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In the second-order (polymorphic) typed lambda calculus, lambda abstraction 
over type variables leads to terms denoting polymorphic functions. Straightforward 

cardinality considerations show that a naive set-theoretic interpretation of the 
calculus is impossible. We give two definitions of semantic models for this language 

and prove them equivalent. Our syntactical “environment model” definition and a 
more algebraic “combinatory model” definition for the polymorphic calculus 

correspond to analogous model definitions for untyped lambda calculus. Soundness 

and completeness theorems are proved using the environment model delinition. We 
verify that some specific interpretations of the calculus proposed in the literature 
indeed yield models in our sense. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

The second-order lambda calculus, formulated independently by Girard 
(1972) and Reynolds (1974), is an extension of the usual typed lambda 
calculus. Like other kinds of lambda calculus, the ordinary parameter- 
binding mechanism of this language corresponds closely to parameter 
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binding in many programming languages (cf. Landin, 1965; Reynolds, 
1981; Trakhtenbrot, Halpern, and Meyer, 1983). The particular type 
structure of the second-order system corresponds to the type structures of 
programming languages with polymorphism and data abstraction (Fortune 
et al., 1983, Mitchell and Plotkin, 1988). Like Ada generics and 
parameterized modules in CLU (U.S. Department of Defense, 1980, Liskov 
et al. 1981), polymorphic functions in the second-order lambda calculus are 
formed by explicit lambda abstraction over types.’ Since the calculus is 
composed of only a few constructs, second-order lambda calculus is a 
useful tool for studying and giving semantics to programming languages 
where types appear explicitly as parameters. In this paper, we examine the 
mathematical semantics of second-order lambda calculus, proving a 
completeness theorem and providing two characterizations of models. 

The syntax of second-order lambda calculus, which is defined precisely in 
Sections 2 and 3, may be separated into three parts. The first is the set of 
second-order lambda expressions, or terms. Intuitively, terms are the 
“ordnary expressions” that describe computable functions and results of 
computation. The second syntactic class contains the type expressions. 
Expressions of the third class, the kinds, are used to describe the func- 
tionality of subexpressions of type expressions. For example, if t is any 
type, then the term 

1.x: t.x 

denotes the identity function on type E. The type of this term is t + t, the 
type of functions from t to t. Given any argument y of type t, the value of 
the function application (Ax: t.x) y = y may be computed by substituting y 
for the bound variable (formal parameter) x in the body of the term. 
Second-order lambda calculus allows us to lambda abstract over types, 
which produces polymorphic functions. Since we made no assumptions 
about the type t in writing ix: t.x, we may regard t as a free type variable. 
(We will use Y, s, t, for type variables and X, y, 2, . . . for ordinary 
variables.) The polymorphic identity function 

I ::= ls.~“x: t.x 

is formed by lambda abstracting the type variable t. We may apply (or 
“instantiate”) the polymorphic identity I to any type 6, computing the 
value of the application Jo by substituting CJ for t in the body 1,x: t..u. Thus 

IO = ix: CJ . x. 

’ An alternative to second-order lambda calculus is to introduce polymorphism “implicitly” 
by assignment of more than one type to a single expression. The reader is referred to Baren- 

dregt, Coppo, and Dezani (1983), Leivant (1983a), Mimer (1978), MacQueen, Plotkin, and 
Sethi (1986). Mitchell (1984a), Mitchell (1988) for further discussion of this alternative. 
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The polymorphic function Z has a polymorphic type. Intuitively, the 
domain of I is the collection of all types, and the range of Z is the union 
of all types of the form t -+ t. We can express the type of I more specifically 
using the mapping 2t.t -+ t from types to types. Given an argument 0, we 
can compute the type of Zc by applying the function it. t -+ t to (r. Thus we 
expect the type of the polymorphic identity to be derived from the function 
At. t --, t in some way. We use the operator ‘4 to produce a type from any 
function mapping types to types, and write V(lt. t -+ t) for the type of the 
polymorphic identity I, In general, if M has type V(Lt.7) then the type of 
the application MO is (%t.z)a. We usually abbreviate V(lt.t + t) to 
Vt. t + t. The difference between At. t -+t and Vt.t-+t is that lt.t-+t is a 
function from types to types, while Vt.t -+ t is a type. 

In second-order lambda calculus, each term has a type, and types are 
written using higher-order symbols (type constructors), -+ and V. The 
function-type constructor -+ is an infix binary operator on types. The 
polymorphic-type constructor V takes a function from types to types and 
produces a type. If we wish to expand the language to allow product types 
(ordered pairs or records), sum types, and SC on, then we will need to add 
new type constructors. Anticipating these and other extensions to the 
language, we will define second-order lambda terms with respect to any set 
of type construcltors. Therefore, in addition to terms and type expressions, 
we will also have a general class of constructor expressions. To keep the 
syntax of constructor expressions straight, we use “kinds,” which were 
called “orders” in Girard (1972). Kinds were introduced independently in 
McCracken (1979) and used subsequently in MacQueen and Sethi (1982), 
MacQueen, Plotkin, and Sethi (1986). Essentially, kinds are the “types” of 
things that appear in type expressions. 

