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Abstract 

In the preceding paper, the author proved that parametric natural models have 
many categorical data types: finite products, finite coproducts, initial and ter- 
minal fixed points. In this paper, we show the second order minimum model is 
parametric, and thus enjoys the property. In addition to that, we give represen- 
tation of internal right and left Kan extensions. We also show that extensionally 
collapsed models of closed types/terms collection are partially parametric, and 
that they have a part of the categorical data types above. 

1 I n t r o d u c t i o n  

When we speak of term models of lambda calculi, there are two possibilities: one is 
the collection of all terms including open terms, and the other the collection of closed 
terms. The former is used to prove completeness for simply typed lambda calculus 
[8] and for second order lambda calculus [5]. In contrast, it is even misleading to call 
the collection of closed terms a model. It does not satisfy extensionality in case of 
second order lambda calculus [16] (even in case of system T [2]). It is, however, still 
worth while considering the collection of closed terms (of closed types), in particular, 
for second order lambda calculus. 

One reason is that it is natural for second order lambda calculus to have empty types. 
It is showed in [15] that the completeness by the collection of all terms is applied only 
for the axioms and inference rules including the rule called nonempty, which is not 
sound for models having empty types. On the other hand, although the collection of 
closed terms is not a model, it gives an interpretation such that some types may be 
interpreted as an empty set. 
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Another reason we are concerned with in this paper is that the collection of closed 
terms is a parametric interpretation [22, 13]. Second order lambda calculus is of- 
ten called polymorphic lambda calculus. It is because a universal type VX.~ be- 
haves as a type of polymorphic data. A potymorphic data is a family of terms 
{Mx t X ranges over types}. A term M of type YX.a is regarded to be a polymorphic 
data whose X-indexed member is extracted by applying X to the term M. 

If M is a closed term of type VX.a, its normal form is M = AX.N[X]. It means that the 
members of M as a polymorphic data have uniform definitions N[X] with parameter 
X. Strachey called polymorphism with uniform definitions parametric polymorphism 
in contrast to ad hoc polymorphism. Polymorphism of second order lambda calculus 
is parametric in nature. 

Reynolds invented to use binary relations to reflect parametricity in semantics [20]. In 
the preceding paper [13], the author adopt the same idea in the framework of BMM 
models, and obtained a result that if an interpretation is a parametric natural model 
(see the following sections) then it has many canonical categorical data types, as finite 
products, finite coproducts, cartesian closedaess, initial and terminal fixed points of 
some eadofunctors. In fact, the universal conditions these categorical constructions 
should satisfy just corresponds to parametricity. 

The result is, however, valid only for parametric models. Although the collection 
of closed terms is parametric, it is not a model. Breazu-Tannen and Coquand de- 
velopped polymorphic extensional collapse which can be used to obtain models from 
closed types/terms interpretation. Then we face a problem whether the extensionally 
collapsed models are parametric. We show that all syntactically definable universal 
types are parametric. Then the models have a part of categorical data types mentioned 
above. 

Another model treated in this paper is the second order minimum model by Moggi 
and Statman [18]. It is obtained from a special theory, called the maximum consistent 
theory, which satisfies the w rule. We show the second order minimum model is fully 
parametric and the categorical data types above all exist in the model. Furthermore 
we give representation of internal right and left Kan extensions, including left and 
right adjoints as a special case. 

2 Syntax of polymorphism 

Suppose given a set ]C of type constants. A type judgement has the form F t- a where 
F is a finite sequence of mutually distinct type variables. There are four inference rules 
for generating type judgements. 

(Ty proj) F ~- X (X appears in F) 

(Ty coast) F t- A (A in K:) 
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(Ty O)  
F F a  £ F T  

F F ~ T  

F,X~-  ~ 
(Ty V) F F VX.a 

As usual, we do not distinguish types which differ only in bound type variables. 

Suppose given a set C of individual constants,  to each of which a closed type is assigned. 
We denote the type by Type(c) for c E g. A t e rm j u d g e m e n t  is written F ; O ~- M : e 
where e is a type assignment for individual variables of the form Xl : e l , . . . ,  x~ : an. 

It is assumed here that  F ~- ai (i = 1 , . . . ,  n) and F ~- ~ hold. Term judgement has six 
inference rules. 

(re proj) F; O F- x :  ~r (x:  o- e e )  

(re const) F;O F c:  Type(c) (c E C) 

where F is arbitrary, since Type(c) is assumed to be closed. 

(te F ; O , x : a F M : r  
F; O ~- A x * . M  : ~ ~ r 

(re ~ E )  
F ; O F M : a ~ r  F ; O F - N : a  

F; @ ~- M N  : r 

(te VI) 
F, X ;  0 F M : r 

F; (9 F A X . M  : V X . r  

where X does not appear as free type variables in @. 

(te VE) 
F; (9 F M : VX.r 

r ; o h  M{~} : r [X:=~]  

where a is such that  F F a holds. 

