have	worked	on	this	concept	and	taken	it	to	an	unprecedented	degree
of	complexity.	If	you	don’t	know	anything	about	certain	theorems	from
the	1970s	or	1980s	on	the	new	figures	of	mathematical	infinity,	there’s
no	point	in	using	the	word	“infinity”	–	at	least	in	the	context	of	rational
thought.

Likewise,	in	philosophy	“logic”	continues	to	be	spoken	about,	but	if	you
don’t	take	a	close	look	at	what	has	been	going	on	in	logic	in	terms	of	its
constant	formal	re-creation,	you’ll	have	a	poor	and	false	understanding
of	the	word	“logic.”	In	fact,	logic,	or	rather	logics,	have	become	part	of
mathematics	today.	I’ll	come	back	to	this.	But	it’s	clear	that
philosophers	cannot	be	unaware	of	logic,	and	therefore	of
mathematized	logic	today.

These	two	examples	show	that	philosophy,	if	it	separates	from
mathematics,	heads	for	disaster,	since	a	considerable	number	of	the
concepts	it	needs	become,	simply	as	a	result	of	ignorance,	obsolete.

To	sum	up,	I’d	say	that	there’s	been	a	break	between	mathematics	and
philosophy.	There	are	historical	reasons	for	it.	Philosophical
romanticism,	from	Hegel	to	Sartrian	existentialism,	moved	away	from
analytical	and	demonstrative	rationality.	And,	beginning	with	the
French	Revolution,	the	new	concern	for	history	valued	movements,
revolutions,	and	negativity	to	the	detriment	of	the	kind	of	sub	specie
aeternitatis	contemplation	of	mathematical	truths,	which	become
timeless	once	they’ve	been	proved.	There	were	also	institutional
reasons:	the	growing	academic	separation	between	disciplines,	the
organization	of	literary	and	scientific	studies	into	two	strictly	separate



entities.	Whatever	the	case	may	be,	this	break	has	had	disastrous
consequences	in	terms	of	philosophy	itself.	It	has	led	to	the
abandonment	of	the	real	conditions	of	the	existence	and	formation	of
concepts	that	are	still	used	in	philosophy,	with	the	philosophers
lagging	several	miles	behind	what	the	mathematicians	have	defined
and	proved	concerning	these	concepts.

I	fear	that	it	will	take	quite	a	while	to	remedy	this	situation,	but	we
need	to	begin	promoting	the	pleasure	of	mathematics,	on	the	one
hand,	and	restoring	the	ambition	of	a	rational	metaphysics,	on	the
other.

1.	Immanuel	Kant,	“Second	Preface,”	Critique	of	Pure	Reason,	ed.	and
tr.	Paul	Guyer	and	Allen	W.	Wood	(Cambridge:	Cambridge
University	Press,	2000),	106.



III
What	is	Mathematics	About?
Before	we	go	any	further,	I	think	it’s	important	to	define	mathematics
a	little	more	precisely.	Russell	said	it	was	the	field	“where	we	don’t
know	what	we	are	talking	about,	nor	whether	or	not	what	we	say	is
true.”	Could	you	nevertheless	say	a	bit	more	about	it?

Good	old	Russell!	To	begin	with,	I’d	like	to	point	out	that	the	question
of	the	definition	of	mathematics	isn’t	a	mathematical	question.	That’s	a
very	important	point.	As	soon	as	you	get	into	the	question	of	“What	is
mathematics?”	you’re	switching	over	to	philosophy,	you’re	doing
philosophy.	Philosophers	have	taken	a	great	interest	in	this	question
and	have	even	gotten	some	mathematicians	interested	in	it	–	the	ones
with	the	broadest	encyclopedic	culture,	people	like	Poincaré,	or	even
Grothendieck	more	recently	–	but	it	remains	a	philosophical	question
nonetheless.

We	can	obviously	begin	with	a	sort	of	basic	description.	Starting	with
the	Greeks,	mathematics	has	dealt	with	several	related	areas.	For	the
Greeks,	there	were	essentially	two	such	areas.	First,	geometry,	which
studies	objects	and	structures	in	space:	in	two	dimensions,	plane
geometry	(triangles,	circles,	etc.)	or	in	three	dimensions,	geometry	in
space	properly	speaking	(cubes,	spheres,	etc.).	Second,	arithmetic,
which	studies	numbers.	The	link	between	the	two	is	the	very	important
and	difficult	question	of	measure:	a	line	segment,	once	a	unit	of
measurement	has	been	determined,	possesses	a	length,	which	is	in	fact
a	number.	This	is	why	there	immediately	arose	very	complex	problems
that	right	from	the	beginning	of	demonstrative	mathematics	produced
a	sort	of	combination	of	geometry	and	mathematics.	A	famous
example:	if	you	know	the	length	of	the	radius	of	a	circle,	can	you	find
the	circumference?	It	is	here	that	the	number	π	appears:	if	r	is	the
length	of	the	radius	of	the	circle,	then	the	circumference	is	2πr.	The
remarkable	thing	is	that	the	real	nature	of	the	number	π	would	only	be
established	in	the	nineteenth	century:	only	then	would	it	be	proved
(and	it	wasn’t	easy!)	why	π	can’t	be	a	whole	number,	or	the	ratio	of	two
whole	numbers	(a	fraction,	which	is	also	called	a	rational	number),	or
even	the	solution	of	an	equation	whose	coefficients	are	whole	numbers.
These	numbers	that	resist	simple	calculation	are	now	called
“transcendental”	numbers	and	by	themselves	constitute	a	significant
part	of	modern	mathematics.



This	fundamental	distinction	between	“spatial”	structures	and
“numerical”	structures	remains	today,	in	a	much	more	highly
developed	form.	The	great	“comprehensive”	treatise	of	modern
mathematics,	undertaken	in	France	in	the	1930s	by	a	group	of
mathematicians	who	gave	themselves	the	name	“Bourbaki,”	makes	a
distinction	from	the	outset	between	algebraic	structures,	which	are	the
possible	structures	(addition,	subtraction,	division,	root	extraction,
etc.)	that	enable	calculations,	and	topological	structures,	which	make	it
possible	to	think	spatial	arrangements	(neighborhoods,	inside	and
outside,	connections,	the	open	and	the	closed,	etc.).	This	is	obviously
descended	from	the	distinction	between	arithmetic	and	geometry.	So
the	most	complex	and	exciting	mathematical	problems	are	clearly
those	that	combine	the	two	orientations,	specifically	the	daunting
problems	of	algebraic	geometry.

But	we’re	only	at	an	elementary	descriptive	level	here.	The	real
philosophical	problem	is	to	define	the	nature	of	mathematical	thinking
in	general,	whatever	its	area	of	inquiry.	Now,	as	far	as	this	issue	is
concerned,	there	have	historically	been	some	answers	that	seem	to
vary	widely.	However,	I	think,	as	I	said	a	moment	ago,	that	there	are
two	main	orientations.	First,	the	one	that	aligns	mathematics	with	an
ontological,	or,	at	the	very	least,	“realist,”	shall	we	say,	vocation,	which
mathematicians	themselves	often	call	“Platonic.”	In	this	view	of	things,
mathematics	is	part	of	the	thinking	of	what	there	is,	of	what	is.	As	to	in
what	respect,	how,	and	so	on,	it’s	quite	complicated.	But	let’s	just	say
at	this	stage	that	mathematics	is	a	way	of	approaching	the	real,
including	the	most	elusive	real.	And	this	is	basically	because	the
assumption	has	to	be	made	that	there	is	an	aspect	of	generality	or
universality	to	what	exists	that	is	somehow	immaterial.	There	are
structures	that	recur	in	everything	that	exists.

The	study	of	these	structures	as	such,	of	structural	possibilities,	is
precisely	the	aim	of	mathematics.

This	moreover	explains	something	very	strange	–	which	even	Einstein
was	amazed	by	–	namely	that	physics,	i.e.,	the	scientific	theory	of	the
real	world,	couldn’t	exist	without	mathematics.	As	Galileo,	one	of	the
founders	of	physics,	essentially	said,	the	world	is	written	in	a
mathematical	language.	This	first	orientation	maintains	that
mathematics	has	an	essential	relationship	with	everything	that	exists.

Then	there’s	another	orientation,	which	I	call	“formalist”	and	which
amounts	to	saying	that	mathematics	is	merely	a	language	game,	or,	in
other	words,	the	codification	of	a	language	that	is	of	course	formally



rigorous,	since	the	concepts	of	deduction	and	proof	are	normative	and
formalized	in	it,	but	whose	rigor	cannot	claim	to	have	an	ongoing
relationship	with	empirical	reality.	The	oft-cited	argument	in	support
of	this	theory	is:	“Mathematical	axioms	can	change,	after	all”	and	so
there	is	more	than	one	possible	mathematical	universe.	This	debate
began	in	the	early	nineteenth	century,	when	it	was	understood	that
there	was	more	than	one	kind	of	geometry:	Euclidean	geometry,	which
had	reigned	supreme	until	then,	but	also	Lobachevskian	and,	later,
Riemannian,	geometry.	Let’s	review	that	history.	For	centuries	it	was
taken	as	self-evident	that,	through	a	point	outside	a	line,	there	can	pass
one	and	only	one	line	parallel	to	the	given	line.	This	obvious	fact	was
dictated	by	our	perception.	Time	and	again,	attempts	to	prove	it	from
the	other	axioms	of	classical	geometry	all	failed.	But	then	Lobachevsky
(1829)	rejected	the	axiom,	stating	that	more	than	one	line	parallel	to	a
given	line	can	pass	through	a	point	outside	the	line.	And	rather	than
ending	up	with	a	contradiction,	he	thereby	invented	a	geometry	that
was	non-Euclidean	but	consistent	and	productive.	Later,	Riemann
(1854)	assumed	the	axiom	that	there	exists	no	line	parallel	to	a	given
line.	And	this	was	not	just	consistent	with	the	other	classical	axioms
but	gave	Einstein	and	relativistic	physics	a	natural	geometric
framework.	And	then	today,	when	mathematical	structures	of	all	sorts
abound,	we	may	have	the	feeling	that	it’s	all	a	sort	of	freewheeling
human	creativity,	which	gives	itself	first	principles,	axioms,	and
specific	logical	rules	and	derives	the	consequences	from	them,	but	that
it’s	ultimately	just	a	formal	game.	A	remarkable	mental	game	in	which
the	demonstrative	processes	have	to	be	identified	as	rules	–	the	rules
of	the	game	–	and	the	axioms	as	the	initial	data	of	the	game.	And	the
consequences	are	what	you	get	when	you	apply	the	rules	to	the	initial
data.	So	a	great	theorem	is	nothing	but	a	well-played	game,	a	game
won.	As	we	know,	this	is	the	path	taken	by	the	anti-philosophical
logician	Ludwig	Wittgenstein,	with	all	the	brilliance	he	was	capable	of.
It	is	in	my	view	very	symptomatic	that	his	having	regarded
mathematics	as	a	pure	language	game,	ultimately	without	any	real
seriousness,	led	him	to	a	sort	of	ironic	contempt	for	the	highest
ambitions	of	contemporary	mathematics.	He	heaped	sarcasm,	for
example,	on	set	theory.	The	fact	is,	one	of	the	greatest	creative	minds,
in	pure	logic	as	well	as	in	set	theory,	namely,	Kurt	Gödel,	was	a
convinced	Platonist.	All	throughout	the	last	century	the	conflict
between	the	realist	and	formalist	–	or	linguistic	–	orientations	was	so
fierce	that	indisputable	geniuses,	philosophers	and/or
mathematicians,	could	find	themselves	on	opposite	sides.	This	debate
about	what	mathematics	is	has	actually	existed	right	from	the	start,



however.	I	mentioned	that	Aristotle	regarded	mathematics	as	esthetic
above	all.	He	therefore	viewed	it	as	unrelated	to	the	real,	as	an
arbitrary	creation	that	produced	a	certain	pleasure	of	thought.	For
Plato,	on	the	contrary,	mathematics	was	the	very	foundation	of
universal	rational	knowledge:	the	philosopher	absolutely	had	to	begin
with	mathematics.	Even	if	he	ultimately	went	beyond	it,	he	had	to
learn	mathematics	first.	Plato	thought	that	political	leaders,	for
example,	would	be	well	advised	to	study	higher	mathematics	for	at
least	ten	years.	He	indicated	that	they	were	not	to	be	satisfied	with	just
the	minimum,	since	they	had	to	do	geometry	in	space	in	particular.	As
geometry	in	space	had	only	just	emerged	in	Plato’s	time,	it	could	be
said	that,	for	Plato,	the	true	leader	of	the	ideal	state	had	to	be	like	the
mathematical	genius	Henri	Poincaré,	not	like	the	very	reactionary
president	Raymond	Poincaré,	who	was	in	large	part	responsible	for
World	War	I.	Basically,	for	Plato,	the	right	method	would	have	been	to
choose	Nobel	Prize	or	Fields	Medal	winners	as	presidents	of	the
Republic.	It’s	clear	that	this	is	a	completely	different	political
alternative	from	the	one	prevailing	today	…