Subexpressions of type expressions may denote types, functions from 
types to types, functions from type functions to types, and so on. We will 
use T to denote the kind consisting of all types and xi +-x2 for the kind 
consisting of functions from kind k’, to K~. Thus we regard a function like 
It. t -+ t from types to types as a constructor expression of kind T=E- T. 
Similarly the constructor expression “4” is of kind T * (T = T) and V has 
kind (T * T) * T. In effect, we use the ordinary typed lambda calculus in 
the syntax of type expressions. However, to reduce confusion between types 
and kinds, we use = instead of + and call the types of this language kinds. 
Thus we have a hierarchy from lambda expressions to constructor expres- 
sions (which include the type expressions) to kind expressions. Lambda 
expressions have types and constructor expressions have kinds. While our 
main focus is on terms and their types, kinds play an important role in 
organizing the subexpressions of type expressions. 

A number of proof-theoretic properties of second-order lambda calculus 
have been studied. The class of functions that can be represented in the 
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calculus, the normalization theorem, and other proof theoretic results 
are described in Girard (1972), Statman (1981), Fortune et d. (1983). 
However, the semantics of second-order lambda calculus is not entirely 
straightforward. The reason for this is illustrated by the fact that terms may 
be applied to their own types. For example, the polymorphic identity I can 
be applied to its own type Vt. t -+ t. If we think of a type as the set of all 
objects having that type, we are led to a contradiction with classical mathe- 
matics: the polymorphic identity I must denote a function whose domain 
contains the set Vt. t --f t and, at the same time, the set Vt. t + t must con- 
tain I. We will see that we can make mathematical sense of second-order 
lambda calculus, but we must depart from the naive approach of letting 
I-terms denote functions and types sets of functions. 

Although general descriptions of models (essentially based on terms over 
arbitrary sets of constant symbols) were already given in (Girard, 1972; 
Martin-LGf, 1975; Stenlund, 1972), and a semantic model based on recur- 
sive function application was presented in (Girard, 1972), this was not 
known to many American computer scientists studying the system. 
Reynolds (1974) attempted to construct a domain-theoretic model for the 
language but ran into difficulties and later demonstrated that no model 
in which the function-space constructor + behaves set-theoretically is 
possible (Reynolds, 1984). Donahue (1979) attempted to construct a model 
using retracts over complete lattices, but ran afoul at a rather technical step 
where a retract of all retracts seemed to be necessary. McCracken (1979), 
building on ideas from Scott (1976) and working independently of 
Donahue, produced the first correct domain-theoretic model of the second- 
order polymorphic lambda calculus. This model was constructed from 
Scott’s universal domain Bw, using closures (a special kind of retract) to 
represent types. In 9~0, the set of all closures is the range of a closure, so 
that the problem encountered by Donahue may be avoided. McCracken 
(1984a), following a suggestion of Scott (19XOb), has also shown that 
finitary retracts over certain linitary complete partial orders can be used to 
represent types. Bruce and Longo (Amadio et al., 1986), again using ideas 
appearing in several papers by Scott, have also constructed a model using 
finitary projections over complete partial orders. In a somewhat different 
vein, Leivant (1983b) suggested a framework for the “structural semantics” 
of the second-order polymorphic lambda calculus. Since the types are the 
closed type expressions, Leivant’s general model definition is an amalgam 
of a mathematical model for the elements and a syntactic model for the 
types. 

We will give two definitions of model, the environment model and the 
more algebraic combinatory model. Our environment model definition first 
appeared in Bruce and Meyer (1984) and the combinatory model definition 
in Mitchell (1984b). In support of our definitions, we will prove soundness 
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and completeness theorems and show that the two definitions of model are 
equivalent. (For simplicity, we assume in the soundness and completeness 
theorems that no type is empty.) We also indicate how our general notion 
of semantics relates to known examples of models such as Girard’s HEOz 
based on recursive function application and the domain-theoretic models of 
McCracken and others. As mentioned earlier, Girard, Stenlund, Martin- 
Lof, and Leivant have also proposed general model definitions (Girard, 
1972; Stenlund, 1972; Martin-Lof, 1975; Leivant, 1983b), and polymorphic 
combinators were discussed in Stenlund ( 1972). Our semantics encom- 
passes the earlier general descriptions of models (which use type expres- 
sions and/or terms over arbitrary sets of constants) and was originally 
formulated without knowledge of the earlier work of Girard, Stenlund, or 
Martin-Lof. 

In Section 2 we describe the syntax and typing rules and in Section 3 we 
present the axiom system for proving equations between terms. The 
relationship between the particular calculus we have chosen to use and 
other similar systems presented in the literature is discussed at the end of 
Section 2. In Section 4, .the definition of environment model and the 
semantics of second-order lambda terms and constructor expressions are 
presented. We prove soundness and completeness theorems in Section 5. 
Section 6 introduces combinatory algebras and models and establishes the 
equivalence of combinatory and environment model definitions. We explain 
how the models of Girard, McCracken, and others lit our framework in 
Section 7. In the concluding Section 8, we discuss some extensions of this 
work as well as some open problems. It is worth repeating that we assume, 
throughout the paper, that all types are nonempty. Empty types introduce 
a number of complications which are considered in (Meyer, Mitchell, 
Moggi, and Statman, 1987; Mitchell and Moggi, 1987). 