Four conversion rules (fl), (z/), (Type fl) and (Type ~/) are defined as usual. We call 
E = (h:, C) a signature.  Let Av(E) denote the second order lambda calculus generated 
by the inference rules above with the four conversion rules. 

3 P a r a m e t r i c  s e m a n t i c s  

Polymorphism of second order lambda calculus is parametric polymorphism. V X . a  

is regarded to be a type of polymorphic data and the closed terms of the type have 
uniform definitions with parameter X. Then a problem is how to reflect uniformity 
(= parametricity) in semantics. Reynolds proposed in [20] an idea to use binary 
relations. In usual semantics [5], a variable type is interpreted as a function from the 
type domain (a set of sets) to itself. In Reynolds idea, a variable type has another 
interpretation as an endofunction on the set of binary relations between members of 
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the type domain. Let F be such an interpretation of a variable type, and {ax E 
F(X) IX ranges over the type domain} a polymophic data. Reynolds asserted that a 
parametric polymorphic data should be subject to the condition (hA, aB) E F(r) for 
all r a subset of A x B (i.e., a binary relation from A to B). He introduced binary 
relations in trying to construct the full set-theoretic model [20] (but failed [21]). In 
the author's preceding paper, Reynolds parametricity is translated into BMM models 
[4, 5] to yield relational models. Adjoining binary relations makes difference. For 
example, Girard's coherence space model [9, 10] is not a BMM model (due to Moggi, 
see [6]), while it is a relational model [13]. We discuss below briefly the framework 
of relational model. A similar approach is developped by Wadler [22]. It also closely 
relates to the parametric HEO model by Bainbridge, Freyd, Scedrov and Scott [1, 13]. 

We are concerned with binary relations, for which identity relations are important 
but composition not. So we define an r-frame as the one obtained from category by 
removing the part involved in composition. 

D e f i n i t i o n  3.1 An r-frame is a pair of classes (L/, ~ )  with three maps do, dl : T~ ~ / ~  
(the domain and codomain maps) and id : L / - *  ~ (identity map). /.4 is the class of 
objects, and T~ is the class of (binary) relations. 

R-frames are denoted by bold capital letters, as T = (b/, ~ ) .  The notation Obj(T) 
and Rel(T) are used to indicate/~ and ~ respectively. For A, B E/~, a binary relation 
r from A to B (i.e., do(r) = A, dl(r)= B) is denoted as r :  A -~ B. 

Def in i t ion  3.2 An r-frame morphism F : T --+ T'  i sa  pair of functions F : Obj(T) --* 
Obj(T')  and F :  Rel(T) -+ Rel(W') (both denoted by F)  such that if r :  A -e B then 
F ( r ) :  F(A)--e F(B) (in other words, F preserves do and dl). 

Note that it is not required for F to preserve id. An n-cry r-frame morphism is 
similarly defined. The case of n = 0 is worth being mentioned. Such an r-frame 
morphism is F : 1 --+ T where 1 is the r-frame consisting of one object 1 and one 
relation idl : 1 -e  1. Namely F is a pair of A E Obj(T) and a relation r : A --~ A in 
Rel(T). 

Def in i t ion  3.3 A relation of r-frame morphisms q : F --3 G for F, G : T ~ T t is a 
function q: Rel(W) --e Rel(T') such that if r :  A -e B then q(r) :  F(A) -~ G(B). 

Note that the definition of q depends only on the object function part of F and G. An 
identity relation of r-frame morphisms idF : F - e  F is defined by idF = F. 

Now we turn to defining relational model. 

A type domain is an r-frame T -- (L/, n ) .  For each n < 0, [W n --e T] is an r-frame 
such that Obj [W n --* T] is a class of r-frame morphisms F : T"  --* T (T O = 1) 
and Rel IT" -* T] is a class of relations of r-frame morphisms q : F -e G where 
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F, G 60bj [T n .~ T]. In order to interpret implication and universal types, we 
should be given two r-frame morphisms 

=~: T2 -~ T 

V : [T-~  T] -~ T ,  

and one function I : ~ --+///(but for simplicity, we write just A for I(A)) to interpret 
constant types. From the V above, we obtain V:  IT ~ T] -* [T O ~ W] as VF = 
(VF, VidE: VF -~ VF) for F e Obj [T -* T], and Vq -- Vq for q e Eel [T --* W]. 

A type judgement is interpreted as an object of [W --* W] (n -- IFI). 

(Wy proj) IF ~- Xi] is the i-th projection. 

(Ty const) IF F AI is a constant r-frame morphism returning A for objects and ida 
for relations 

(Wy ~ )  IF [- ~ ~ T] = ~ o([F ~- ~r], IF P TI). 

(Ty V) IF P VX.al = VIE, X F a]. 

For all types to be interpreted well, it is necessary that [T ~ --+ T] (n _< 0) is closed 
under projections, weakenings (i.e., adjunction of dummy variables), ~, V, and com- 
position. For the ,detail, see [13]. 

