
MODELING WITH
APPLIED CATEGORY THEORY

John Baez



In many areas of science and engineering, people describe
systems using different kinds of network diagrams:

Category theory provides a unified way to work with these in
software.

http://math.ucr.edu/home/baez/networks/networks_1.html
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/


In many areas of science and engineering, people describe
systems using different kinds of network diagrams:

Category theory provides a unified way to work with these in
software.

http://math.ucr.edu/home/baez/networks/networks_1.html
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/


For example: in “System Dynamics”, dynamical systems are
modeled using “stock and flow diagrams”:

These diagrams are now widely used in economics, population
biology, epidemiology, etc.

https://en.wikipedia.org/wiki/System_dynamics


There is a community of epidemiologists who use stock-flow
diagrams to model the spread of disease. This includes my
collaborators Nate Osgood and Xiaoyan Li, who did COVID
modeling for the government of Canada.

https://www.cs.usask.ca/faculty/osgood/
https://scholar.google.ca/citations?user=55dzbRgAAAAJ&hl=en


Stock and flow modeling is often done using software called
AnyLogic. It’s powerful, but it has several big problems:

▶ It has no support for “composing” models: that is, taking
several smaller models and putting them together to form a
larger model.

▶ It has no support for “functorial semantics” : that is, the
systematic separation of a model from the choice of how
we run the model.

▶ It has no support for collaboratively building models.
▶ It is not free and not open-source!

Our new software aims to solve all these problems.



Stock and flow modeling is often done using software called
AnyLogic. It’s powerful, but it has several big problems:

▶ It has no support for “composing” models: that is, taking
several smaller models and putting them together to form a
larger model.

▶ It has no support for “functorial semantics” : that is, the
systematic separation of a model from the choice of how
we run the model.

▶ It has no support for collaboratively building models.
▶ It is not free and not open-source!

Our new software aims to solve all these problems.



Stock and flow modeling is often done using software called
AnyLogic. It’s powerful, but it has several big problems:

▶ It has no support for “composing” models: that is, taking
several smaller models and putting them together to form a
larger model.

▶ It has no support for “functorial semantics” : that is, the
systematic separation of a model from the choice of how
we run the model.

▶ It has no support for collaboratively building models.

▶ It is not free and not open-source!

Our new software aims to solve all these problems.



Stock and flow modeling is often done using software called
AnyLogic. It’s powerful, but it has several big problems:

▶ It has no support for “composing” models: that is, taking
several smaller models and putting them together to form a
larger model.

▶ It has no support for “functorial semantics” : that is, the
systematic separation of a model from the choice of how
we run the model.

▶ It has no support for collaboratively building models.
▶ It is not free and not open-source!

Our new software aims to solve all these problems.



This software has been developed by Evan Patterson, James
Fairbanks, Owen Lynch, Sophie Libkind, Kris Brown, Nathaniel
D. Osgood, Xiaoyan Li, Eric Redekopp and others:

▶ AlgebraicJulia: an ecosystem of mathematical software
written in Julia.

▶ CatLab.jl: a framework for applied category theory within
AlgebraicJulia.

▶ StockFlow.jl: software for building and running stock and
flow models, based on CatLab.

▶ ModelCollab: a web-based front end for using StockFlow.jl
collaboratively.

▶ AlgebraicPetri.jl: software for building and running Petri net
models, based on CatLab.

▶ AlgebraicABMs.jl: software for agent based modeing,
based on CatLab.

https://www.algebraicjulia.org/
https://github.com/AlgebraicJulia/Catlab.jl
https://github.com/AlgebraicJulia/StockFlow.jl
https://modelcollab.usask.ca/
https://algebraicjulia.github.io/AlgebraicPetri.jl/dev/
https://github.com/AlgebraicJulia/AlgebraicABMs.jl


The ability to compose models is crucial because realistic
models are complicated and built out of many smaller parts.
Here is Osgood and Li’s COVID model used by the government
of Canada:



Compositionality and Functorial Semantics

Very roughly:

▶ “composing” models is taking two or more smaller models
and putting them together to form a larger model.

▶ “functorial semantics” is the systematic separation of a
model from the choice of how we extract information from
it, treating each as a mathematical structure in its own
right.



Compositionality

Models of systems may be constructed individually and then
coupled together to build larger models. To achieve this, each
model is not merely a piece of code, but a crisply defined
mathematical structure designed from the start to be combined
with other models.

Technically, this is done by treating models as “morphisms” in a
“category”, and the coupling of models as “composition” of
these morphisms. Thus, this approach to model design is
known as compositionality.



A (very simple sort of) stock-flow diagram consists of
▶ a finite set of stocks,
▶ arrows between stocks called flows,
▶ arrows from stocks to flows called links,
▶ a flow function ϕf : R

n → R for each flow f .

S I

R

D
i d

r

ϕi : R
2 → R, ϕr : R→ R, ϕd : R→ R



An open stock-flow diagram is a stock-flow diagram equipped
with maps L : A→ Stocks,R : B → Stocks for some finite sets
A,B.