2. SYNTAX 

2.1. Constructors and Kinds 

As described in the Introduction, every term has a type and every sub- 
expression of a type expression has a kind. The subexpressions of type 
expressions, which may be type expressions or operators like -+ and V, will 
be called constructors. We will define the sets of kinds and constructor 
expressions before introducing the syntax and type checking rules for 
terms. 

We will use the constant T to denote the kind consisting of all types. The 
set of kind expressions is given by 
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Intuitively, the kind rci =E. ICY is the kind of functions from K, to Q. For 
example, functions from types to types have kind T- T. We define the set 
of constructor expressions, beginning with a set of constructor constants. 
Let VCcst be a set of constant symbols cK, each with a specified kind (which 
we write as a superscript when necessary) and let VCst be a set of variables 
uK, each with a specified kind. We assume we have infinitely many variables 
of each kind. The constructor expressions over %‘=,,, and VC^,,,, and their 
kinds, are defined by the derivation system 

For example, (IuT.uT)cT is a constructor expression with kind T. Free and 
bound variables are defined as usual. Substitution {p/u} v of p for free 
occurrences of u in v has the usual inductive definition, including renaming 
bound variables in v to avoid capture of free variables in p. 

A subset of the constructor expressions are the type expressions, the con- 
structor expressions of kind T. Since we will often be concerned with type 
expressions rather than arbitrary constructor expressions, it will be useful 
to distinguish them by notational conventions. We adopt the conventions 
that 

r, s, t, . . . stand for arbitrary type variables 

p, CJ, r, . . . stand for arbitrary type expressions. 

As in the definition above, we will generally use p and v for constructor 
expressions. We include the usual second-order types in the language by 
assuming that G&, contains the function-type constructor constant 

+: T=a(T*T) 

and the polymorphic-type constructor constant 

V:(T*T)*T. 

As usual, we write + as an infix operator, as in the type expression o + r, 
and write Vt.a for V(&.CJ). In extensions of the basic language with direct 
products or disjoint sums, for example, we would include additional 
constants x, +: T=> (T- T) in V&,,,. 
primarily with + and V. 

In this paper, we will be concerned 
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Since we have a “kinded” lambda calculus, there are many nontrivial 
equations between types and constructors. While it would be more general 
to allow non-logical axioms for constructor equality, this would complicate 
the syntax nontrivially, as discussed briefly in the conclusion of the paper. 
For simplicity, we will only consider the “pure” constructor equations that 
follow from the logical axioms below. The axioms and inference rules for 
constructors are essentially the familiar rules of the ordinary simple typed 
lambda calculus. 

Constructor Axioms. 

(IX,) Iu”.p = lu”. {uK/uK)p, uK not free in g 

(P,) (JuK.P)v= WKh 
(qK) Au”.(~uK)=~,uKnotfreein~. 

The inference rules are the usual congruence rules and are similar to the 
inference rules (sym), (trans), (tong), and (5) given for terms in the next 
section. If .D = v is provable from the axioms and rules for constructors, we 
write hcp = v. The constructor axiom system will be used to assign types 
to terms, since equal types will be associated with the same set of terms. It 
is worth mentioning that since we will only consider the pure theory of 
constructor equality, every constructor is provably equal to a unique 
normal form constructor with no subexpression matching the left-hand side 
of axiom (6) or (q). Consequently, we have the following lemma. 

LEMMA 1. If +--c~I-+~1=~~-+z2, then F--~~~=G~ and F--~T,=~~. 
Similarly, if t-cVp = V/v, then ccp = v. 

2.2. Terms and Their Types 

We follow Reynolds (1974) and write free variables without type labels. 
However, we will always assign types to free variables using a technical 
device we call a type assignment. Since a constant must name a specific 
semantic value, we will require each constant to have a fixed type without 
free constructor variables. 

Let Ker, be an infinite collection of variables, which will remain fixed 
throughout the paper. Let %&.,, be a set of constants, each with a fixed, 
closed type. The set PreTerm(G&, %&,,) of pre-terms over variables from 
G and “+‘L, and the indicated sets of constants is defined by 

A4 ::= c ( x ( Ix: a.M 1 MN ( 2t.M ( Ma, 

where c E Y,,, , x E C,, , t is a type variable, and CJ is a type expression 
over G& and “y^,,,. We will define the well-typed terms below. The usual 
definitions of free and bound variables in lambda expressions may be stated 
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without reference to typing: 1 binds x in Rx: a.M and t in Ar.M. Substitu- 
tions {N/x} M of N for x and {o/t) M of o for t are defined as usual to 
include renaming of bound variables in M to avoid capture. 

As in most typed programming languages, the type of a second-order 
lambda term will depend on the context in which it occurs. We must know 
the types of all free variables before assigning a type. A syntactic type 
assignment B is a finite set 

B= {x~:cJ~, . . . . xk:crk} 

of associations of types to variableswith no variable x appearing twice in 
B. If x does not occur in a syntactic type assignment B, then we write 
B, X:CT for the type assignment 

B, x:0= Bu {xx}. 