In	the	formalist	conception	of	mathematics,	the	initial	axioms	have	a
status	of	being	arbitrary,	independent	of	our	intuition,	or,	in	other
words,	having	no	absolute	truth	value.	But	isn’t	that	actually	pretty
bogus?	Can	anyone	really	think	that	an	arbitrary	definition	would
create	a	mathematical	object,	such	as	natural	numbers,	for	example?
Isn’t	it	rather	because	the	natural	numbers	pre-exist	and	have
necessary	properties	that	we	can	then	try	to	express	or	formalize
them	by	axioms?	Like	when	Russell,	for	example,	reconstructed	the
concept	of	number	on	the	basis	of	set	theory:	all	triplets,	sets
containing	three	elements,	form	a	family	of	sets	with	which	the
number	3	will	be	associated.	Fine,	but	can	you	really	speak	of	triplets
without	already	having	an	intuition	of	the	number	3?	Isn’t	that	a
strange	sleight	of	hand?

Yes,	no	doubt	…	But	you	see,	the	intuition	of	the	number	3,	which	has
probably	been	accessible	to	the	human	animal	since	its	origins,	doesn’t
in	and	of	itself	produce	any	mathematics	yet.	If,	on	the	other	hand,	you
write	the	number	235,678,981,	it	doesn’t	correspond	to	any	kind	of
intuition.	It	doesn’t	represent	anything	to	you	that	you	can	intuitively
distinguish	from	235,678,982.	Except	by	writing,	but	the	writing	of
what?	That’s	the	whole	question.	Mathematical	thinking	makes	a
tentative	appearance	if	you	say	that	235,678,982	is	the	“successor”	of
the	number	235,678,981.



But	you	can	then	see	that	what	really	matters	is	the	word	“successor,”
which	actually	denotes	an	operation	and	therefore,	ultimately,	a
structure,	in	this	case	addition:	if	the	number	n	exists,	whatever	n	may
be,	then	there	also	exists	the	number	n	+	1,	which	will	be	called	the
successor	of	n.	But	why	the	successor?	Couldn’t	there	be	more	than	one
of	them?	No,	that’s	not	possible,	because	the	additive	structure	of
natural	numbers	requires	that	no	other	number	exist	between	n	and	n
+	1.	But	then	you’ll	say,	what	does	“between”	mean?	Well,	the	word
refers	to	another	structure,	the	order	structure,	which	formalizes	–	and
profoundly	transforms	–	the	concepts	of	“greater”	and	“smaller.”	If	n	is
smaller	than	q	and	q	is	smaller	than	r,	then	q	is	“between”	n	and	r.	The
notation	we’re	all	familiar	with	illustrates	this	in	an	almost	spatial	way:
we	write	n	<	q	<	r.	All	this	amounts	to	saying	that	the	natural	numbers
at	any	rate	have	the	algebraic	additive	structure	and	an	order
structure.	It	will	then	be	noted	that	this	order	structure	is	“discrete”	in
the	following	way:	there	are	“holes”	or	“gaps”	in	the	chain	of	order.
Indeed,	there	is	no	natural	number	between	n	and	n	+	1.	If	we	only
take	natural	numbers	into	account,	we	can	really	say	that	there	is
nothing	between	n	and	n	+	1.	This	“nothing,”	if	we	say	that	it’s	a
number	(which	the	Arab	algebraists	were	the	first	to	dare	to	do),	will
be	integrated,	under	the	name	of	“zero,”	into	the	additive	structure	in
the	following	way:	if	you	add	zero	to	a	number	n,	well,	you	still	have	n.
Zero	is	said	to	be	the	neutral	element	for	addition.	And	it	will	also	be
integrated	into	the	order	structure,	in	that	zero,	as	the	name	of
nothing,	is	surely	smaller	than	all	the	other	numbers.	It	is	therefore	a
minimum	for	the	order	structure.

You	can	continue	going	through	the	natural	numbers	like	this	in	the
articulation	between	many	structures:	addition,	multiplication,
division,	prime	factor	decomposition,	and	many	more.	You	will	then
have	established,	far	from	the	primordial,	infra-mathematical	intuition
of	the	1,	the	2,	or	the	3,	a	magnificent	science:	basic	mathematics.	It’s	a
great	temptation,	in	this	case,	to	say	that	natural	numbers	are
reducible	to	a	structural	web,	itself	the	result	of	axioms	that	can	be
changed	in	order	to	obtain	the	formal	essence	of	other	so-called
intuitions.	Let	me	give	you	just	one	example:	I	said	that	there	exists	no
number	between	a	number	n	and	n	+	1	when	we	clearly	have	n	<	n	+	1.
The	space	between	them	is	empty,	it’s	a	hole.	We	can	see	that	this	isn’t
true	for	fractions	(composed	of	natural	numbers).	If	we	have	a/b	<
c/d,	we	definitely	have	at	least	one	fraction	between	them.	To	see	this,
take,	for	example,	the	sum	of	the	two	fractions	divided	by	two.	In	other
words,	(ad	+	bc)/2bd.	(Do	the	math:	the	only	thing	I’m	asking	here,



and	in	this	whole	book,	is	that	you	know	how	to	add	two	fractions.)
And	you	then	show	that	this	fractional	number	is	greater	than	a/b	and
smaller	than	c/d,	and	that	it	is	therefore	between	them	(in	fact,	it’s
exactly	in	the	middle).	Consequently,	the	order,	on	these	fractions,	is
not	discrete:	it’s	a	dense	order,	which	means,	first	of	all,	that	between
two	different	fractions	there	is	always	at	least	a	third	fraction	that	is
different	from	the	first	two.	But	between	the	first	fraction,	a/b,	and	the
one	that	I’ve	just	shown	is	“in	the	middle”	of	the	space	between	a/b
and	c/d	–	(ad	+	bc)/2bd	–	there	must	therefore	exist	one	more	fraction
if	you	perform	the	same	operation.	And	as	this	process	can	continue
“to	infinity,”	we’ll	reach	the	following	very	strong	conclusion:	between
any	two	different	fractions	there	are	always	an	infinite	number	of	other
fractions.	This	gives	real	meaning	to	the	opposition	between	discrete
order	and	dense	order:	where	there	may	be	“nothing”	(between	two
successive	whole	numbers)	there	is	infinity	(between	two	different
fractions).

You	might	ask:	why	does	the	proof	of	infinity,	which	works	for
fractions,	not	work	for	two	successive	natural	numbers,	which	are
fractions	after	all?	I	can	write	the	number	n	as	“n	divided	by	1,”	or	n/1.
And	the	successor	of	n	can	be	written	(n	+	1)/1.	So?	So	the	result	of	the
above	calculation	is	n	+	½,	which	is	indeed	“between”	n	and	n	+	1	but
has	the	drawback	of	…	not	being	a	natural	number.	It’s	possible	to
calculate	it	if	you’re	dealing	with	fractional	numbers	(positive	rational
numbers)	but	not	if	you’re	still	dealing	with	natural	numbers.

In	this	way,	a	structural	edifice	is	gradually	built	up	in	which	relations
seem	to	prevail	over	entities,	or	objects,	or	even	to	determine	their
nature	and	properties.	So	it	is	tempting	to	reduce	all	the	so-called
“intuitive”	objects	to	structural,	or	formal,	manipulations	whose
principle	only	obeys	the	mathematician’s	decisions	or	choices.	What
then	“exists”	are	structured	domains,	which	are	accountable	only	to	the
formalism	by	which	they	are	exhibited.

But	come	on,	though!	Don’t	the	logical	rules	for	deriving	the
consequences	of	the	axioms	have	the	status	of	universal	truth?	Some
mathematicians	have	invented	logics	other	than	traditional	binary
logic	–	fine.	But	those	who	set	out	the	principles	of	a	new	logic
continue	to	think	and	express	themselves	in	accordance	with	the
principles	of	identity	and	non-contradiction	of	good	old	traditional
logic:	they	don’t	say	“black”	and	“white”	at	the	same	time,	and	the
rules	they	lay	down	are	themselves	logically	consistent	in	the	classical
sense	of	the	term.	In	other	words,	above	and	beyond	the	formal



constructions	that	modern	mathematics	has	generated,	isn’t	there
nonetheless	a	primacy	of	classical	logic,	which	remains
unsurpassable	simply	because	it	reflects	the	a	priori	laws	of	our	mind,
as	Kant	claimed?

Well,	you	see,	the	crux	of	classical	logic,	what	seems	to	impose	it
universally	on	people’s	minds,	is	essentially	negation.	Ever	since
Aristotle,	classical	logic	has	been	governed	by	two	main	principles.
First,	the	principle	of	non-contradiction,	which	I	mentioned	a	little
while	ago:	you	can’t	admit	a	proposition	p	and	its	contradiction,	not-p,
in	one	and	the	same	formal	system.	And	second,	the	principle	of	the
excluded	middle:	if	not-p	is	false,	p	has	to	be	true,	and	you	conclude
that	p	is	true.	As	a	result	of	these	two	principles,	double	negation,	that
is,	not-not-p,	is	equivalent	to	simple	affirmation,	that	is,	p.	However,
this	set-up	is	being	challenged	today	by	the	emergence	of	at	least	two
competing	logics,	which	are	relevant	in	the	general	field	of
demonstrative	thought.

First,	at	the	beginning	of	the	last	century,	intuitionist	logic	rejected	the
principle	of	the	excluded	middle	and	built	consistent	formal	systems
that	do	without	it.	It	is	a	logic	that’s	closer	to	our	concrete	experience
than	classical	logic.	For	instance,	we	all	know	that	in	a	political
meeting	there	can	be	not	just	two	mutually	exclusive	positions	but	a
third	position	that	is	ultimately	the	right	one,	the	one	that’s	really
appropriate	to	the	situation.	In	this	case,	Position	2	is	the	negation	of
Position	1,	and	this	negation	obeys	the	principle	of	non-contradiction:
it	is	impossible	for	Position	1	and	Position	2,	which	explicitly
contradict	each	other,	to	be	true	at	the	same	time.	However,	neither
one	of	them	is	true,	since	Position	3	is.	In	such	systems,	it	is	generally
not	the	case	that	the	negation	of	negation	is	equivalent	to	simple
affirmation.