To each A 6 Lf, eL set (possibly empty) DA is associated, and to each r : A --e B is 
associated a subset Dr C_ DA × DB. For the present purpose, however, it suffices to 
regard A and DA, r and Dr to be identical. Accordingly each F 60bj [T n --+ T] and 
q 6 Rel IT '~ --+ T] have natural meanings as functions sending sets (of the form DA) 
to sets and set-theoretic binary relations (of the form Dr) to set-theoretical binary 
relations. 

The following term interpretation is the same as the counterpart of BMM interpreta- 
tion [5, 4]. We associate expansion functions 

~ (A A,B : A ~ B ~ B) to each A, B ELt 

~ v :  VF --+ II(X e LI)F(X) to each F e Obj [T -~ T] 

where (A --~ B) is the set of functions from A to B and II(X E Lt)F(X) is the 
collection of U-indexed families such that the component of index X belongs to F(X). 
We also assume a function I which assigns to each c E C an element of [~- Type(c)]. 
For simplicity, I(c) is written c in most cases. 

A term judgement r'; ® F- M : g is interpreted as a member of II(X E L/Irl)([F F 
Wypee](X) IF (we use underline to denote a sequence). Ir is 
recursively defined but IF ; O F M : ~] is not. Instead the latter should be subject to 
a condition. See for the detail [4, p.93][13] (a little different with that in [5]). 
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Definit ion 3.4 A second order relational interpretation of ~v(Z) (or interpretation 
in short) is a tuple 

= (T, [T ~ --* T](n < O ) , = ~ , V , D , ~ , ~ v , I ,  []) .  

In an interpretation, all types and terms are given meanings by I ]. However I] does 
not always respect conversions. Namely even if M ~ N ,  it does not necessarily hold 
that  IF ; e ~- M : ~] = IF; e f- N : G]. It is easy to overcome this defect. 

Definit ion 3.5 A second order relational model of Av(~) (or in short model) is an 
interpretation in which all components of ~ and of (~v are one-to-one. 

In a model, ~ 1 is uniquely determined by the other data, and it respects conversions. 
But the interpretation is still important  notion since the collection of closed types and 
terms is an interpretation but not a model. 

An ordinary BMM interpretation is a special case of relational interpretation. We 
have only to ignore the binary relation part. Formally let 7£ consist of only identity 
relations idA for A E/4,  and all F E Obj IT ~ --* T], q E Rel [T n --* T] send identity 
relations to identity relations. 

If =~: T 2 --* T and V : [T --* T] --* T have canonical meanings as follows (logical, 
in other terms, an analogue of second order logical relation [17]), then we say ~ is a 
natural interpretation. 

Definit ion 3.6 (i) ~ is natural if, for r : A ~ A' and s : B -~ B', the relation r ~ s 
=~ ! ! 

is defined as r=~s : f ~-~ f '  iff s :  ¢ ~ s ( f ) ( a ) ~ - ~  CA' ,S ' ( f  )(a ) for any r : a~-~ a'. (N.B. 
we write r : a ~-~ a' for (a, b) E r.) 

(it) (I) v is natural if, for q : F -~ F '  in Rel [T ~ T], the relation Vq : VF ~ VF' is 
defined as V q : a ~  a' iff q(r) :  ~ V ( a ) ( A ) ~  CV,(a')(A')  for any r :  A ~ A'. 

(iii) An interpretation ~ is natural if both ~ and Cv are natural. 

The next theorem by Reynolds is the principal theorem [20, 22, 13]. 

Theorem 3.7 ( A b s t r a c t i o n  T h e o r e m )  Let ~ be a natural interpretation and sup- 
pose that for  every c e C there holds [~- Type(c)] : c ~-~ c. Then, for  any F ; (9 ~- M : 
and n relations r : A ~ B (n = ]FI), i f  l r  ~ Type O](r__) : a_~--~ a_ ~ then there holds 

where b = IF; O F- M :  cr](A)(_a) and b' = IF; O ~- M :  ~r](A.~_~)(aZ). 

Finally we define semantical parametricity. 



501 

Defini t ion 3.8 (i) a E VF is parametric if, for any r : A ~ B, there holds 

F ( r ) :  ~vF(a)(A ) ~-~ CvF(a)(B ) . 

(Using [1, we can write it F ( r ) :  Ia{d}~ ~ [a{B}].) 

(ii) VF is parametric if all a E VF is pararmetric. 

(iii) An interpretation ~ is parametric if all VF is parametric. 

In a natural model ~ such that  all F E Obj [T -* T] preserves identities, we can 
characterize parametricity by the assetion that  ~ is parametric iff V : [T ~ T] ~ T 
preserves identities (i.e., Vide = idvF). The following theorem [20] that  is valid only 
for parametric natural models is used below. 

T h e o r e m  3.9 ( I d e n t i t y  E x t e n s i o n  L e m m a )  Let ~ be a parametric natural model. 
Then every syntactically defined r-frame morphism IF ~- ~] preserves identity relations. 

4 Polymorphic extensional collapse of pretheories 

As is well-known, the collection of closed types/terms of second order lambda calculus 
is a BMM interpretation but not a BMM model [4]. Polymorphic extensional collapse 
by Breazu-Tannen and Coquand [4] gives a method to obtain a BMM model from the 
closed types/ terms collection. In this section, we show every syntactically defined uni- 
versal type is parametric for extensionally collapsed models of the closed types/terms 
collection. 