If x occurs in B, then it is sometimes convenient to write B(x) for the 
unique D with X:G E B. 

The typing relation is a three-place relation between type assignments, 
pre-terms, and type expressions. Let B be a syntactic type assigment, ME 
PreTerm(G$,,, , %&,,), and (r : T a type expression. We define B + M: u, 
which is read “M has type CJ with respect to B,” by the derivation system 
below. The axioms about the typing relation are 

The type derivation rules are 

and x:u +x:u 

(+E) 
Br-M:o-+z, B+N:a 

B+ MN:T 

l-0 
B,x:a+-M:z 

BcAx:a.M:a-+r 

(VI) 
BI-M:z 

B+-1t.M:Vt.r 
t not free in B 

and two rules that apply to terms of any form. A few comments are in 
order before discussing the remaining two typing rules. 

In rule (VE), we know that ,u must have kind T=z- T, since t/p is assumed 
to be a type, and V has kind (T* T) G- T. Therefore, pr will be a well- 
formed type expression. A related point about (VI) is that while we can 
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only introduce V-types of the form Vt .(T ::= V(Lt.a), we will be able to use 
the type equality rule below to derive typings of the form B I- If.M:Vp, 
where p is not of the form (Lt.a). 

The restriction in the rule (VI) is basically a matter of scope. In 

x:ttLy:l:t.yx:(t-+t)-rt, 

for example, the type variable t refers to the same type on both sides of the 
turnstile. Therefore, it would not make sense to bind the occurences on the 
right-hand side without binding those on the left at the same time. If we 
were to allow the variable t to be bound on the right only, giving us 

then using (VE) we could derive x: t t- 1~:s + s.yx: (s + s) + s, which does 
not make any sense at all. This pathology is also discussed in Section 5.2 
of Fortune et al. (1983). 

Since additional hypotheses about the types of variables do not effect the 
type of a term, we have the rule 

(addhyp) BeM’r 
B, x:o +-M:z’ 

x not in B 

for adding typing hypotheses. In addition, we have the type equality rule 

(type eq) 
BcM:a,+-,a=z 

BtA4:z ’ 

We say M is a term if B t- M:a for some B and a. However, we will 
seldom have occasion to write terms without also writing the relevant type 
assignment and type as well. In writing B + M:a in the rest of the paper, 
we will mean that the typing B + M:a is derivable, unless explicitly stated 
otherwise. 

A simple induction on type derivations shows that if a term M has two 
types a and r, then these types are probably equal. Rule (type eq) guaran- 
tees the converse, so that for any type assignment B and pre-term 44, either 
M has no type with respect to B or else the type of M is unique, up to 
equality. Furthermore, any derivation of a typing B I--- M:a only uses the 
free variables of M and only depends on B(x) up to type equality. There- 
fore, we have the following lemma. 

LEMMA 2. Suppose B I- M:a is well typed and let A be any syntactic 
type assignment such that tCA(x) = B(x) for all x free in M. Then 
A+M:r iff +-?a=T. 
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Since we have chosen the pure theory of p, v]-conversion between con- 
structor expressions, every equivalence class of constructor expressions has 
a unique normal form. Therefore, for each syntactic type assignment B and 
MEPreTerm(ce,,,,Ce,,,,), if BF--M:a and Bt-M:z then D and r may be 
simplified to the same normal form. Assuming the types given in B are 
in normal form,’ it is easy to write an efficient algorithm which computes 
the normal form type of M with respect to B when it exists, and returns 
error if it is not (cf. Leivant, 1983a). Typings have some natural sub- 
stitution properties. For example, if B I- N:p and B, x :p I-- M:a, then 
B + {N/x) M:a. In addition, if we define {o/t} B by substituting 0 for t in 
every type occurring in B, then whenever B + M:p, we have (a/t > B F- 
{a/t} M: {cr/t}p. In particular, if t is not free in B, then B + 
(y/t} M: (y/t}p. Another useful substitution property is summarized by the 
following lemma. 

LEMMA 3. Let S be a substitution of constructor expressions for con- 
structor variables and pre-terms for ordinary variables such that A t--- Sx: Sa 
is derivable for every x :a E B. If B I-- M :z is derivable, then so is 
A + SM:Sz. 

2.3. Relationship to Other Systems 

It is best to think of the second-order lambda calculus as a family of 
related systems, rather than a single calculus. The particular calculus we 
have chosen is a compromise between the most basic calculus presented in 
Reynolds (1974) and the extensions considered in (Girard, 1972; 
McCracken, 1979). The types used in the second-order lambda calculus of 
Reynolds (1974), studied in (Donahue, 1979; Fortune et al., 1983; Leivant, 
1983a, 1983b; Reynolds, 1984) are a subset of ours. Specifically, only 
normal form type expressions are used, and no constructor symbols besides 
type variables, type constants, + and V are allowed. It is possible to show 
that our typing rules and equational proof rules are conservative over 
Reynolds’, and so we consider the variables of higher kinds an essentially 
benign extension. However, because of lambda abstraction in type expres- 
sions, type equality in our system becomes more complicated. 