More	recently,	paraconsistent	logic	has	emerged.	In	this	type	of	logical
system,	it	is	the	principle	of	non-contradiction	that	has	no	general
value,	whereas	the	principle	of	the	excluded	middle	may	still	be	valid.
We	then	get	some	complicated	situations.	Take,	for	example,	the	case
of	two	people	who	love	the	same	work	of	art	passionately	and,	to
support	their	conclusion	of	admiration,	give	opposite	reasons	for	it.
These	reasons	may	both	be	true,	since	there	can	be	a	virtually	infinite
number	of	interpretations	of	a	work	of	art.	On	the	other	hand,	the
positivity	of	the	contradiction	operates	within	a	first	opinion	(the	two
people	love	the	same	work	of	art)	to	which	the	excluded	middle	may
apply:	between	“loving	the	work”	and	“not	loving	the	work”	there	may



very	well	be	no	third	position.

Now,	as	it	turned	out,	these	three	logical	styles	are	useful,	or	even
necessary,	in	certain	branches	of	mathematics.	To	be	sure,	mainstream
mathematics	always	operates	within	classical	logic.	But	in	the	context
of	so-called	Category	theory,	which	is	roughly	the	theory	of	relations
“in	general,”	with	no	pre-specification	of	given	objects,	paraconsistent
logic	is	clearly	operative.	In	certain	categories	similar	to	set
mathematics,	such	as	Topoi	theory	(a	topos	is	a	category	in	which	can
be	defined	a	relation	similar	to	the	classical	relation	of	belonging,	the
famous	∈),	the	logic	is	essentially	intuitionistic.	Finally,	the	logical
context	has	in	its	turn	become	variable	and	no	longer	imposes
immutable	laws	on	the	mind,	even	in	mathematics.	Philosophy	has
known	this	for	quite	some	time:	in	the	Hegelian	system,	the	negation
of	negation	is	not	at	all	identical	to	the	original	affirmation.	Its	logic	is
therefore	nonclassical.	In	my	own	system,	the	logic	of	pure	being,	of
being	qua	being,	is	classical,	the	logic	of	appearing	is	intuitionistic,	and
the	logic	of	the	event	and	of	the	truths	dependent	on	it	is
paraconsistent	in	terms	of	the	Subject.

Let’s	go	back	to	the	original	choice,	then:	which	of	these	two	great
conceptions	of	mathematics,	the	realist	one	or	the	formalist	one,
would	you,	Alain	Badiou,	be	in	favor	of?

Between	these	two	visions,	and	without	dwelling	any	further	on	the
arguments	in	favor	of	one	or	the	other	of	them,	I’d	choose	the	former:
there	is	a	real	“content”	to	mathematical	thought.	It’s	neither	a
language	game	–	even	if	complex	formalisms	are	required	–	nor	is	it	an
offshoot	of	pure	logic.	I	agree	with	the	majority	of	mathematicians
about	this	issue.	Obviously,	it’s	a	bit	demagogic	on	my	part	to	use	that
argument:	as	you	know,	even	in	politics,	the	concept	of	“majority”	is
really	not	my	thing.	But	still,	the	truth	is	that	the	majority	of
mathematicians	are	“Platonists.”	They	don’t	believe	in	the	second
thesis,	that	of	the	language	game,	of	total	formalism,	which	is	in	fact	a
thesis	of	essentially	philosophical	origin.	They	believe	that
mathematizable	objects	or	structures	“exist”	in	a	certain	way.	Why	do
they	believe	this?	No	doubt	because	they’ve	experienced	all	too	often
that	“something”	resists	when	you	practice	mathematics,	that	you
come	up	against	a	difficult,	unyielding	reality.	But	what	is	it	that
resists,	then?	If	it’s	just	a	matter	of	a	game	that	has	been	completely
coded	through	and	through,	it	ought	to	be	like	openings	in	chess,	or
some	such	thing.	If	you	know	them	well,	even	where	much	later
developments	are	concerned,	you	already	have	a	strong	strategic



superiority.	However,	generally	speaking,	mathematicians	don’t	have
that	impression.	On	the	contrary,	they	have	the	impression	that	the
path	to	the	solution	of	a	problem	(a	path	it	can	occasionally	take	a	few
centuries	to	get	to	the	end	of,	like	Fermat’s	last	theorem,	which	was	no
small	feat)	is	a	path	that	makes	you	touch	a	real	and	has	a	sort	of
intrinsic	complexity.	What	the	exact	nature	of	that	real	is,	is	a	different
discussion.	But	at	any	rate	you	have	the	feeling	of	touching	an	external
reality,	in	the	sense	that	it’s	not	just	a	fabrication	of	the	mind.	If	it
weren’t	for	that,	it	would	be	hard	to	understand	the	enormous
difficulty	and	the	extraordinary	resistance	you	come	up	against	even	in
attempting	to	prove	certain	properties	that	really	seem	to	be	basic.
Take	an	extremely	simple	question:	twin	primes,	that	is,	primes	that
follow	each	other,	in	that	the	second	number	is	equal	to	the	first	one
increased	by	2.	For	example,	5	and	7,	or	11	and	13,	or	71	and	73,	and	so
on.	The	question	is:	is	there	an	infinite	number	of	twin	primes?
Clearly,	the	farther	you	go	in	the	sequence	of	numbers,	the	“scarcer”
they	become.	But	ultimately,	through	the	use	of	extremely	powerful
computers,	some	really	big	ones	were	found:	twin	primes	requiring
more	than	200,000	figures	to	write	out!	Nevertheless,	compared	with
the	infinity	of	numbers,	even	enormous	numbers	like	those	are	still	not
much.	This	is	just	an	illustration	that	can	touch	the	real	of	the
problem.	So?	Well,	we	still	don’t	know	whether	by	continuing	the
sequence	of	whole	numbers	we	would	still	keep	finding,	“ad	infinitum,”
new	twin	primes.	How	is	it	possible	to	think	that	there’s	no	real	here
other	than	our	own	playful	invention?	How	can	we	not	be	convinced
that	the	infinity	of	natural	numbers	“exists,”	in	a	sense	that	would	need
to	be	clarified?

My	own,	strictly	philosophical,	conclusion	is	that,	in	reality,
mathematics	is	simply	the	science	of	being	qua	being,	i.e.,	what
philosophers	traditionally	call	ontology.	Mathematics	is	the	science	of
everything	that	is,	grasped	at	its	absolutely	formal	level,	and	that’s	why
paradoxical	inventions	of	mathematics	may	be	used	in	physical
investigation.	There	are	some	very	instructive	examples	in	this	respect,
the	most	spectacular	among	them	being	complex	numbers,	the
imaginaries,	which	were	invented	as	a	pure	game	–	they	were	even
called	“imaginaries”	to	make	it	clear	that	they	didn’t	exist.	They	could
be	played	with	even	though	they	didn’t	exist.	Later,	they	became	a
basic	tool	used	in	electromagnetism	in	the	nineteenth	century,
something	that	no	one	could	have	foreseen.	Experiences	like	these
keep	us	from	thinking	that	mathematics	is	purely	and	simply	a	formal,
arbitrary	game.	If,	as	regards	what	is,	you	want	to	know	what	it	means



to	think	only	its	being	(i.e.,	not	the	fact	that	it’s	a	tree,	a	pond,	a	man,
but	the	fact	that	it	is),	the	only	way	to	do	so	is	obviously	to	think	purely
formal	structures,	that	is	to	say,	structures	indeterminate	as	to	their
physical	characteristics.	And	the	science	of	these	structures
indeterminate	as	to	their	physical	characteristics	is	mathematics.	It	is
even	mathematics	that	invented	forms	like	imaginary	numbers	before
it	was	known,	and	even	before	it	could	be	imagined,	that	they	were	in
fact	actualized	or	actualizable	somewhere.

Another	very	famous,	spectacular	example	is	the	theory	of	conics.	The
definition	of	ellipses,	and	the	study	of	them,	was	introduced	in	late
Antiquity	with	Apollonius	of	Perga’s	Treatise	on	Conics.	But	it	wasn’t
until	the	early	seventeenth	century,	or	around	2,000	years	later,	that
scientists	realized,	thanks	to	Kepler,	that	the	orbit	of	the	planets	was
an	elliptical	path,	which	up	until	then	had	been	thought	of	as	a	circle.
In	this	case,	mathematics	was	clearly	the	anticipated	invention,	with
respect	to	pure	being,	of	a	number	of	formal	mechanisms	that	would
later,	in	line	with	the	complex,	haphazard	development	of	the	natural
sciences,	be	actualized	in	relevant	physical	models.	This,	too,	is	proof,
in	my	opinion,	that	mathematics	touches	a	real	but	in	a	way	that	is	not
experimental,	since	it	is	presupposed	in	experience.	It’s	very	clear	that
Apollonius	of	Perga	thought	the	being	qua	being	of	a	planet’s	orbit	but
without	knowing	at	the	time	that	that’s	what	it	was.	This	is	why	I	reject
the	theory	that	mathematics	derives	from	sensory	experience.	It’s	the
other	way	around:	the	real	of	sensory	experience	is	thinkable	only
because	mathematical	formalism	thinks,	“ahead	of	time,”	the	possible
forms	of	everything	that	is.	As	Bachelard	said,	even	the	great
instruments	that	are	used	in	experiments,	from	telescopes	to	giant
particle	accelerators,	are	“materialized	theory,”4	and	presuppose,	even
in	the	way	they’re	constructed,	extremely	complex	mathematical
formalisms.	That,	in	my	opinion,	is	what	solves	the	mystery	of	the
relationship	between	the	formal	sciences	such	as	mathematics	and	the
experimental	sciences	such	as	physics.

But	does	that	really	suffice	to	explain	the	correspondence	between	the
physical	laws	that	govern	the	real	and	mathematical	structures	that
remain	idealities?	Couldn’t	mathematics	exist	without	matter	and	the
real	obeying	the	laws	of	physics,	obeying	regularities,	which	are
moreover	expressible	in	mathematical	language?

I’m	not	claiming	that	mathematics	“needs”	the	structural	forms	it
studies	to	be	validated	by	experience	someday	or	other.	My	thesis	is:
mathematics	is	ontology,	i.e.,	the	independent	study	of	the	possible



forms	of	the	multiple	as	such,	of	any	multiple,	and	therefore	of
everything	that	is	–	because	everything	that	is,	is	in	any	case	a
multiplicity.	This	ontology	can	be	developed	for	its	own	sake.	The
theory	of	second-degree	curves	was	invented	long	before	it	was	applied
to	the	planets,	and	the	binary	number	system	(using	only	0	and	1)	was
known	before	it	became	the	key	to	computer	coding,	and	so	on.	This
was	so	because	the	“idealities”	you	mentioned	are	actually	possible
forms	of	what	is,	insofar	as	it	is,	and	don’t	need	to	be	experienced	as
pure	forms	to	be	known,	that	is,	thought,	by	mathematicians.	That
said,	there	can	be	an	inspiration	of	the	opposite	sort.	The	clearest	case
is	differential	calculus.	There’s	no	question	that	its	development,	by
Leibniz	and	especially	Newton,	was	to	a	large	extent	dictated	by	the
question	of	movement,	by	mechanics,	itself	set	in	motion	by	the
revolution	in	astronomy	–	Kepler,	Galileo	–	and	therefore,	lying
behind	it,	real	observations.	It	could	be	said	that,	in	order	for	the
ontological	substructure	of	rational	mechanics	to	be	thought,	for
questions	like	“What	exactly	is	a	body	in	motion?”	or,	in	particular,
“What	is	acceleration?”	to	be	answered,	a	veritable	mathematical
continent	had	to	be	opened	up,	where	“smallest	difference,”
“infinitesimal,”	“derivative	of	a	function	at	a	point,”	and,	finally,
“limit,”	“integral,”	“differential	equation,”	and	so	forth,	would	be
spoken	about.	But	as	soon	as	that	continent	took	its	purely
mathematical	form,	it	developed	according	to	the	laws	of	ontology,
which	are	axiomatic	and	demonstrative	but	in	no	way	experimental.
You	just	have	to	look	at	Cauchy’s	final	definition	of	limit.	The
“intuitive”	idea	is	that	of	a	variable	that	approaches	a	point,	which	is
the	limit	of	its	movement.	This	becomes,	in	ontological,	that	is	to	say,
mathematical,	jargon:	“Let	Sn	be	a	sequence	of	real	numbers,	with	n
ranging	from	0	to	infinity.	The	number	L	is	said	to	be	the	limit	of	this
sequence	if,	for	any	given	real	number	ε,	however	small,	there	exists	a
number	n	such	that	|	L	–	Sn	|	<	ε.”	This	definition	makes	the	supposed
–	and	originally	operative	–	intuition	disappear	in	the	icy	waters	of
symbolic	calculation.