First we construct a BMM interpretation ~r.,s from a pretheory E of closed terms 
of ~V(E). Next we give an extensionally collapsed model Coll(~,'P) for a logical per 
collection P as in [4], but this time we adjoin binary relations to Coll(~, "P) so that  
it gives a natural relational model. Then it is proved that  every syntactically defined 
universal type is parametric. The result is, in fact, an immediate consequence of 
Abstraction Theorem. 

A pretheory E is an equivalence relation of closed terms of Av(E) such that  M E N 
implies that  M and N have the same closed type, and is subject to the condition 

(1) E respects (/3) and (Wype-~) conversions 

(2) E is congruent w.r.t, application and Type application. 

(1) means that  if M'  is obtained from M by reducing some/3 (or Type-~) redex in 
M then M E M', and (2) means that  if M E M ~ of type a =~ T and N E N ~ of type 
u then ( M N ) E  (M'N'), and that  if M E M' of type VX.a then (M{~'})E (M'{~-}) 
for any closed type T. Of course a-conversi0n is dealt implicitly. Let [M] denote the 
equivalence class of M modulo E. 

This definition is different with that  in [18] in respect that  our pretheory does not 
necessarily respect ~? and Type-~? conversions. 
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A theory is a pretheory E such that there is a model ~ and M E N is defined by 
[M] = IN]. 

We have a straightforward construction of a BMM interpretation ~ ,E  by collecting all 
the closed types and closed terms and dividing them by E. It is formalized as follows. 

• /4 is the set of closed types (modulo the names of bound type variables). For 
each G E/4, D~ is the set of [M] where M is such that ; F- M : o. 

• Obj IT ~ --~ T] (i.e., /4~ --+ /4) is the set of type judgements F F- ~ (IFI = n) 
modulo the names of bound and/or  free type variables. For az , . . . ,  ~ E L/~, 
(F f- ~-)(~) is defined to be T[F := _~]. 

• and V(X  

• ~ ( [ M ] )  is a function sending [g] to [MY]. ~v~( [M])  is a function sending ~- 
to [M{T}]. 

• IF; (~ F- M :  a] (T) ( [N__!) is defined to be [M[F := z][e := NIl. 

Well-definedness of ~ (and (I) v) follows from the assumption that E is congruent 
w.r.t, application (Type application). 

L e m m a  4.1 IF; O F- M : a] is well-defined. 

(Proof) We must check that if N E N ~ then 

IF; O F- M :  a~ (z)(N) = IF; O F- M :  o] (z)(g__~) • 

Since E is reflexive, (AXAx~M)E (AXAx~M). where F = X and O = x : a .  Then 
use (Type) application and (Type-) fl conversions to show 

(M[F := T][@ := N]) E (M[r := z][e := AT']). [] 

We must also check that IF F- o] and IF; O f- M : o] fulfill their required conditions. 
We omit the detail. 

T h e o r e m  4.2 ~r~,E is a BMM interpretation. 

R e m a r k  4.3 If E satisfies the w rule 

• if (MN) E (M'N') for all N E N' then M E M', and 

• if (M{~-}) E (M{T'}) for all ~- then M E M', 

then ~ ,E  is a model (i.e., all components of ( ~  and (I) v are all one-to-one). 
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Next we construct a relational model Coll(~, 9) from any BMM interpretation ~ and 
logicM per collection 9.  We use the notation (_)o to distinguish the constructions 
of the 'o'riginal interpretation from those of a model Coll(~, 9) to be defined. For 
example, L/°, ~o,  etc. 

Def in i t ion  4.4 ([4]) Suppose given a signature E and a BMM interpretation ~. A 
logical per collection 9 is a pair (9 U, 9 K) where 

• 9 U is a L/-indexed family {9A[A EL/ °} where 9A is a set of pets on D~ such 
that 

- i f R  E 9A and S E 9B then R==~PS E ~:~A~oB where R=~PS is ape r  defined 
as f (R~P S) f '  iff ¢AW(f)(a) S ¢~,:B,(f')(a') for any aRa'. 

- suppose Q is a function sending R E 50A to Q(R) E 9EA where F is all 
object of IT -~ T] °. Then VPQ E 9VOF where VPQ is a per defined as 
f (V'Q) f '  iff ¢vF°(f)(A ) (Q(R)) ev°(f')(A) for any R E 9A. 

• 9 g is a function assigning a per in 9A to each A E ~.  

Note there exists at least one logical per collecion, namely the collection of all pets 
with arbitrary 9 K. 

Our construction of an extensionally collapsed model Coll(~, 9) follows [4], but with 
adjoined binary relations. Note that in the construction below binary relations have 
no effect in the object part (i.e., the part involved in BMM models). Now we begin 
with the definition of Coll(~, 9). 