One straightforward extension of Reynolds’ calculus is to add Cartesian 
product types ax z. This system may be obtained from ours by adding a 
type constructor x: T * (T* T) and constants for pairing and projection 
functions. Girard also considers a system with existential types, a calculus 
with type constructor 3 of kind (T=+ T) * T whjch is “dual” to V and 
related to existential quantification in logical formulas (see Girard, 1972; 

’ If types in B are not given in normal form, then they may have to be simplified, which 

cannot necessarily be done efficiently (Statman, 1979). 
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Mitchell and Plotkin, 1988 for further discussion). One advantage of the 
calculus we have chosen is that it is easy to extend the syntax to include 
additional type constructors of any kind, and it will be quite easy to see 
how to modify the model definitions accordingly. 

A more significant extension of the basic secondrorder calculus, which 
Girard called F2, is obtained be allowing lambda abstraction in terms over 
variables of higher kinds. For example, iffT’ r is a variable of kind T* T, 
then the system we have defined allows the term kc:ft.x:ft --f ft. It is quite 
sensible to allow the variable f to be lambda bound, giving us the term 
If ‘* T.IZx:ft.x. To type this term, we need a “higher order” V of kind 
((T* T) * T) 3 T). Adding this constructor constant and allowing the 
associated lambda abstraction leads to Girard’s “higher order” lambda 
calculus F3. By adding type quantification over successively higher kinds, 
we obtain the languages F4, F,, . . ; the union of all these languages is F,,. 
(See Section I.9 of Girard, 1972 for further discussion.) We hope that by 
including variables of higher kinds, we will provide enough information to 
allow the reader to extend our model definition and completeness proof to 
any of Girard’s higher order calculi or the calculus of the theory of species 
discussed in Stenlund (1972). 

In addition to the generality of considering constructor expressions of all 
kinds, constructors will be used in the discussion of combinatory models to 
write down the types of polymorphic combinators. Another subtle function 
of variables of higher kind will be mentioned after the definition of environ- 
ment models and summarized in Lemma 11. 

3. EQUATIONS BETWEEN TERMS 

Since we write terms with type assignments, it is natural to include type 
assignments in equations as well. By equation, we will mean an expression 

B+M= N:a, 

where B + M:a and B + N:a. Intuitively, an equation {x1 :cr,, . . . . .‘ck :bk} 
+ M= N:a means, “if the variables x,, . . . . xk have types a,, . . . . ok 
(respectively), then terms M and N denote the same element of type a.” 
Since I- is considered an implication, an equation may hold vacuously if 
it is impossible to assign the variables meaning of the correct types. This 
may happen when types are empty, a complication we will avoid by 
assuming that every type is nonempty. (Empty types are discussed in 
Meyer et al., 1987; Mitchell and Moggi, 1987; see also the discussion 
following inference rule (remove hyp) below.) 

The axioms and inference rules for equations between second-order 
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lambda terms are similar to the axioms and rules of the ordinary typed 
lambda calculus. The main difference is that we tend to have two versions 
of each axiom or rule, one for ordinary function abstraction or application, 
and another for type abstraction or application. 

Axioms for Terms. 

(a) B~~.~:o.M=~~::o.{y/x}M:a~z, ynotinB, 
B+/U.M=Ls.{s/t} M:Vt.a,snotfreein2.M, 

(0) Bi- (Ax:a.M) N= {N/x} M:a, 
B+ (lt.M) z = {z/t} M:a, 

(v) B+1x:a.Mx=M:a+t,xnotfreeinM, 
B+-E.t.Mt=M:Vt.a, tnotfreeinM. 

Although some authors prefer to omit it, we have included the exten- 
sionality axiom (q). This axiom is used to prove that if Mx = Nx for a fresh 
variable x not appearing in M or N, then M = N. Models satisfying (r~) 
seem more natural, since (q) (in combination with the other axioms 
and rules) implies that two elements of functional type a + r are equal 
whenever they give equal results for all arguments of type a. In addition, 
assuming extensionality will simplify much of the discussion of com- 
binatory models in Section 6. Non-extensional models will be discussed 
briefly in Section 6.5. 

It is not necessary to include a reflexivity axiom because M = M follows 
from (/I) by the symmetry and transitivity rules below. In (a) for ordinary 
variables, the assumption that y is not declared in B may be weakened to 
y not free in M. However, the axiom as stated is slightly easier to work 
with (see the soundness proof in Section 5), and the alternative axiom is 
easily derived using the inference rules below. 

Inference Rules for Terms. 

(sw) 
B+M=N:a 

B+N=M:a 

(trans) 
B+M=N:a, B+N=P:a 

B+M=P:a 

(cow), 
B+M=N:a-+z,B+P=Q:a 

B+MP=NQ:? 

@wh 
Bt-M=N:Vp,+-,a=7 

Bt- Ma= Nz:,ua 

(l), 
B,x:at-M=N:p,+,a=r 

B~E,.r::a.M=3.x:z.N:a-tp 
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(512 
B+M=N:a 

B+At.M=lt.N:Vt.a 
t not free in B 

(constr sub) 
BI---M=N:a,p:lc 

B+ {j.@“} M= {&K} N:{&“}a 

vK not free in B and rcf T. 