If	the	laws	of	physics	happen	to	obey	regularities	that	can	only	be
formalized	in	the	language	of	mathematics,	it’s	only	because	the	aim	of
that	language	has	always	been	to	think	the	possible	forms	of	everything
that’s	based	in	its	being	on	some	consistency.	Now,	what	exists	is	in
fact	made	up	of	multiplicities	that	have	a	certain	consistency.	If	this
weren’t	so,	it	would	mean	that	there	would	only	be	totally
unpredictable	chaos	at	every	moment.	As	regards	this	point,
experience	–	unavoidable	when	it	comes	to	physics	–	reasonably	shows



that	that	this	is	generally	not	the	case:	we	observe	regularities,
consistent	objects,	a	fixed	sky,	unchanging	motions,	etc.	Hence	the
intersection	of	physics	and	mathematics,	which	doesn’t	preclude	but
rather	presupposes	the	independence	of	mathematics	as	an	apparatus
of	thought.

1.	Gaston	Bachelard,	Le	Nouvel	esprit	scientifique	(Paris:	Presses
Universitaires	de	France,	1934),	14.



IV
An	Attempt	at	a	Mathematics-based
Metaphysics
I’d	like	for	us	to	talk	specifically	about	the	way	mathematics	has
inspired	your	own	work	in	philosophy.	The	metaphysics	you’ve
developed	is,	if	not	propaganda	(!)	for,	at	least	an	attempt	at,	re-
entwining	philosophy	and	mathematics.	How	are	they	connected	to
each	other	in	your	philosophical	system?

What	has	my	philosophical	strategy	been	for	about	thirty	years	now?
It’s	been	to	prove	what	I	call	the	immanence	of	truths.	As	I	already
mentioned,	I	call	“truths”	(always	in	the	plural;	there’s	no	such	thing	as
“the	truth”)	particular	creations	with	universal	value:	works	of	art,
scientific	theories,	politics	of	emancipation,	passionate	loves.	In	a
nutshell,	let’s	say:	scientific	theories	are	truths	about	being	itself
(mathematics)	or	the	“natural”	laws	of	the	worlds	about	which	we	can
have	experiential	knowledge	(physics	and	biology).	Political	truths
concern	the	organization	of	societies,	the	laws	of	collective	life	and	its
reorganization,	all	in	the	light	of	universal	principles	such	as	freedom
and,	today,	primarily,	equality.	Artistic	truths	have	to	do	with	the
formal	consistency	of	finished	works	that	sublimate	what	our	senses
perceive:	music	in	terms	of	hearing,	painting	and	sculpture	in	terms	of
sight,	poetry	in	terms	of	speech	…	Last	but	not	least,	the	truths	of	love
relate	to	the	dialectical	power	contained	in	the	experiencing	of	the
world	not	from	the	point	of	view	of	the	One,	of	individual	singularity,
but	from	the	point	of	view	of	the	Two,	and	hence	with	a	radical
acceptance	of	the	other	person.	These	truths,	as	is	clear,	are	not
philosophical	in	origin	or	nature.	But	my	aim	is	to	salvage	the
(philosophical)	category	of	truth	that	distinguishes	between	them	and
names	them,	by	legitimizing	the	fact	that	a	truth	can	be:

—	absolute,	while	at	the	same	time	being	a	localized	construction;

—	eternal,	while	at	the	same	time	resulting	from	a	process	that
begins	in	a	determi-nate	world	(in	the	form	of	an	event	in	that
world)	and	thus	belongs	to	the	time	of	that	world.

These	two	properties	require	truths	–	whether	scientific,	esthetic,
political,	or	existential	–	to	be	infinite,	without	resorting	to	the	idea	of
a	God,	whatever	its	form.	So	I	obviously	have	to	begin	with	the
question:	on	what	ontology	of	infinitebeing,	which	is	in	no	way



religious	and	excludes	any	transcendence,	can	I	ground	my	project?	It
is	here	that	begins	the	long	march	in	which	radical	new	ideas	–
especially	mathematical	ones	–	concerning	infinity,	or,	more	precisely,
infinities,	come	into	the	picture.

And	is	that	where	mathematics	becomes	necessary?

Broadly	speaking,	what	mathematics	ultimately	makes	possible,	how	it
offers	itself	–	without	its	knowing	or	even	caring	about	it	–	as	a
speculative	resource	to	philosophers	who	want	to	go	beyond
contemporary	relativism	and	restore	the	universal	value	of	truths,	is
what	I’d	call	the	possibility	of	an	absolute	ontology.	Today,	it	is	pretty
much	accepted,	for	example,	that	artistic	taste	is	a	question	of	local
culture,	of	a	particular	“civilization,”	or	that	love	is	a	contingent,
terminable	choice,	which	is	supposed	to	provide	a	contract	with
mutual	benefits	for	the	couple.	In	politics,	it’s	taken	for	granted	that
there	is	no	truth,	only	volatile	opinions	that	should	be	formed
empirically	as	much	as	possible.	I,	on	the	contrary,	am	convinced	that
there	are	absolute	truths,	which,	although	extracted	at	the	time	of	their
creation	from	a	particular	soil	(a	moment	in	history,	a	country,	a
language,	and	so	on),	are	nevertheless	constructed	in	such	a	way	that
their	value	becomes	universalized.	To	prove	this,	I	have	to	show	that,
within	the	framework	of	my	ontology	of	the	multiple,	a	whole	new
dialectic	of	the	finite	and	the	infinite,	and	therefore	a	completely	new
relationship,	too,	between	our	“ordinary”	existence	and	our	existence
in	relation	to	an	absolute	truth,	can	be	established.	This	is	what	I’ve
also	called	“living	under	the	authority	of	an	Idea.”	Or	“the	true	life.”

But	what	is	meant	by	“an	absolute	ontology”?

What	I	mean	by	“an	absolute	ontology”	is	the	existence	of	a	universe	of
reference,	a	site	for	the	thinking	of	being	qua	being,	having	four
characteristics:

1.	It	is	motionless,	or	changeless,	in	the	sense	that,	although	it	makes
possible	the	thinking	of	movement,	or	change,	as,	for	that	matter,	any
rational	thought,	it	is	itself	foreign	to	that	category.

Consider,	for	example,	the	case	of	movement,	as	a	matter	of	fact:	a	real
motion	is	located	in	a	world;	it	is	particular.	But	the	mathematical
equation	that	formalizes	the	thinking	of	movement	has	no	specific
location	itself,	except,	in	fact,	its	mathematical	absoluteness.	A	stone
falls	somewhere,	but	the	value	of	the	acceleration	of	its	falling	motion,
as	calculated	by	post-Newtonian	physics,	is	no	different	in	kind	from
when	it’s	a	question	of	a	different	stone,	somewhere	else.



2.	It	is	completely	intelligible	in	its	being	on	the	basis	of	nothing.	Or:
there	is	no	entity	of	which	it	would	be	the	composition.	Or	again:	it	is
non-atomic.

Take	a	revolutionary	movement,	an	uprising	that	will	become	historic,
such	as	the	storming	of	the	Bastille,	let’s	say.	Considered	in	terms	of	its
pure	political	value,	as	a	symbol,	a	reference	point,	an	absolute
beginning	of	a	process,	this	event	cannot	be	broken	down	into	separate
units.	It’s	not	the	result	of	an	addition	of	factors;	it’s	“absolute”	in	the
sense	that,	albeit	particular	in	all	its	components	(the	people	who	are
there,	the	series	of	things	that	happen,	and	so	on),	this	particularity
disappears	in	an	evental	synthesis	that	can’t	be	broken	down	into
minimal	components.

3.	So	it	can	only	be	described,	or	thought,	by	means	of	axioms,	or
principles,	to	which	it	corresponds.	There	can	be	no	experience	or
construction	of	it	that	depends	on	an	experience.	It	is	radically	non-
empirical.	You	could	also	say	that	it	exists	(for	thought)	even	though	it
is	not.

This	characteristic	helps	us	understand	what	happens	when	an	event
or	a	work	(May	’68,	Relativity,	Héloïse	and	Abélard,	or	Picasso’s
Guernica)	is	said	to	be	an	achievement	for	all	of	humanity:	we	then
share,	in	connection	with	whatever’s	being	talked	about,	the	principles
–	whether	political,	scientific,	artistic,	or	amorous	–	that	make	it
possible	to	affirm	a	universal	value.	Here,	description	alone	doesn’t
allow	us	to	reach	a	conclusion.	What’s	needed	is	the	mediation	of	what
constitutes,	axiomatically,	a	principle.	All	absoluteness	is	axiomatic
and	therefore	so	is	any	affirmation	of	the	universal	value	of	a	work	or
an	event.

4.	It	obeys	a	principle	of	maximality	in	the	following	sense:	any
intellectual	entity	whose	existence	can	be	inferred	without
contradiction	from	the	axioms	that	prescribe	it	exists	by	this	very	fact.

With	regard	to	an	ongoing	political	action,	you	can	speak	about	the
1917	Russian	Revolution,	in	the	sense	that	you	claim	allegiance	to	it,
provided	you’re	able	to	show	how	a	given	aspect	of	your	action	is
consistent	with	the	principles	in	whose	name	you	regard	the	Russian
Revolution	as	having	an	absolute	value.	In	this	sense,	you	exist
“timelessly,”	so	to	speak,	with	the	Russian	Revolution	as	a	co-
consequence	of	these	principles.

So	we	need	to	renounce	God	without	forfeiting	any	of	the	benefits	he
provides.	We	must	find	an	immanent	and	absolute	ontological



guarantee,	which	has	been	completely	transferred	over	to	the	simple
multiple	as	such,	of	immanence	to	the	existing	world,	while	still
preserving	the	four	key	principles	of	changelessness,	composition	on
the	basis	of	nothing,	the	purely	axiomatic	disposition,	and	the
principle	of	maximality.

That	seems	like	a	well-nigh	impossible	task:	in	the	metaphysical
tradition,	the	guarantee	of	both	infinity	and	absoluteness	is
transcendental.	Even	for	Hegel,	the	Absolute,	which	is	historical,
which	is	“the	becoming	of	its	own	self,”	remains	at	least	One:	it	has	an
infinite	unity	such	that	it	can	still	be	called	God.	You,	however,	seem
to	want	to	absolutize	the	multiple	as	such.	Is	it	there	that	mathematics
comes	to	your	aid?