<A, R} belongs to L/iff A EL/ ° and R E 7)A. D<A,R> is the subquotient set A/R. 
For a E Dora(R) (i.e., aRa), let [a]R denote an equivalence class of a. 

r :  <A, R> ~ (B, S> belongs to 7~ iff it is a subset of A/R x B/S. 

<F, Q} is an object of IT ~ ~ T] iff F E Obj IT ~ ~ T] ° and Q is a pair of functions 
(Qp, where Qp sends E 9A, (i = 1 , . . . ,  tO Qp(R) E 9F(A), and sends 
r~: (A~, R~} -~ (B~, S~> (i = 1 , . . . ,  n) to Q~(_r) : <F(A), Qp(R)> ~ <F(_B), Qp(_S)>. 
The behaviour of (F, Q) is determined by 

(F, Q>(<A, R>) dj (F(A), Qp(_R)> 

• p :  <F, Q> --~ <F', Q'> belongs to Rel [T ~ ~ T] iff p sends r~: <A~,/~> --~ <A~, R~> 
(i = 1, . . .  n) to p(r) : <F(A), Q,(R)> --~ <F'(A'), Q~(R')> (note that p is not 
involved in Qr and Q~r). 
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=~: T 2 --, T is determined by; for objects, (A, R) =* (B, S) gJ (A=v°B, R ~ P S ) ;  
for relations r :  (A,R) --~ (A',R') and s :  (B,S)--~ (B' ,S') ,  the relation r=~s is 

::~o ::~o I I 
defined as r ~ s  : [f]Rm,S ~ [f']R'~,S' iff S :  [¢A,B(f)(a)]s ~ [q?A',B'(f )(a )Is, 
for any r :  [a]a ~ [a']R,. It is well-defined by the definition of =~P. 

V:  [T ~ T] --* T is determined by; for an object, V(F, Q) d~f (VOF, WQp); and 
for a relation p :  (F, Q) --~ (F' ,  Q'), the relation Vp is defined as Vp : [f]vpqp ~-3 
[f']wQ~ iff p ( r ) :  [¢VF°(f)(A)]Q,(a ) ~ v° ' ' [q~v,(f )(A )]Q~(R') for any r : (A, R) -~ 
(A', R'). Well-definedness follows from the definition of VP(-). 

::~o 
¢~,R)(B,S)([f]R~PS) is a function sending [a]R to [¢A,B(f)(a)]s. 

~F,Q)([f]vP(Qp)) is a function sending (A,R) to [~v°(f)(A)] a qp() .  

I(A) de_.l (A, 79K(A)) and I(c) = [c]R where R is the per part  of [~- TypeO] .  
Remark tha t  I(c) makes sense only in case there holds c R c. In this case we say 
c is self-related in 79. 

IF; O F- M :  a]((A,  R))([a]lreType(a)](B_) ) is defined to be [IF; O b- M :  a]°(A)(_a) 

][re~l(_R) where IF l- a](_R) is the per part  of IF F- a]((A, R>). 

Lemma 4.5 (i) ~ Cv ff2(A,R)(B,S) and (F,Q) are all one-to-one. 

(ii) ~ and Cv are natural. 

(Proof) Immediate  from definitions. [] 

Well-definedness of IF ; O F- M : ~] (in case all individual constant is self-related in 79) 
is proved as in [4], or by Abstraction Theorem remarking that  ~ P  and V p is defined 
so tha t  (I) ~ and (I) v are natural  w.r.t, pers in 79. 

Wha t  remains to check is the conditions for IF t- a] and IF; O b- M : a]. They are 
satisfied, in fact, inheriting the conditions IF F a] ° and IF; O ~- M : a] ° fulfill. 

T h e o r e m  4.6 If all individual constant is self-related in 79, then Coll(~, 79) is a nat- 
ural model. 

Now let us focus on polymorphic extensional collapse of closed types / te rms  interpre- 
tat ion Coll(~.,E, 79). We say c E C is self-related in T~ iff IF Type(c)] : c ~-~ c. 

T h e o r e m  4.7 Consider CoU(~r.,F~,7 a) and suppose all individual constant is self- 
related in 7~. All syntactically defined universal type Ib- VX.a] is parametric. 
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(Proof) Since Coll(~z,E, 7 ~) is a natural model, Abstraction Theorem asserts that,  for 
any k- M : VX.er, there holds IF- VX.a I : IMI ~-~ IMI, that  is, [MI is parametric. 
But any member of [~- VZ.cr] have the form IM] for some closed term M : VZ.cr. 
Therefore ~}- VX.er] is parametric. [] 

There are many syntactically undefinable universal types V(F, Q}. A question is 
whether all V(F, Q) is parametric or there is any counterexample. 

R e m a r k  4.8 If the signature E is empty, the theorem can be extended a little. For 
example, {VX(((A, R) => (B, S) =>X) =>X)] is parametric for any (A, R) and (B, S). 
Every element of the type has the form AX~y(A,R}~(B,s)~Xy[M]R[N]s. Hence [M]R 
and [g]s can be treated as individual constants of constant types (A, R) and (B, S). 
Similar arguments show that  [VX(((A, R) ~ X) ~ ((B, S) ~ X) ~ X)I is parametric. 