Since type assignments and types are included in the syntax of equations, 
we need equational versions of the (add hyp) and (type eq) typing rules: 

(add hw 1 
Bt-M=N:a 

B,x:a+M=N:a 
x not in B 

(type 4 
B+M=N:a, t--,a=~ 

BF-M=N:2 ’ 

In addition, we will adopt an inference rule for removing typing 
hypotheses. This rule allows us to eliminate assumptions about variables 
that do not occur free in either term: 

(remove hyp) 
B,x:a+-M=N:z 

Bt-M=N:r 
x not free in M or N. 

While the analogous typing rule is an admissible rule of the language 
(Lemma 2), this equational rule is only sound if we assume that every type 
is nonempty. For example, the equation 

z:atilx:t.~yZy:t.x=~x:t.~yZy:t.y:t~t~l 

may hold vacuously in some nontrivial model if ~7 is an empty type. 
However, the equation 

which follows by rule (remove hyp), only holds in trivial models with no 
more than one element of each type. 

It is easy to check that for each of the inference rules, if the antecedents 
are well-typed equations, then the consequent is a well-typed equation. The 
only slightly nontrivial cases are (tong), and (or, in which we must con- 
sider type equality. In rule (tong),, if B t- M= N:Vp and i---,0 = r, then 
I--~ po = pz and so B I- Ma : PO and B I- Nr :pr have probably equal 
types. The verification of (t)r is similar, but uses Lemma 2 to show that if 
B,x:acM=N:piswelltypedand~,a=~,thenwehaveB,x:r~N:p, 
and so B+Ix:a.M=;lx:z.N:a-+p is well typed. The reason for 
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including type equality in these two inference rules is so that term equality 
respects constructor equality. More precisely, term equality has the 
following substitution property. 

LEMMA 4. Zf B F- M:o is weIl typed, I-< u = v, and N is obtained from 
M by substituting v : K for one or more occurences of u : tc, then we can prove 
B + M = N: CJ from the axioms and inference rules above. 

This lemma is easily proved by induction on M, using Lemma 2 to show 
that the equation B F M = N:o is well typed. Rule (constr sub) is used to 
show that equality is closed under substitution. Since we have lambda 
abstraction and application for type variables and ordinary variables, we 
can prove substitution instances of equations using (/I). However, since we 
cannot lambda-abstract constructor variables of kind K different from T, 
we need rule (constr sub) to complete the proof of the following lemma. 

LEMMA 5. Let S be a substitution of constructor expressions for con- 
structor variables and pre-terms for ordinary variables such that A + Sx: So 
for every x:a E B. Then from any well-typed equation B + M= N:T we can 
prove A c SM = SN: Sz. 

Lemma 3 may be used to show that the equation A + SM = SN:& in 
the statement of Lemma 5 is well typed. 

A second-order lambda theory r is a set of equations containing all 
instances of the term axioms and closed under the inference rules. We will 
not include equations between constructors in theories, since we will 
always use the same constructor equations. 

4. SECOND-ORDER ENVIRONMENT MODELS 

4.1. Introduction 

Models for second-order lambda calculus will have several parts: we use 
“kind frames” to interpret kinds and constructors and additional sets 
indexed by types to interpret terms. All of these parts will be collected 
together in what we call a frame (after Henkin, 1950). We define models as 
frames which satisfy an additional condition involving the meanings of 
terms. This form of definition is similar to the “environment model” 
definition for untyped lambda calculus given i 

xl 
(Meyer, 1982). Since the 

definition of second-order model is fairly co plicated, we will try to 
illustrate some of the underlying ideas using untyped lambda calculus. 

Untyped lambda calculus has untyped applications MN and function 
expressions 2x.M. If we think of M and N as denoting elements of some 
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“domain” D, then the application MN of M to N makes sense if we have 
some way of turning M into a function. This is accomplished using an 
element-to-function map @. Conversely, we can easily regard Ix.M as a 
function from D to D, since M specifies a single function value for every 
value of x. But in order to find a meaning for Ax.M in D, we need a 
function-to-element3 map Y = Qp- I. An extensional applicative structure 
(D, @) consists of a set D together with a mapping @ such that for some 
set [D -+ D] of functions from D to D, 

@:D -+ [D -+ D] is one-to-one and onto. 

In other words, an extensional applicative structure (D, 0) consists of a 
set D together with a bijection @ between D and a set [D + D] of 
functions from D to D. In general, we will be a bit informal about @ and 
abbreviate (@(d))(e) to de. 

If q is an environment mapping untyped varibles to D, then the meaning 
[m q of term h4 in environment q is defined by 

wMnfl=@-‘(f), where f: D --t D satisfies f(d) = [A4j q[d/x]. 

Although this definition may look fine, there is a serious problem with the 
meanings of terms. The meaning of a lambda term 1x.M is defined by 
applying @- ’ to some function J The function f is well defined, but f may 
not be in the domain [D + D] of @-‘. Consequently, the meaning of Jx.M 
may not be defined. Thus we must distinguish models, structures in which 
every term has a meaning, from arbitrary applicative structures. One 
straightforward model definition is the environment model definition. We 
say an applicative structure is an environment model if the meaning of every 
term M in every environment ? is a well-defined element of D. Some equiv- 
alent model definitions are discussed in (Barendregt, 1984; Koymans, 1982; 
Meyer, 1982). 