That’s	exactly	right.	Set	theory,	which	can	also	take	in	all	mathematics,
as	the	Zermelo-Fraenkel	formalizations	and	the	French	Bourbaki
group’s	enormous	efforts	have	shown,	is	an	absolute	theory	of	the
undifferentiated	multiple	(which	originally	has	no	property	other	than
being	multiple).	Right	from	Being	and	Event	(first	published	in	1988),
I	thus	proposed,	in	order	to	reach	the	goal,	to	preserve	the
absoluteness	of	truths	without	having	recourse	to	any	God,	and	to
simply	incorporate	set	theory,	as	a	founding	mathematical	condition,
into	philosophical	reflection.

So	was	it	your	sole	guide?	Mathematics,	as	the	Ariadne	of	the
philosophical	Theseus	in	the	labyrinth	of	the	Absolute?

At	any	rate,	it	can	be	proved	without	too	much	difficulty	that	set	theory
obeys	the	four	principles	of	absoluteness	that	I	just	mentioned.

Changelessness:	This	theory	is	concerned	with	sets	for	which	the
concept	of	change	is	meaningless.	These	sets	are	extensional,	which
means	they’re	entirely	defined	by	their	elements,	by	what	belongs	to
them.	Two	sets	that	do	not	have	the	exact	same	elements	are	absolutely
different.	And	so	a	set	as	such	cannot	change,	since,	just	by	changing	a
single	point	of	its	being,	it	loses	it	altogether.

Composition	on	the	basis	of	nothing:	The	theory	does	not	initially
introduce	any	primordial	element,	atom,	or	positive	singularity.	The
whole	hierarchy	of	multiples	is	built	upon	nothing,	in	that	it	only	needs
the	existence	of	an	empty	set	to	be	postulated,	a	set	that	contains	no
elements	and	is	for	that	very	reason	the	name	of	pure	indeterminacy.

Axiomatic	prescription:	The	existence	of	a	given	set	is	only	inferred	at
first	either	from	the	void	as	originally	postulated	or	from	the
constructions	allowed	by	the	axioms.	And	the	guarantee	of	this



existence	is	nothing	but	the	principle	of	non-contradiction	applied	to
the	consequences	of	the	axioms.	Obviously,	whether	these	axioms,
historically	selected	by	the	mathematical	community,	are	the	best
ones,	or	especially	whether	they	are	sufficient	for	thinking	multiple-
being	qua	being	is	a	question	that	has	no	answer	a	priori.	It	is	the
history	of	mathematical	and	philosophical	ontology	that	will	decide.
All	we	can	do	is	admit	a	principle	of	openness,	which	is	formulated	as
the	fourth	point.

Maximality:	An	axiom	prescribing	the	existence	of	a	given	set	can
always	be	added	to	the	theory’s	axioms,	provided	it	can	be	proved,	if	at
all	possible,	that	this	addition	introduces	no	logical	inconsistency	into
the	overall	construction.	These	additional	axioms	are	usually	called
“axioms	of	infinity”	because	they	define	and	postulate	the	existence	of
a	whole	hierarchy	of	ever	more	powerful	infinities.

This	last	point	is	clearly	of	the	utmost	importance	to	my	objective	of
proving	the	infinity	of	any	truth.	The	fact	that	this	theory	is	not	and
cannot	be	a	monotheistic	theory	derives	from	a	famous	proof:	the
proof	of	the	non-existence	of	the	One.	If	indeed	we	conceive	of	the	One
–	and	this	is	unavoidable	when	it	comes	to	an	ontological	guarantee	–
as	verifying	Proposition	XV	of	Book	I	of	Spinoza’s	Ethics:	“Whatever	is,
is	in	God,	and	nothing	can	be	or	be	conceived	without	God,”	it	must	be
admitted	that	any	particular	multiplicity,	any	set,	is	an	element	of	this
One,	which	thus	deserves	to	be	called	God.	And	this	is	what	is
mathematically	impossible:	you	in	fact	prove	–	a	really	nice,	simple
proof	–	that	a	set	of	all	sets	cannot	exist.	But	in	that	case	it’s
impossible,	if	the	axiomatized	multiple	is	the	immanent	form	of	being
qua	being,	for	a	being	such	that	all	being	is	in	it	to	exist,	since	it	would
have	to	be	a	multiple	of	all	multiples,	which	is	a	contradiction	in	terms.

But	if	the	multiples	formalized	by	mathematics	do	not	themselves
form	a	set	that	is	really	One,	what	is	the	domain	of	existence	of	the
objects	(the	multiples)	studied	by	set	theory?

The	solution	is	to	speak	about	nothing	but	the	system	of	axioms	at	the
outset.	We’ll	conventionally	call	V,	the	letter	V	–	which	can	be	said	to
formalize	the	Vacuum,	the	great	void	–	the	(truly	inconsistent,	since
non-multiple)	site	of	everything	that	can	be	constructed	from	the
axioms.	What	is	metaphorically	“in	V”	is	what	can	satisfy	the	axiomatic
injunction	of	set	theory.	This	means	that	V	is	actually	just	the	set	of
propositions	that	can	be	proved	from	the	axioms	of	the	theory.	It	is	a
being	of	language,	exclusively.	It	is	customary	to	call	such	beings	of
language	“classes.”	We	shall	therefore	say	that	V	is	the	class	of	sets,	but



bear	in	mind	that	this	is	a	theoretical	entity	that	is	unrepresentable,	or
that	has	no	reference,	since	it	is	in	fact	the	site	of	the	absolute
reference.	V	exists	as	the	possible	and	ultimate	site	of	experiments	of
mathematical	thought,	of	decisions	and	proofs.	But	as	a	set,	as	a
totality,	it	has	no	being,	precisely	because	to	have	a	being	is	to	be	a
multiplicity,	and	therefore	to	belong	to	V,	which	V	itself	wouldn’t	be
able	to	do.

It’s	with	respect	to	the	assumption	that	such	a	V	“exists,”	without,
however,	being,	that	the	question	arises	of	the	relations	and	non-
relations	between	the	finite	and	the	infinite,	and	therefore	the	rational
framework	of	both	an	ontology	of	infinity	(or,	more	precisely,	of
infinities)	and	a	critique	of	finitude.

And	is	this	where	you	got	into	the	intimate	connection	between
mathematical	ontology	and	the	philosophical	theory	of	the	concept	of
truth?

Exactly.	I	simply	said	this:	being	is	multiplicity.	The	rational	theory	of
the	different	possible	forms	of	the	multiple	is	set	theory.	A	truth,	like
everything	that	exists,	is	also	a	multiple.	But	how	can	a	multiple	bear
or	be	a	vehicle	for	a	universal	value?	I	then	looked	for	a	clue	to	this	in
mathematics.	It	was	an	adjective	–	found	in	a	very	contemporary	area
(it	began	in	1962)	of	set	theory	–	that	caught	my	attention:	the
adjective	“generic.”	There	are	such	things	as	“generic”	multiplicities,
defined	by	the	mathematician	Paul	Cohen.	I’m	not	going	to	explain
what	they	are;	it	would	be	too	long	and	complicated.	But	I	did	so
meticulously	in	Being	and	Event.	I	can	nevertheless	point	out	here	that
Marx,	in	the	Manuscripts	of	1844,	in	fact	speaks	about	the	proletariat
as	a	“generic”	social	set.	And	what	does	he	mean	by	that?	He	means
that	there	is	a	universal	truth	to	the	proletariat,	that	the	proletarian
revolution	will	emancipate	humanity	as	a	whole.	So	I	was	able	to
introduce	the	following	hypothesis:	the	being	of	a	truth,	what	gives	it	a
universal	form,	is	to	be	a	generic	set.	The	“welding	together”	of	a
mathematical	discovery	(Cohen,	1962)	and	a	philosophical	proposition
(Badiou,	1988)	finds	a	sort	of	pure	form	here.



V
Does	Mathematics	Bring	Happiness?
You	make	an	initially	rather	surprising	claim,	namely	that
mathematics,	far	from	being	an	austere	practice	reserved	for	a	little
caste	of	specialists,	is	the	shortest	way	to	what	you	call	“the	true	life,”
in	other	words,	the	happy	life.	Do	you	think	mathematicians	seem
happier	than	other	people?

Look,	that’s	no	concern	of	mine!	It’s	no	concern	of	mine	because	it’s
uncertain	whether	creative	mathematicians	make	the	best	use	of
mathematics	when	it	comes	to	existence,	to	life.	The	mathematician	is
totally	immanent	to	mathematical	production,	in	his	very	definition,
and,	like	all	intense	subjectivation,	that	may	well	involve	a	good	deal	of
anxiety.	Just	think,	for	example,	of	how	violently	Grothendieck,	who
was	probably	the	greatest	mathematician	of	the	second	half	of	the
twentieth	century,	broke	with	the	mathematical	community	and,	in	a
way,	with	mathematics	itself,	at	least	publicly.	He	took	off	for	the
South	to	raise	sheep	and	devote	himself	to	the	environment.	That	said,
this	anxiety,	about	mathematical	production,	about	the	close
relationship	with	ontology,	also	involves	moments	of	elation	or	ecstasy.
And	that	dialectic	exists	on	a	case-by-case	basis;	I	obviously	can’t
propose	a	theory	of	it.

But	could	you	perhaps	give	a	personal	example?

It’s	true	that	we	need	to	have	a	picture	of	what	mathematical	work	is	in
practice,	even	just	in	terms	of	learning	how	to	do	it.	For	instance,	I
remember	one	of	the	nights	I	spent	a	long	time	ago	trying	to
understand	the	proof	of	a	philosophically	fascinating	theorem,	one	of
Cantor’s	fundamental	theorems,	which	essentially	says	that	there	are
always	more	subsets	of	a	set	than	there	are	elements.	I’d	like	to	give
you	an	idea	of	this	night-time	experience,	of	the	intense	happiness	I
felt	when	I	understood	both	the	proof	and	its	philosophical
implications.

Let’s	start	with	what’s	easiest.	A	multiplicity,	let’s	say	S,	is	composed	of
elements,	let’s	say	x,	y,	etc.	Note	that	x,	y,	and	the	rest	are	also	sets,
but,	here,	they	feature	as	elements	of	another	set,	S.

Any	grouping	of	the	elements	of	S	constitutes	a	subset	of	S.	For
example,	the	pair	x	and	y,	which	is	written	as	{x,	y},	is	a	subset	of	S.



It	is	certain	that	there	are	at	least	as	many	subsets	of	S	as	there	are
elements.	Indeed,	for	every	element	x	there	exists	a	subset	that	is	the
set	of	which	x	is	the	only	element,	a	set	written	as	{x}	and	called	the
singleton	of	x.	It’s	important	to	understand	the	difference	between	x
and	{x}:	like	everything	that	exists	in	set	theory,	x	is,	as	I	said,	a	set,
which	can	contain	a	large	quantity	of	elements,	whereas	the	singleton
of	x	is	a	set	that	contains	one	and	only	one	element,	namely,	x.

Since	you	can	make	the	subset	{x}	correspond	to	any	element	x	of	S,
there	are	definitely	as	many	subsets	as	there	are	elements.	In	other
words,	there	cannot	be	fewer	subsets	than	there	are	elements.	Now,
can	there	be	exactly	as	many	subsets	as	elements?	If	that’s	not	the	case,
then	we’ll	be	sure	that	there	are	more	subsets	than	elements,	since
there	cannot	be	either	fewer	of	them	or	as	many	…

Cantor’s	theorem	doesn’t	prove	directly	that	there	are	more	subsets
than	elements	but	that	it’s	impossible	for	there	to	be	as	many	subsets
as	elements.	This	is	what	could	be	called	“indirect	reasoning”:	rather
than	directly	establish	the	fact	that	there	are	more	subsets	than
elements,	you	arrive	at	it	negatively,	via	the	proof	that	there	can’t	be	as
many	(and	knowing	that	there	can’t	be	fewer).