5 Second  order m i n i m u m  m o d e l  

Moggi and Statman discovered a construction of maximum consistent theory [18]. We 
denote it by E,~. The theory is interesting because of its satisfying the w rule. Hence 
the corresponding BMM interpretation ~¢,Em (¢ is the empty signature) turns into a 
BMM model. Indeed ~¢,E~ is easily lifted into a parametric natural model. In this 
section we assume the signature is always empty 

A pretheory is consistent iff it is not the case that  t r u e E f a l s e  where t r u e  = 
AXAxZ)~yXx and f a l s e  = AX~xX~yZy of type Bool = VX(X => X => X). All 
pretheory but one is consistent. Indeed if t r u e  E f a l s e  then any two closed terms of 
the same type are equivalent modulo E. 

The set of all consistent pretheories has the structure of a lattice w.r.t, inclusion [18]. 
There is a maximal element of the lattice, called the maximum consistent theory. It 
is characterized as follows. 

De f in i t i on  5.1 Em is a pretheory defined as MEre N (M, N of type a) iff, for all 
closed term K of type ~=>Bool, there holds KM =~ KN. 

It is easily checked that  Em is actually a pretheory. And if we note that  t r u e  and 
f a l s e  are the only/~r/-normal closed terms of type Bool, and at the same time the 
only/3-normal closed terms, then the following proposition is easily proved. 

P r o p o s i t i o n  5.2 Em is maximal in the lattice of consistent pretheories. 

We can infer, from the following proposition [18], that  E,~ is a theory. 
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P r o p o s i t i o n  5.3 E,~ satisfies the w rule: 

(i) for M, M'  : ~ ~ % if M N  E,~ M ' N  for all N : ~ then M E,~ M'. 

(ii) for M, M'  : VX.cy, if M{~} E~ M'{7} for all % then M E m  M'.  

(Proof) Let E'  be the theory of ColI(~¢,E~, All) where All is the collection of all pers. 
By the construction of polymorphic extensional collapse, Em C E', Since Em is maxi- 
mal, E m =  E'. Then (i) follows by replacing Em by Z'. As for (ii), if M{T} Em M'{f}  
for all % then M E'  M' by the construction of Coll(~¢,E~, All). (A direct proof is also 
possible.) [] 

By the w rule, ~¢,Em is a BMM model, called the second order minimum model. A 
quesion is whether there are any other consistent theories satisfying the w rule. For 
those theories, if any, the following argument is valid. 

Here we adjoin binary relations to ~¢,E~ So that it is to be a relational model. The 
additional structure is given as follows. 

r : a --~ Tiff r __C_ D~ x D~. 7~ is the collection of such r's. 

p : (V f- T) -~  (F f- T') belongs to R e l [ T  n --* T] iff p sends r : a --~ K' to 
p(r) :  ~[r := ~]-~ ~'[r := ~']. 

For r : G  --~ g' and S : T  ~ T', the relation r ~ s  is defined as r=~s: [M] ~-~ [M'] 
( M :  ~ ~ T, M ' :  ~' ~ T ' )  iff s :  [MN] ~-~ [M'N'] for any r :  IN] ~-~ [N']. 

For p : (X ~- ~) --~ (X b ~'), the relation Vp is defined as Vp : [M] ~-~ [M'] 
( M :  VX.~, M ' :  VX.a') iff p ( r ) :  [M(T}] ~-~ [M'{T'}] for any r :  w --~ ~-'. 

Since all F E Obj [T ~ -* T] is syntactically definable, the behaviour of F for relation 
arguments is completely determined by r ~ s and Vp. Note that r ~ s and Vp are 
defined so that ~ and ~v are natural. Then the next theorem is immediate. 

T h e o r e m  5.4 ~¢,Em (with the additional structure above) is a parametric natural 
model. 

(Proof) For parametricity, all universal type is syntactically defined and its elements 
are all interpretations of some closed terms of the type. Then parametricity follows 
from Abstraction Theorem. [] 
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6 Categorical properties 

An interesting feature of parametric model is about categorical data types. Prawitz 
showed [19] that  in intuitionistic second order logic implication and universal quantifi- 
cation represent other logical connectives, as 

_1_ = V X . X  

A A  B = V X ( ( A ~ B ~ X ) ~ X )  

A V B = V X ( ( A ~ X ) ~ ( B ~ X ) ~ X )  

3 X . F ( X )  = vr(vx(r(x)  Y) . 

It is showed in [13] that if a model ~ has enough binary relations and is a parametric 
natural model then in the categorya C¢ generated by ~ (see below) the representations 
of Prawitz have natural meanings. For example, J_ is an initial object, A A B is a 
product of A and B, and A V B is a coproduct of A and B. 

Def in i t ion  6.1 Let ~ be a model. A category C~ is defined as Obj(C~) = /4 ,  C¢ = 
A ~ B ,  1A = [AxAx] and g o f = ~AxAg(fx): A ~ C ]  i f :  A --~ B and g:  B --+ C). 