A similar definition can be given for the ordinary typed lambda calculus. 
With typed application, we need an “element-to-function” map @o,b for 
each pair of types a and b. The function @o.b maps the domain Doma’b 
of elements of type a --) b to some set [Dom” + Domb] of functions from 

3 Since we are only concerned with extensional models (see Section 6.5), we assume that 
Y = @-I. In nonextensional models, there may be two elements d,, d, E D representing the 
same function f = @(d,) = @(d,). In this case, @ has no inverse and we rely on a second 
function Y to choose a particular d = Y(f) representing J See (Barendregt, 1984; Meyer, 
1982) for further discussion. 
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Dom” to Domb, and we use @ii to give meaning to typed lambda abstrac- 
tions Ix : 0. M: u -+ z. Since constructor expressions are a notational variant 
of simple typed lambda terms, we will interpret constructor expressions in 
structures like this. 

4.2. Semantics of Constructor Expressions 

Constructor expressions are interpreted using kind frames, which are 
essentially frames for the simple typed lambda calculus. A kindframe, Kind, 
for a set %&, of constructor constants is a tuple 

Kind= ((Kind” 1 K a kind}, (GJ~,,~? 1 K,, ti2 kinds}, 9), 

where 

Qx,, Xz: Kind”““2 -+ [Kind”’ + Kind”21 

is a bijection between Kind”““* and some set [Kind”’ + KindK2] of 
functions from Kind”’ to Kind”‘, and 

preserves kinds, i.e., -O(P) E Kind”. Since constructor expressions include 
all typed lambda expressions, we will be interested in kind frames which 
are models of the simple typed lambda calculus. 

Let 9 be an environment mapping constructor variables to U, Kind” 
such that for each ux, we have ME Kind”. The meaning [pa g of a 
constructor expression p in environment 9 is defined as follows (see 
Barendregt, 1984; Friedman, 1975; Henkin, 1950; Statman, 1985): 

We say Kind is a kind enuironment model for ‘&, if every constructor 
expression over %&, has a meaning in every environment for Kind. We will 
give an equivalent algebraic definition in Section 6. 

Note that we have not had to distinguish + and V from other construc- 
tor constants. It is implicit in the definition of kind frame that Kind’ must 
be closed under -P (viewed as a binary operation) and that the result of 
applying V to any function in KindT’ ’ is also an element of Kind7 The 
advantage of working with constructors and kinds is that our definition 

643:RSil-7 
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applies to any set of type constructors. If we also have a “product-type” 
constructor 

among our constants G$‘,,,, then the definition of kind frame also requires 
that Kind’ be closed under x (viewed as a binary operation). 

Since it is a very convenient way of making definitions more readable, we 
will often use V, +, and other constants for their denotations in Kind when 
there is no danger of confusion. For example, if fE KindT’ r, we write Vf 
rather than (S(V))f: It is worth mentioning that we could dispense with 
the mappings QX,, K2 in kind frames by letting Kind”’ *Q be a set of 
functions from Kind”’ to KindQ. However, the slightly more involved 
setting described above provides more motivation for the interpretation of 
terms below. (In interpreting polymorphic terms, we cannot eliminate the 
@ functions.) In addition, the functions Q,,,,, and @;.‘lc2 simplify the 
completeness proof slightly. 

4.3. Frames and Environment Models 

As in the definition of untyped environment model, we first define a 
structure, called a frame, and then define models by distinguishing frames 
which interpret all terms from those that do not. Second-order frames will 
include typed versions of @, plus an additional collection of O’s for 
polymorphic types. Intuitively, a polymorphic term It. M denotes a func- 
tion from the set of types to elements of types. More precisely, we will be 
able to regard the meaning of At. M as an element of the Cartesian product 
II aE klnd~.Domf’“’ for some function f: Kindr’ ’ determined from the 
typing of M. Therefore, for every function f E Kindr” ‘, a second-order 
model will have a function @,. mapping DomVf to some subset 
[Z7,,xindT.DomfCa)] of Z7,..,,,,.Domrcu). 

A second-order frame 9 for terms over constants from $&, and $&,, is 
a tuple 

P=(Kind,Dom, (~,.,Ia,b~Kind~),(~/I fEKind”‘j) 

satisfying conditions (i) through (iv): 

(i) Kind= ({Kind”}, { QKlr KZ}, 9) is a kind frame for G$‘,,, 

(ii) Dom = ( (Dam” ( a E Kind=}, ,a,,,,,) is a family of nonempty sets 
Dom” indexed by elements a E KindT, together with a function 

Y Dom . . Gf&,, + u Dom” with 9;,,,( c’) E Dom rTn for all cT in V,,,,m, 

(iii) For each a, b E KindT, we have a set [Dom” + Domb] of func- 



SECOND-ORDER LAMBDA CALCULUS SEMANTICS 93 

tions from Dom” to Domb with bijection Ou.h: Dornll+’ --t [Dom” + 
Domb]. 

(iv) For every f E KindCT’ T1, we have a subset [ Z7,E klndrDomfCa)] 
E Z7, E KindrDom.f(a’ with bijection @./ : Dam”/ + [ZZ, t kindTDomfCO)]. 