Negation	will	play	an	even	bigger	part	in	all	this,	something	that
always	fascinates	me.	Once	again,	we	find	reasoning	by	the	absurd,
which	I	mentioned	in	connection	with	Parmenides	and	the	Greek
origin	of	mathematics.	It	won’t	be	shown	directly	that	it’s	impossible
for	there	to	be	as	many	subsets	as	elements;	instead,	it	will	be	shown
that	it	is	impossible	for	that	to	be	possible.	It	will	be	assumed	that
there	is	a	set	S	such	that	it	contains	as	many	subsets	as	elements.	And
an	“impossible,”	self-contradictory	subset	is	then	constructed,	which
wrecks	the	original	hypothesis.	It	is	here,	in	my	opinion,	that	we	find
the	most	typical	process	of	mathematical	reasoning,	as	I	already	said:
you	assume	the	false,	and	through	the	inadmissible	consequences	of
the	false	you’re	compelled	to	affirm	the	true.

So	let’s	assume	that	there	exists	S	with	as	many	elements	as	subsets.
This	amounts	to	saying	that	there’s	an	exact	and	complete
correspondence	between	all	the	elements	–	x,	y,	z,	etc.	–	of	S	and	all
the	subsets	(let’s	call	them	A,	B,	C,	and	so	on)	of	S.	What’s	very	striking
is	that	every	subset	has	a	name,	which	is	the	element	corresponding	to
it;	that	every	element	is	the	name	of	a	subset;	that	two	different	subsets
have	two	different	element-names;	and	for	two	different	element-
names	there	exist	two	different	subsets.	With	these	rules
(mathematicians	call	this	a	“biunivocal	correspondence”	between	the



elements	and	the	subsets),	it	can	be	said	that	subset	A	is	“named”	by
an	element	x,	subset	B	by	an	element	y,	and	so	on.	And	since	the
correspondence	is	total	and	complete,	all	the	subsets	and	all	the
elements	are	used	in	this	“naming.”

It	was	then	that,	by	what	seemed	almost	like	a	magic	trick	to	me	during
the	night	I’m	talking	about,	an	“impossible”	subset	was	constructed.	To
that	end	(and	this	was	the	brilliant	idea),	two	kinds	of	elements	of	S
were	distinguished:	the	elements	that	are	in	the	subset	that	they	name
(let’s	say	z	is	the	element	of	S	that	names	subset	B,	and	it	is	in	subset
B)	and	the	elements	that	are	not	in	the	subset	that	they	name	(let’s	say
y	is	the	element	of	S	that	names	subset	C,	but	it	is	not	an	element	of	C).
This	is	a	strict	and	total	division:	clearly,	an	element	is	either	in	or	not
in	the	subset	it	names;	there	is	no	third	possibility.

Now	let’s	consider	all	the	elements	of	S	that	have	the	following
property:	they	are	not	elements	of	the	subset	that	they	name.	They	do
form	a	subset	of	S	(a	subset	of	S	is	any	set	of	elements	of	S).	Let’s	call
this	subset	P	(for	“paradoxical”).	Since	it’s	a	subset	of	S,	it	is	named	by
an	element	of	S,	let’s	say	xp.	There	are	two	possibilities.	One	is	that	xp
is	not	an	element	of	P.	In	that	case,	it	has	the	property	of	the	elements
that	make	up	subset	P,	namely,	not	being	in	the	subset	that	they	name.
And	therefore	it	is	in	P.	A	blatant	contradiction:	the	consequence	of	the
hypothesis	that	xp	is	not	in	P	is	that	it	is	in	P!	Therefore,	it	is	in	P.	But,
in	that	case,	it	has	to	have	the	property	of	the	elements	that	are	in	P,
namely,	not	being	in	the	subset	that	they	name.	But	xp	does	in	fact
name	P.	Therefore,	it	shouldn’t	be	in	P.	Another	contradiction:	the
consequence	of	the	hypothesis	that	xp	is	in	P	is	that	it	isn’t	in	it!

What	can	we	conclude	from	all	this?	Clearly,	that	our	original
hypothesis	(there	are	as	many	elements	as	there	are	subsets,	every
element	names	a	subset,	etc.)	is	false.	Therefore,	there	are	more
subsets	than	elements.

I	eventually	arrived	at	a	philosophical	thinking	of	this	remarkable
process.	Within	the	framework	of	reductio	ad	absurdum,	you
strategically	assume	what	you	actually	think	is	false.	You	examine	the
consequences	of	such	an	assumption.	And	if	you’re	right	(that	is,	if
your	strategy	is	to	assume	the	false),	you	have	a	chance	of	finding	a
truly	impossible	consequence.

In	other	words,	you	reach	the	true	by	making	the	impossible	emerge
from	the	false.	Well,	then,	when	you’ve	really	understood	this,	in	the
middle	of	the	night,	and	you’re	young	and	want	to	be	surprised	as	well



as	satisfied,	you’re	happy!	As	an	added	bonus,	you’ve	got	a	political
schema:	the	fact	that	there	are	more	subsets	than	elements	in	any	set
means	that	the	richness,	the	deep	resource,	of	collectivity	(the	subsets)
prevails	over	that	of	individuals.	At	an	abstract	level,	Cantor’s	theorem
refutes	the	contemporary	reign	of	individualism.

You	mentioned	a	magic	trick:	using	the	false	to	obtain	the	true	via	the
impossible	is	actually	pretty	mysterious.

You	could	say	this:	mathematics	is	wrapped	in	a	sort	of	mystery,	but
it’s	ultimately	a	mystery	in	broad	daylight.	So	it	is	true	that,	already	at
this	purely	practical	level,	there’s	the	experience	of	a	strange	pleasure.
Let’s	indulge	in	a	bit	of	elementary	Freudianism:	what	we’ve	got	here	is
the	childlike	mixture	of	mystery	and	pleasure,	because	we’ll	“see”
something	we’ve	never	seen	before.	The	false	will	turn	into	the	true.
The	real	will	be	revealed	when	an	“impossible”	object	is	found.	Where
Freud	is	concerned,	we	know	full	well	what	the	object	is.	Where	the
mathematician	is	concerned,	it’s	probably	not	exactly	the	same	thing,
but	there’s	a	connection,	because	the	mathematical	proof	is	the	process
of	a	seeing	[un	voir].	You	go	back	over	everything	once	you’ve
understood	it	all.	But	it’s	no	longer	the	difficult	steps,	the	interminable
calculations	you	get	bogged	down	in,	that	will	fix	it	in	your	memory.
What	will	fix	it	in	your	memory	is	your	having	understood.	Now,	if
you’ve	understood	and	grasped	something,	it’s	because	you’ve	seen
something	you’d	never	seen	before,	and	it	is	this	ineffable	pleasure	that
will	remain.

I	think	this	sensation	is	paradigmatic	of	what	philosophers	call
happiness,	and	it’s	not	something	I	invented	either.	As	you	know,	at
the	end	of	his	Ethics,	Spinoza	speaks	about	intellectual	beatitude,
intellectual	beatitude	that	is	nothing	but	the	fact	that	one	has	arrived
at	an	“adequate	idea.”	And	the	only	examples	of	adequate	ideas	he
gives	are	in	fact	connected	to	mathematics.	What	he	explains	is	that,
with	an	adequate	idea,	an	idea	of	the	third	kind,	you’re	no	longer
involved	in	the	unfolding	of	the	proof	(that	would	still	be	the	second
kind	of	knowledge),	you’re	no	longer	involved	in	the	tedium	of	the
proof,	in	the	mathematical	exercise,	but	in	its	recapitulative	synthesis.
This	is	what	I	call	the	moment	when	you’ve	understood	–	indeed,
Lacan,	as	a	true	Freudian,	speaks	about	“the	moment	of
understanding.”	Sure,	you’ve	had	to	go	through	the	tedious	steps	of	the
proof,	but	there’s	a	moment	when	the	light	dawns.	And	that’s	what
Spinoza	called	the	adequate	idea,	knowledge	of	the	third	kind.	And	it’s
simply	the	image	of	happiness	for	him,	which	he	calls	beatitudo



intellectualis,	intellectual	happiness.

But	is	this	happiness	of	understanding	really	specific	to	mathematics?
Isn’t	it	experienced	in	philosophy,	too,	for	example,	when	our	reading
of	a	classical	writer	suddenly	seems	to	shed	new	light	on	our	lived
experience?	And	the	feeling	that	you	mentioned	of	having	surmounted
a	problem	–	isn’t	that	comparable	to	an	athlete’s	when,	after	long
hours	of	training,	he	or	she	finally	succeeds	in	performing	a	very
difficult	movement	as	though	it	were	second	nature?

I’m	not	about	to	argue	that	mathematics	has	a	monopoly	on
happiness!	Nevertheless,	the	athlete’s	joy	is	narcissistic:	he	or	she	has
succeeded,	as	an	individual	self,	in	doing	something.	Whereas	the	joy
you	feel	in	mathematics	is	immediately	universal:	you	know	that	what
you’re	feeling	will	also	be	felt	by	anyone	following	the	reasoning	and
understanding	it	as	he	or	she	goes	along.	Happiness,	in	mathematics
more	than	anywhere	else,	is	the	difficult	pleasure	of	the	universal.
Sure,	philosophy	also	aspires	to	guide	the	subject	toward	this
happiness.	But,	let	me	remind	you,	philosophy,	in	turning	toward	its
conditions,	shows,	under	the	generic	name	“truths,”	where	the	sources
of	happiness	lie,	more	than	being	one	of	those	sources	itself.

Do	you,	personally	speaking,	still	take	pleasure	today	in	practicing
mathematics?	Does	it	afford	you	a	happiness	comparable	to
philosophy?

Let	me	repeat:	I	don’t	claim	that	philosophy	as	such	produces
unparalleled	happiness,	not	at	all.	The	real	roots	of	happiness	lie	in
subjective	commitment	to	a	truth	procedure:	the	elation	felt	in	the
intense	moments	of	collective	political	engagement,	the	pleasure
afforded	by	a	work	of	art	that	particularly	moves	you,	the	joy	of	finally
understanding	a	complex	theorem	that	opens	up	a	whole	array	of	new
thoughts,	the	ecstasies	of	love,	when,	as	two,	you	go	beyond	the	closed,
purely	finite,	nature	of	the	perceptions	and	emotions	of	an	individual.
What	I’m	saying	is	that	philosophy	forges	a	concept	of	“Truth”
appropriate	to	the	new	truths	of	its	times	and	thereby	indicates	the
possible	paths	to	a	becoming-subject,	paths	blocked	by	the	dominant
opinions	that	establish	the	supremacy	of	individual	pleasures	and/or
the	cult	of	conformism	and	obedience.	Philosophy	is	not	a	happy
practice	of	the	existence	of	a	few	real	truths;	it	is	instead	a	sort	of
presentation	of	the	possibility	of	truths,	and	so	it	teaches	us	the
possibility	of	happiness.	That’s	why	I	call	it	“the	metaphysics	of
happiness,”	not	“the	theory	of	happiness.”	It’s	in	this	context	that	I
continue	to	practice	mathematics	with	great	pleasure.	Especially	since



mathematical	truths	play	a	vital	role	in	the	metaphysics	that	I’m
proposing.

I’d	like	to	come	back	for	a	moment	to	the	question	of	happiness,	if
indeed	a	clear	definition	of	it	can	be	given.	Do	you,	following	in	the
footsteps	of	most	of	the	philosophers	of	Antiquity,	think	it	is
necessarily	philosophy’s	horizon?