To each arrow f E A ~ B, we associate a binary relation If[ : A ~ B, a graph of f ,  
defined as If] :  a ~-~ b iff b = ~P~,B(f)(a). A model ~ has enough relations iff all graphs 
]fl belong to 7~. The following theorem is a general property of a natural model which 
has enough relations. 

T h e o r e m  6.2 Suppose ~ is a natural model which has enough binary relations. Then, 
in the category C~, 

(i) if J_ = V X . X  is parametric, _L is an initial object. 

5i) if T = V X ( X  ~ X)  is parametric, then T is a terminal object. 

(iii) if A + B = V X ( ( A ~ X ) ~ ( B ~ X ) ~ X ) is parametric, then A + B is a coproduct 
of A and B.  

(iv) if A x B = VX( (A  ~ B =~ X)=~ X)  is parametric, then A x B is a product of A 
and B. Moreover if A x B is parametric for all A then adjunction (-) x B -~ B ~ (-) 
holds. 

(N.B. we write, for example, simply V X . X  for IVX.X~.) 

Since ~¢,E.. has enough relations (in fact, it has all binary relations) and parametric 
(Theorem 5.4), the above theorem is applied for ~¢,Em. As for Coll(@,,E, P), if the 
signature E is empty, by the remark following Theorem 4.7, the above theorem is 
applied, too. In these cases, however, the theorem is proved also by directly analyzing 
the closed terms of the types. 
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See [13] for the proof of the theorem. In an appropriate setting, even the converse 
is proved. For example, if V X . X  is an initiM object then it is parametric w.r.t, the 
collection of all graphs. The essence of the proof of the theorem is to use parametricity 
for graphs in place of commutativity of diagrams. 

Other syntactically definable data types are initial and terminal fixed points of uni- 
versally strong endofunctors. 

Defini t ion 6.3 F E Obj [T -+ T] is a universally strong functor iff both 

(i) there is a universal strength F E v x v r ( ( x = ~ r )  =~ ( F X = ~ F Y ) )  so that F induces 
a functor C~ -+ C~, and 

(ii) for f e A=~ B, there holds F(If l  ) = IF(f)l  where F ( f )  means IF{A}{B}( f )~ .  

For an endofunctor F : C --+ C, an initial object of a comma category (F $ Id) is 
called, if any, an initial fixed point of F,  and a terminal object of (Id ~ F) a terminal 
fixed point of F. Initial fixed points are used to encode algebraic types and terminal 
fixed points to encode some lazy stream types [3, 11, 23]. 

The following theorem is a general property of parametric natural models [13]. 

T h e o r e m  6.4 Suppose ~ is a natural model which has enough relations, and F : C~ --+ 
C~ is a universally strong functor. Then 

(i) if # F  = V X ( ( F X = ~  X)=~ X )  is parametric, then # F  is an initial fixed point o fF .  

(ii) if ~F = 3 X ( ( X  ~ F X )  x X)  and V X ( ( ( X  ~ F X )  x X)  ~ z~F) are parametric, 
then ~F is a terminal fixed point of F. 

To apply the theorem to the minimum model and extensionally collapsed model, we 
should know what objects of IT --+ T] are universally strong functors. 

For F H- cr and X E F, we say X is ÷ ( - ,  0) variant if X occurs at most positively (at 
most negatively, possibly both positively and negatively) in a. Moreover we say, for 
example, X,  II, Z H- V W ( ( Y  ~ X ) ~  Z ) ~  Y is + 0 -  variant where X, Y, Z are +, 0, 
- variant respectively. 

X ~- a of + variant is a candidate of a universally strong functor. In fact, is has a 
universal strength, constructed by induction on ~. But do not look over the second 
condition of Definition 6.3. For that, we need the next lemma and parametricity. 

L e m m a  6.5 Let ~ be a natural model, f E A ~ A ~, and r : B ~ B ~. 

(i) for F -- IX, Y ~- ~I where X,  Y ~- cr is +0 variant, 

F(  idA, r); IT(f, ls,)l _ F(Ifl ,  r) c IF(f,  1B)I; F( idA,, r) . 

(ii) for F = IX, r t- al where X,  r t- ~ is - o  variant, 

IF(f,  1,)I°P; F( idA,, r) C_ F(If l  , r) C_ F( idA, r); IF(f,  1,,)1 °p . 

(N.B. r °p : a ~-~ b iff r : b ~-~ a. And r; s : a ~-~ c iff there is b such that r : a ~-~ b and 
s:b~-~c.)  
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P r o p o s i t i o n  6.6 If  ~ is a parametric natural model, every IX ~- a] of+ variant is a 
universally strong ]unctor. 

(Proof) Use the ].emma above together with Identity Extension Lemma. [] 

Since the minimum model ~¢,s~ is a parametric natural model, for all X t- a of + 
variant, VX((¢=~X)=~Z)  and 3X((X=~a) x X) are initial and terminal fixed points 
of (X ~- a). 