S I

R

Di d

r

1

2

3

4

A B

ϕi : R
2 → R, ϕr : R→ R, ϕd : R→ R

We call this an open stock-flow diagram from A to B and write

it as A
F
−→ B.



We can compose open stock-flow diagrams A
F
−→ B and

B
G
−→ C by “gluing them together along B”.

We get an open stock-flow diagram called A
GF
−−−→ C.



A
F
−→ B

S I

R

Di d

r

1

2

3

4

A B

ϕi : R
2 → R, ϕr : R→ R, ϕd : R→ R

B
G
−→ C

R Sℓ3

4

B C

ϕℓ : R→ R

A
GF
−−−→ C

S I

R

Di d

r

ℓ

1

2

A C

ϕi : R
2 → R, ϕr : R→ R, ϕd : R→ R, ϕℓ : R→ R



Since composition is associative:

(HG)F = H(GF )

we say there is a category StockFlow with:
▶ finite sets as objects,
▶ open stock-flow diagrams as morphisms,
▶ composition of morphisms defined as above.



There are also fancier kinds of categories:





Functorial Semantics

There is a clear distinction between the model and a specific
way of extracting information from it. For example, one can take
a stock and flow model and run it either deterministically or
stochastically, or extract from it a system structure diagram.

To do this we treat different ways of running a model as
different “functors” from a category whose morphisms are
models of some specific type to various other categories. This
is called functorial semantics.

StockFlow

Dynam SystemStructure

Φ Ψ



A dynamical system on some finite set of variables X is a
vector field v on RX . This lets us write down a system of
first-order ordinary differential equations.

For example, if X = {S, I,D,R} and v is the vector field
(vS , vI , vD , vR) on RX � R4, we get

d
dt S(t) = vS(S(t), I(t),D(t),R(t))

d
dt I(t) = vI(S(t), I(t),D(t),R(t))

d
dt D(t) = vD(S(t), I(t),D(t),R(t))

d
dt R(t) = vR(S(t), I(t),D(t),R(t))



A dynamical system on some finite set of variables X is a
vector field v on RX . This lets us write down a system of
first-order ordinary differential equations.

For example, if X = {S, I,D,R} and v is the vector field
(vS , vI , vD , vR) on RX � R4, we get

dS
dt = vS

dI
dt = vI

dD
dt = vD

dR
dt = vR



Any stock-flow diagram gives a dynamical system:

dS
dt = −ϕi(S, I)

dI
dt = ϕi(S, I) − ϕr (I) − ϕd(I)

dR
dt = ϕr (I)

dD
dt = ϕd(I)

S I

D

Ri r

d

ϕi : R
2 → R, ϕr : R→ R, ϕd : R→ R



An open dynamical system A
V
−→ B is a dynamical system v

on some finite set X equipped with maps L : A→ X , R : B → X
for some finite sets A,B.

For example:

dS
dt = vS

dI
dt = vI

dR
dt = vR

dD
dt = vD

S I

R

D1

2

3

4

A B

Here X = {S, I,D,R}.



Just as we constructed the category StockFlow, we can
construct a category Dynam with:
▶ finite sets as objects,
▶ open dynamical systems as morphisms.

The process we’ve already seen for converting stock flow
diagrams into dynamical systems also lets us convert open
stock flow diagrams into open dynamical systems. We call this
conversion process

Φ: StockFlow→ Dynam



Just as we constructed the category StockFlow, we can
construct a category Dynam with:
▶ finite sets as objects,
▶ open dynamical systems as morphisms.

The process we’ve already seen for converting stock flow
diagrams into dynamical systems also lets us convert open
stock flow diagrams into open dynamical systems. We call this
conversion process

Φ: StockFlow→ Dynam



For example, Φ maps this open stock flow diagram:

S I

R

Di r

d

1

2

3

4

A B

ϕi : R
2 → R, ϕr : R→ R, ϕd : R→ R

to this open dynamical system:

dS
dt = −ϕi(S, I)

dI
dt = ϕi(S, I) − ϕr (I) − ϕd(I)

dR
dt = ϕr (I)

dD
dt = ϕd(I)

S I

R

D1

2

3

4

A B



We say Φ is a functor because

Φ(GF ) = Φ(G) Φ(F )

This equation says we can
▶ compose two open stock-flow models and then convert the

result into an open dynamical system
or
▶ convert two open stock-flow models into open dynamical

systems and then compose those
and the results are the same!

This is the key feature of “functorial semantics”.



Interoperability

Models expressed in different frameworks can be coupled or
interoperated. This is a consequence of compositionality and
functorial semantics.

The reason is that you can build models out of smaller pieces
living in different categories, as long as they all come with
functors to some common category. For example:

StockFlow Petri

Dynam

Φ Γ



There are many more ways category theory is helping the
creation of new modeling techniques... and surely many more
waiting to be discovered!

Good luck!