I	do	in	fact	think	that	philosophy	has	no	other	objective	than	this:	to
help	anyone	understand,	in	the	sphere	of	his	or	her	own	life
experience,	what	a	happy	direction	in	life	is.	You	could	also	say:	to
provide	everyone	with	the	certainty	that	the	true	life,	the	life	of	a
Subject	freely	guided	by	a	true	idea,	is	possible.	Yes,	I	can	say	that
without	hesitation.	When	Plato	–	my	old	master	–	relentlessly	insists
that	the	philosopher	is	happier	than	the	tyrant,	what	he	is	trying	to	tell
us	is	that	anyone	who	participates	in	a	truth	procedure,	and	does	so
concretely,	vitally,	really,	not	abstractly,	anyone	who	has	a	life	devoted
to	his	or	her	highest	capacities,	a	life	of	a	free	Subject,	not	a	passive	or
empty	life,	well,	he	or	she	is	happier	than	the	pleasure-seeker.	Because,
in	Plato,	the	tyrant	is	not	primarily	a	political	leader;	he’s	someone
who	can	satisfy	all	his	desires	–	that’s	how	Plato	defines	him.

And	what	is	this	happiness	that’s	greater	than	the	petty	pleasures
available	in	stores?	Is	there	a	happiness	greater	than	those	pleasures?
That’s	the	big	question	of	philosophy.	Our	societies,	domesticated	by
Capital	and	commodity	fetishism,	say	that	there	isn’t.	But	philosophy,
tenaciously	and	right	from	the	start,	has	striven	to	make	us	think	that
there	is	ultimately	a	happiness	that	isn’t	necessarily	at	odds	with	the
petty	pleasures,	that	doesn’t	prohibit	them,	but	is	deeper,	more
intense,	more	appropriate,	in	a	nutshell,	to	the	desire	of	a	free	Subject,
a	Subject	in	a	positive	relationship	with	a	few	truths.	You	could	say
this:	the	commercial	mindset	of	short-lived	pleasures,	of	personal
wellbeing,	is	like	a	feeble,	dispersed	light	that	leaves	us	in	the	dark	of
life,	with	only	a	few	openings,	a	few	narrow	slits	through	which	light
projected	from	the	outside	passes.	What	philosophy	says	is	that	we	can
open	much	larger	windows	onto	this	luminous,	freer,	less	profit-driven
outside.	We	can,	as	Plato’s	famous	allegory	has	it,	get	out	of	the	cave.

But	what	can	that	possibly	have	to	do	with	mathematics?

Well,	even	though	it	might	seem	like	a	paradox	or	something	very
strange,	mathematics	plays	a	part	in	this.	Sort	of	like	a	scale	model.	It
acts	as	a	model	in	that	there’s	a	very	clear	relationship	in	mathematics
between	the	difficulty	of	understanding,	the	often	long,	tedious	path	of
thought,	and	the	happiness	afforded	by	the	solution.	The	original	lack



of	understanding	could	also	be	seen	as	the	limits	of	the	individuals	that
we	are,	whereas	the	ultimate	comprehension	is	that	of	the	Subject	we
have	become,	which	is	in	contact	with	the	universal.	This	is	very	clear,
it’s	something	you	can	experience	yourself,	which	directly	connects	the
effort	of	thought,	the	focused	effort	of	thought,	and	the	sort	of	reward
that,	albeit	universal	or	even	absolute,	ultimately	owes	nothing	to
anyone	or	anything	except	your	own	effort	and	can	be	called,	as
Spinoza	called	it,	“intellectual	beatitude.”	So,	clearly,	it’s	only	a	model.
It	doesn’t	amount	to	saying:	“Do	mathematics	and	you’ll	all	be	a	lot
happier	than	you	are	with	all	the	ordinary	pleasures!”	or	“Do
mathematics	night	and	day	and	forget	about	everything	else!”	Not	at
all.	It	just	means	that,	here,	we	have	a	reduced	but	accurate	model	of
the	possible	dialectical	relationship	between	the	finitude	of	the
individual	who	works	and	makes	mistakes	and	the	infinity	of	the
Subject	who	has	understood	a	universal	truth.

However,	in	the	introduction	to	our	discussion,	you	pointed	out	that
in	your	philosophical	system	you	distinguish	four	truth	procedures,
or	to	put	it	another	way,	four	ways	of	living	a	life	guided	by	the	Idea:
in	addition	to	mathematics	there	are	art,	love,	and	politics.	But	these
different	ways	seem	to	correspond	to	completely	different	existential
experiences	of	happiness.	In	what	sense	is	mathematics	the	privileged
matrix	of	them	all?

Again,	I	claim	that	mathematics	–	aside,	of	course,	from	its	major
philosophical	extension,	since	it	is	ontology	–	serves	as	a	model,	a
reduced-scale	model,	perhaps,	depending	on	nothing	other	than	the
concentration	of	pure	thought.	I	don’t	claim	that	it	is	in	and	of	itself	a
sort	of	ultimate	bliss.	Obviously,	if,	as	can	be	shown,	the	four
conditions	are	spaced	out	from	mathematics	to	poetry,	with	the	other
sciences,	politics,	love,	and	the	other	arts	in	between,	we	could	take
everything	I	said	and	try	to	see	what	the	difference	is	exactly	between
mathematics	and	poetry	in	terms	of	the	happiness	these	conditions
afford:	that	would	be	another	way	of	going	about	it.	Between
mathematics	and	poetry	there’s	love	and	politics,	that	is,	the	minimal
form	of	relationship	to	the	other,	that	basic	cell	of	relationship	to	the
other	that	is	love,	and	the	maximal	form,	which	is	the	relationship	to
humanity	as	a	whole,	a	point	that	should	always	be	the	concern	of
politics	but	is	only	so	in	genuinely	communist	politics.

The	four	conditions	are	separate	from	each	other	at	first.	There	are	of
course	overlappings	between	them,	but	they	each	operate	on	their	own,
and	they	are	inscribed	in	philosophical	reflection	in	different	ways.	For



example,	love	is	the	existential	matrix	of	the	thinking	of	difference	as
such.	It’s	the	possibility	of	living	in	difference,	not	in	indifference,	i.e.,
of	experiencing	how	the	world	can	be	approached	or	dealt	with	from
the	point	of	view	of	the	Two,	not	just	from	the	point	of	view	of	the	One.
And	so	love	is	the	existential	learning	of	the	dialectic,	that	is,	of	the
richness	of	difference.	This	is	one	of	the	reasons	why	there	are	so	many
works	of	literature	about	the	power	of	love,	precisely	to	overcome
artificial	differences	and	accept	going	beyond	identity.	Romeo	and
Juliet	belong	to	two	clans	that	are	normally	supposed	to	remain
absolutely	separate	and	hate	each	other.	Romeo	and	Juliet’s	love	is	the
relationship	they	weave	in	the	name	of	their	difference	–	a	difference
that	will	be	creative	and	not	absorbed	back	into	criminal	hostility.	This
is	why,	at	the	very	heart	of	the	impossible	and	the	threat	of	death,	there
is	the	dawn	of	love	of	Romeo	and	Juliet,	who	express	their	happiness
in	tones	of	rare	beauty.

So	this	doesn’t	need	to	be	related	to	mathematics.	But	it’s	by	no	means
incompatible	with	it:	if	you	do	mathematics	with	someone	you	love,
which	I’ve	done	on	a	number	of	occasions	in	my	life,	and	if	you	try	to
find	the	solution	to	the	same	difficult	problem	together,	well,	it’s	an
amorous	and	mathematical	experience	at	one	and	the	same	time.
When	you	find	the	solution	to	the	problem	together,	your	joy	is
doubled,	and	you’re	not	sure	which	of	the	registers	it	belongs	to.

Specifically	in	politics,	do	you	think	that	mathematics	can	be	a
valuable	requisite?

There’s	no	obvious	connection	between	mathematics	and	politics.	The
zero	degree	of	connection	is	the	counting	of	the	votes	on	election	night.
To	be	sure,	you	have	to	deal	with	the	concepts	of	absolute	majority	and
qualified	majority,	the	percentage	of	abstainers,	and	other	such
counting	of	blank	ballots,	which	are	different	from	invalid	ballots.	But
even	so,	that’s	still	very	basic.	And	since,	in	my	opinion,	the	specifically
political	stakes	are	practically	non-existent	–	except	for	a	few	details,
the	people	elected	all	do	the	same	things	–	you	can’t	speak	of	truth	or,
therefore,	of	happiness	either.	There’s	only	the	very	short-lived
pleasure	of	the	person	elected	and	his	or	her	cronies.

In	my	view,	it’s	the	following	question	that	matters:	Do	you	think	it’s
possible,	in	politics,	to	reach	decisions	that	really	result	from	rational
deliberation?	Can	there	be	such	a	thing?	Or	are	there	ultimately	only
opinions	in	politics,	as	Plato,	who	tried	to	fight	for	a	politics	of	truth,
thought?	I	don’t	think	he	found	the	solution,	but	that	was	indeed	his
objective.	And	knowing	what	a	real	argument	is,	an	argument	whose



conclusion	anyone	who	follows	all	its	steps	must	agree	with	–	and
that’s	the	only	way	mathematics	reaches	an	agreement	that’s	in	some
sense	absolute	–	well,	that’s	important	in	every	area	where
deliberation	is	required.	Just	to	know	that	there	are	methods	for
reaching	strong	agreement	–	at	any	rate	when	the	problem	has	been
clearly	laid	out	and	everyone	discussing	it	is	really	interested	in	finding
a	solution	to	it	–	can	be	useful	when	you	need	to	come	up	with	a
positive	solution	collectively	in	a	difficult	situation.	Of	course,	that	in
no	way	suffices	to	define	a	politics.	But	it	can	help	to	change	the
methods	of	politics,	methods	that	are	often	a	somewhat	murky
combination	of	real	but	unclear	or	poorly	explained	common	interests,
imaginary	representations,	and	inadequate	or	outmoded	symbolism.	If
we	want	to	avoid	that,	we	need	to	have	a	common	standard	to	discuss
the	decision	to	be	made.	Mathematicians	do	in	fact	have	a	common
standard	when	they	examine	a	problem,	and	that’s	why	they	can	come
to	an	agreement	on	the	proof,	or,	if	it’s	false,	say	so	–	and	the	person
who	proposed	the	proof	will	have	to	agree	as	well.

A	rational	method	of	political	discussion	remains	an	ideal,	even	if
everyone	who	has	ever	been	an	activist	knows	that	there	can	be
thrilling	meetings,	particularly	in	working-class	circles,	precisely
because	the	conclusion,	the	operative,	unifying	slogan,	was	the	result
of	a	long	and	very	efficient	process.	And	that	solution	is	a	real
collective	joy.	At	a	very	general	level,	the	question	could	be	formulated
like	so:	is	political	discourse	forever	condemned	to	being	nothing	more
than	rhetoric?	Those	who	think	it	is,	who	think	that	political	discourse
is	a	rhetoric	of	victory,	are	the	sophists.	Here	are	our	good	old
opponents	from	the	fourth	century	BCE	again.	The	sophists	coaxed
people	into	using	a	rhetoric	of	victory	whatever	their	personal	beliefs
may	have	been	and	regardless	of	any	“truth”	whatsoever.

Unfortunately,	rhetoric	is	today’s	political	language.	It	is	a	rhetoric	of
promises	that	won’t	be	kept,	a	rhetoric	of	the	impossible	agenda,	a
rhetoric	of	bogus	necessity.	Beneath	this	rhetoric,	a	number	of
decisions	are	made,	in	meetings	that	are	usually	secret	or	set	up	to	lead
to	the	desired	conclusion,	in	the	service	of	a	number	of	vested	interests
whose	influence	is	impossible	to	counteract.	Sometimes	the	rhetoric
even	results	in	a	disastrous	decision,	including	for	the	people	who
proposed	it.	Parliamentary	politics,	falsely	called	“democratic,”	is	a
world	controlled	by	a	mix	of	unclear	interests,	often	vulgar,	or	even
hateful,	emotions,	false	knowledge,	and	irrational	rhetoric.