For Coll(~¢,E, 7~), the situation is more subtle, because the model is only partially 
parametric (we shall assume the signature is empty ¢). We must investigate Identity 
Extension Lemma for partially parametric models. A sufficient condition for IF t- cr l 
of + variant to give a universally strong functor is that  X is not captured in the 
scope of universal quanitifier. This covers, for example, the 'power set of power sets' 
functor F = IX ~- (X =~ Bool) =~ Bool I. Functors for defining algebraic types are 
also parametric. For example, the natural numbers object is an initial fixed point of 
F -- IX F- T + X l which is universally strong by the remark following Theorem 4.7. 

E x a m p l e  6.7 For ~ = ~,E~ and = ColI(~¢,E, 7~), the following data types are initial 
(terminal) fixed points in the category C~. 

(i) the type of ordinals [11]: 
 x(T + ( at 

where Nat is # X ( T  + X) the type of natural numbers. 

(ii) the type of infinite lists of A [23]: 

v X ( A x X ) .  

Second order types also provide representation of internal right and left Kan extensions. 
It seems to be new, as far as the author knows, but is a straightforward analogue of 
the representation by ends [15]. What follows is applicable for the minimum model 
~¢,Em, but not clear for Coll(~¢,E, 7)), since the represetations include parameters. 

De f in i t i on  6.8 Let ~ be a parametric natural model. Us(C~) is a category defined 
as; Obj(Us(C~)) is the collection of all universally strong functors; Us(C~)(F, G) is 
defined to be V X ( F X  =~ GX) together with 

1F = [AXAxfXx] 

f '  o f = [AXAxFX f ' {X} ( f {X}x ) ]  

for f : F ~ F I and f '  : F I -* F". 

c~ Us(C~) is a C~-enriched category, It is also a subcategory of the functor category C~ , 
since all f E Us(C~)(F, G) is a natural transformation by the following lemma. 
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L e m m a  6.9 Let F and G be universally strong functors. I f V X ( F X  ~ G X )  is para- 
metric, then every f E V X ( F X  ~ G X )  is a natural transformation. 

Recall the definition of right Kan extension. Let C, D and S be categories, and 
K : C --* D and T : C --+ S. A right Kan extension o f t  along K i s  a functor 
R a n g T  : D ~ S, such that  adjunction at T 

sC((-) o K,T) TM sD((-), RanKT) 

holds where S c and S D a r e  the functor categories. We say a universally strong functor 
R a n g T  : C~ --+ C~ is an internal right Kan extension of T along K (K and T are 
both universally strong endofunctors on C¢) if 

Us(C¢)((-) o K, T) ~ Us(C¢)((-), RangT)  

is a natural equivalence in (-) where the equivalence is an isomorphism in C~ (recal] 
Us(C~) is a C~-enriched category). An internal left Kan extension LanKT is defined 
dually. 

T h e o r e m  6.10 In C~ for ~ a parametric natural model (thus in particular for ~ = 

(i) RanKT = VX(((-) ~ g x )  ~ TX)  gives an internal right Kan extension of T 
along K. 

5i) LangT  = BX((KX ~ (-)) × TX)  gives an internal left Kan extension of T 
along K. 

C o r o l l a r y  6.11 Let ~ be a parametric natural model and K : C~ -+ C~ a universally 
strong functor. 

(i) I l K  preserves R a n g l c , ,  then K has an internal left adjoint VX(((-) ~ KX)  ~ X). 

5i) I l K  preserves LanKlc, ,  then g has an internal right adjoint BX ( ( K X ~ (-)) xX) .  

A x B = VX((A=~ B=~ X ) ~  X) is a special case of (i) by K = B ~  (-). There is no 
other case, however, as pointed out in [7], namely, 

C o r o l l a r y  6.12 Let ~ be a parametric natural model. 

(i) Any universally stwng functor K preserving Ranglc~ is representable as 

g ~ (VX((T~KX)~X))~(-). 

(ii) Any universally strong functor K perserving LanKlc~ is corepresentable as 

K -~ ( 3 X ( ( K X ~ T )  × X))  × (-). 
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I conjecture that  if we consider a full subcategory of Coll(~z,z, 7') consisting of all 
syntactically defined objects, then all the theorems above are applied. But the detail 
has not yet been checked. 

R e m a r k  6.13 Huwig and Poign6 showed [14] that  some kinds of looping combinators 
cannot coexist with cartesian closedness. For example, if 2 = 1 + 1 exists in a non- 
degenerating cartesian closed category, no arrow Y : (2 ~ 2) ~ 2 can be a looping 
combinator (i.e., an arrow such that  for any f : 2 ~ 2, there holds Y o I l l  = 
f o Y o I l l  : 1 --+ 2). Hence in C~ where ~ = ~¢,E~ or Coll(~¢,E, 7'), there is no looping 
combinator of 2. More generally we can show that, in any natural interpretation 
with full binary relations, if Y E (Bool ~ Boot) ~ Bool is a looping combinator and 

(Boo1  Bool) Booll : Y Y then Itr e  = If lsel is derived. 
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