If	I	must	praise	mathematics,	including	in	the	field	that	you’re



suggesting,	I	would	say	this:	a	sustained	and	ongoing	exercise	of	true
discursive	rationality	would	counteract	or	mitigate	our	exposure	to
seductive	rhetorics	devoid	of	real	substance.	Therefore,	I	think	that,
with	the	help	of	a	totally	overhauled	education,	everyone	should
acquire,	before	the	age	of	20,	an	extensive	knowledge	of	modern
mathematics,	enabling	them	to	master	the	recent	advances	in	this
science	and	to	pursue	it	if	they	so	desire	without	being	held	back	by
ignorance	–	often	attributed,	moreover,	to	the	lack	of	some	imaginary
knack	for	the	subject	–	because	mathematics	offers	exercises	geared
toward	developing	a	discursive	rationality	that	makes	it	possible	for
people	to	agree	on	difficult	decisions.

Actually,	mathematics	is	the	best	of	human	inventions	for	practicing
something	that’s	the	key	to	all	collective	progress	and	individual
happiness:	rising	above	our	limits	in	order	to	touch,	luminously,	the
universality	of	the	true.

Ultimately,	mathematics,	in	your	view,	offers	us	the	chance	to
experience	in	all	its	purity	and	simplicity	a	subjective	relationship	to
truth.	Is	that	why	it’s	a	model	of	“the	true	life”	in	the	other	areas	of
life,	such	as	love	or	politics?

That’s	exactly	right.	Mathematics’	simplicity,	its	purity,	its	lack	of
compromise	with	the	average	state	of	affairs	and	the	jumble	of
opinions	–	all	this	guides	the	thinking	and	the	existence	that	are
devoted	to	it	for	a	time	toward	“the	true	life.”	And	just	consider	the
paradox:	most	people	object	to	mathematics	on	account	of	its
complexity	–	as	well	as	its	blatant	lack	of	existential	meaning.	But
really!	It’s	mathematics’	simplicity,	the	fact	that	it	is	unambiguous,
with	nothing	hidden	or	obscure	about	it,	with	no	double	meanings	or
deliberate	deception,	that	can	fill	us	with	wonder.	And	its	indifference
to	dominant	opinions	is	a	perfect	example	of	freedom.	In	that	sense,
yes,	to	attain	comparable	simplicity	and	universality	in	politics	or	love
can	be	accepted	as	an	ideal	of	life.



Conclusion
Your	praise	of	mathematics	has	emphasized	its	importance	not	only
for	philosophers	but	for	anyone	aspiring	to	what	you	call	“the	true
life.”	So	that	prompts	a	final,	critical	question:	how	can	we	get	people
to	discover	–	or	rediscover	–	mathematics,	and,	above	all,	how	can
we	get	them	to	love	it?

Well,	now	you’re	asking	me	a	question	I’m	particularly	sensitive	to.	I
think	that	the	way	mathematics	functions	in	the	teaching	profession
overall	isn’t	what	it	should	be,	and	may	never	have	been	exactly	what	it
might	have	been.	The	reason	for	this	is	that	when	you	teach
mathematics,	you	first	have	to	convince	the	students	that	it’s
interesting.	You	shouldn’t	say:	“It’s	something	you’ve	got	to	know:	just
learn	such	and	such,	and	that’s	it.”	At	most,	that	lets	you	deal	with	the
most	urgent	things	first,	by	teaching	the	children	the	multiplication
tables,	for	example.	That’s	only	a	kind	of	pragmatic	approach	to
counting.	But	if	it’s	a	matter	of	true	mathematics,	the	mathematics	that
exposes	you	to	problems	as	important	as	they	are	complex,	you
absolutely	must	instill	the	feeling	that	it’s	interesting,	as	I	already	said
regarding	the	transmission	of	knowledge	of	any	kind.

So	how	can	we	stimulate	this	feeling?	It’s	all	about	the	notion	of	a
problem	solved.	I’m	convinced	that	a	child,	even	a	very	young	one,	can
be	interested	in	the	idea	of	solving	problems.	Because	children
naturally	love	riddles.	They’re	curious	and	love	discovering	something
they’ve	never	encountered	before.	Everything	should	revolve	around
this	revealing,	this	mystery	solved.	Teaching	should	be	completely
focused	on	this	objective	of	producing	in	children,	adolescents,	and
ultimately	everyone,	the	feeling	that	what’s	extraordinary	about
mathematics	is	that,	in	sometimes	surprising	and	unexpected	ways,
you	can	solve	riddles	that	are	formulated	very	clearly	and	precisely	but
are	nonetheless	real	riddles.	When	it	comes	to	this	issue,	you	shouldn’t
hesitate	to	enter	the	world	of	games,	because	solving	a	problem	is	also
a	feature	of	games,	after	all.	This	doesn’t	necessarily	entail	a
conception	of	mathematics	as	a	game,	but	it	does	stimulate	interest.
Moreover,	in	some	magazines	and	newspapers	you	can	find	math
puzzles,	and	I	don’t	think	that	approach	should	be	scorned,	any	more
than	it	is	sensible	to	criticize	crossword	puzzles,	which	teach	spelling
and	a	rather	sophisticated	semantics.

Along	with	the	methods	of	convincing	learners	that	mathematics	is



interesting,	there	are	also	two	points	of	support	outside	mathematics.

First	of	all,	the	history	of	mathematics,	which	should	be	presented	in	a
living,	breathing	way,	not	by	sticking	to	a	boring,	systematic	exposition
of	solutions.	Don’t	stick	to	the	solutions,	or	even	primarily	to	them,	but
to	what’s	interesting	about	the	problem	as	a	riddle	that	was	finally
solved	after	many	trials	and	tribulations.	It’s	exciting	to	understand
how	and	why	a	little	Greek	theorem	was	discovered,	in	what
circumstances,	what	it	was	used	for,	what	it	became	thereafter,	how
philosophers	commented	on	it,	and	so	on.	Take	the	famous	example
used	by	Plato	in	the	Meno:	how	to	construct	a	square	whose	area	is
double	that	of	a	given	square.	It	might	be	a	problem	concerning	a
conflict	between	farmers,	about	arable	land.	In	the	dialogue,	Socrates
proposed	this	problem	to	a	slave	boy	who	happened	to	be	around.	And
he	showed	that	the	slave	boy,	after	a	bit	of	trial	and	error,	could	easily
understand	the	proof,	which	establishes	that	the	square	that	doubles
the	area	of	a	square	ABCD	is	the	square	whose	side	is	the	diagonal	of
the	first	square,	say	AC.	This	can	actually	be	seen	as	soon	as	you	make
a	drawing	of	it,	as	soon	as	you	draw	the	square	on	the	diagonal.	But
what’s	behind	the	slave	boy’s	intuitive	understanding	of	the	problem	is
in	reality	extremely	complex	and	puzzling.	Indeed,	as	anyone	can
easily	see,	the	area	of	a	square	is	the	product	of	two	of	its	sides.	Let’s
say	that	the	length	of	the	sides	of	the	first	square	ABCD	is	1	(1	meter,
for	example).	Its	area	will	be	1	x	1,	or	1	(square	meter).	The	area	of	the
second	square,	constructed	on	diagonal	AC,	will	be,	as	the	drawing
made	of	it	shows,	the	double	of	that,	hence	2	(square	meters).	So	what
is	the	length	of	the	side	of	the	second	square,	diagonal	AC?	The	ratio
between	the	two	areas	is	clear:	it’s	2:1,	hence	2.	What	is	the	ratio	of	the
two	sides?	Let’s	apply	the	Pythagorean	Theorem	to	the	right	triangle
ABC.	We’ve	got	AB2	+	BC	2	=	AC	2.

And	since	AB	=	BC	=	1,	we’ve	got	12	+	12	=	AC	2.	That	is,	1	+	1	=	AC	2,	or
2	=	AC	2.	So	the	length	of	diagonal	AC	must	be	a	number	whose	square
is	equal	to	2.	Today,	this	is	called	“the	square	root	of	2.”	But	the
problem	is	that	this	number	is	neither	a	whole	number	nor	a	rational
number,	i.e.,	a	ratio	of	two	whole	numbers,	which	is	also	called	a
fraction.	For	the	Greeks,	who,	where	numbers	were	concerned,	only
knew	whole	numbers	and	their	ratios,	the	number	that	measures	the
length	of	the	diagonal,	our	modern	square	root	of	2,	didn’t	exist.	The
trace	that	remains	of	this	is	that,	even	today,	numbers	of	this	type	are
called	“irrational.”	Thus,	the	little	geometry	problem	“construct	a
square	whose	area	is	double	that	of	a	given	square,”	whose	solution	is



intuitive,	opens	onto	an	arithmetical	abyss,	which	would	occupy	Greek
mathematicians	for	300	years	and	would	raise	very	difficult	problems
concerning	the	so-called	irrational	numbers	right	up	to	today.	That’s
why	the	history	of	problems,	the	commentary	on	them,	the	difficulty	in
finding	the	solution	to	them,	is	to	my	mind	part	of	the	teaching	of
mathematics.

The	second	point	of	support,	in	addition	to	the	history	of	mathematics,
is	to	be	armed	with	philosophy,	because,	in	the	final	analysis,	what’s
interesting	about	mathematics	is	also	to	wonder	what	mathematics	is.
And	this	question,	as	we	saw,	is	specifically	philosophical;	there’s	no
other	place	where	it’s	explored.	That’s	why	I	think	philosophy	should
be	taught	right	from	preschool,	really.	It’s	well	known	that	three-year-
old	children	are	far	better	metaphysicians	than	eighteen-year-old	ones,
because	they	wonder	about	all	the	questions	of	metaphysics.	What’s
nature?	What’s	death?	What’s	the	Other?	Why	are	there	are	only	two
sexes	and	not	three?	All	of	that	is	an	established	terrain	of
investigation.	Just	as	I	think	that	a	lot	of	basic	mathematics	can	be
learned	by	the	telling	of	stories	and	the	solving	of	fun	riddles,	so,	too,	I
think	that	the	highest	philosophy	is	also	involved	in	all	this.	It’s	really	a
shame	that	philosophy	is	only	begun	with	great	difficulty	in	the	final
year	of	high	school.	There	were	some	very	vigorous	efforts,	particularly
on	the	part	of	my	late	lamented	colleague	Jacques	Derrida,	to	get
philosophy	taught	in	9th	or	10th	grade.	We	have	unfortunately	not
made	the	slightest	progress.	Philosophy	is	still	an	endangered
discipline	in	the	final	years	of	high	school	and	mathematics	a
deplorable	operator	of	social	selection.	Well,	I	suggest	they	both	be
taught	in	the	last	year	of	preschool:	five-year-old	kids	will	surely	be
able	to	make	good	use	of	the	metaphysics	of	infinity	and	set	theory!



POLITY	END	USER	LICENSE	AGREEMENT
Go	to	www.politybooks.com/eula	to	access	Polity’s	ebook	EULA.

http://www.politybooks.com/eula

	Cover
	Title Page
	Copyright
	I Mathematics Must Be Saved
	II Philosophy and Mathematics, or the Story of an Old Couple
	III What is Mathematics About?
	IV An Attempt at a Mathematics-based Metaphysics
	V Does Mathematics Bring Happiness?
	Conclusion
	End User License Agreement