Essentially, condition (iii) states that DomU+’ must “represent” some set 
[Dom” -+ Domb] of functions from Domu to Dam’. Similarly, condition 
(iv) specifies that Domv’fmust represent some subset [ZZ,, kindrDomfCAa’] of 
the product Z7,, KindrDom.f(n). 

Terms are interpreted using Q’s for application and @ ~ “s for abstrac- 
tion. Since different @ and @-’ functions are used, depending on the types 
of terms, the type of a term will be used to define its meaning. If B is a type 
assignment and q an environment mapping 9&, to elements of the 
appropriate kinds and $&, to elements of l., Dom, we say that v] satisfies 
B, written q + B, if 

for every x: a E B. 
Let 9 be a second-order frame. For any well-typed term B + M: CJ and 

environment q k B, we will define the meaning [B + M:aJ q inductively 
below. Although it may seem unnecessarily complicated, the simplest way 
to define meanings seems to be by induction on the derivation of typings, 
rather that the structure of terms. This is simply a technical device. Since 
any derivation of B + M:a must follow the structure of M fairly closely, 
there is not much difference between the two forms of induction. However, 
since there is some flexibility in where rules (add hyp) and (type eq) might 
be used, there is a little more structure in the derivation of a typing of 
B t M:a than in the expression B+ h4:a itself. In particular, a derivation 
gives specific typings to each of the subterms, while the fact that B + M: CJ 
is derivable only determines the types of subterms of M up to type equality. 

The lambda abstraction case illustrates some of the advantages of induc- 
tion on typing derivations. If we define the meaning of B F-- 1x:a.M: p 
using induction on the structure of terms, we must argue that tC p = CJ + 5 
for some T and that it does not matter which r we pick. We need p = c + 7 

so that we know the domain and range types, and we need to show that 
the chaise of t is inessential so that it is clear that the meaning of each term 
is uniquely determined. These arguments are not entirely trivial since rule 
(type eq) allows the syntactic type of the lambda abstraction to have 
almost any form. In addition, we need to find some type assignment A with 
A + M:T so that we may apply the induct& hypothesis and argue that 
the choice of A is inessential. However, using induction on typing deriva- 
tions, the inductive assumption for rule (+I) is that B I- Lx :a.M:a -+ T 
follows from typing B, .Y:CJ k M: 5 and that the meaning of B, X:CJ + M:T 
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is defined for any environment satisfying B, x:0. This gives us specific 
domain and range types for the lambda term and also guarantees that x 
does not occur in B, so that B, X:CJ is a well-formed type assignment. Some 
similar points apply in the (VI) case, and will be mentioned below. Once 
we have given the definition of meaning, it will be easy to prove that the 
meaning of a well-typed term B F- M:o does not depend on the way this 
typing is derived. 

The inductive clauses of the meaning function are given in the same 
order as the typing rules in Section 2.2, with rules (-+E), (+I), (VE), and 
(VI) preceding rules (add hyp) and (type eq) which do not rely on the 
forms of terms: 

[B I-- x:aD iy = q(x), 

[B+Ix:a.A4:a+~Jq=@;, g, where 

g(d)=[B,x:cri-M:zl q[d/x] for all de DomU, 

a= bn v and b= bh 
~B~Mr:~~n9=(~rO[~M:v~nr?)c7n?, where f = 5 PI 9, 
[B + At.M:Vt.a]q = G;’ g, where 

g(u) = [Bt- khlj q[a/t] for all a E Kind ‘, and 

fe KindTs7 is the function [Lt.oJ 7 

[B,x:a~M:T]FJ= [B+-kf:,jJq, where the left-hand typing 

follows by the rule (add hyp) 

[BtM:rl]q= [Bt--M:o~~, where the left-hand typing follows 

by rule (type eq). 

It is relatively easy to see that the environments mentioned on the right- 
hand sides of these clauses all satisfy the appropriate syntactic type 
assignments. One nontrivial case is type abstraction by rule (VZ). Since we 
assume that B I- 2t.M:Vr.o follows from B + M:a, we know that t does 
not occur free in B. Therefore, if q l= B, then any q[u/t] satisfies B as well. 
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In the inductive definition of meaning, there is no guarantee that 
[B + M:o] q exists for every well-typed term. For example, g in the 
ix: a.M case may not be in the domain of @$, and similarly for g in the 
It. M case. Therefore, we make the following definition. A second-order 
frame 

9= (Kind, Dom, {@u,b 1 a, bEKindT), {Qf (fEKindT”)) 

is an environment model if (i) Kind is a kind environment model and (ii) for 
every term B + M:a and every environment ‘1 + B, the meaning 
[B + M: a] v] exists as defined above. 

It is easy to check that the meanings of terms have the appropriate 
semantic types: 

LEMMA 6. Let r] be an environment for a model (Kind, Dom, { @a.6), 
(~0~)). Ifq + B, then [B+M:a]qEDomlunV. 

In addition, we can show that the meaning of a well-typed term 
B +-- M:a does not depend on the derivation of the typing. This is the 
intent of the following two lemmas. It will be helpful to name typing 
derivations and write, e.g., A, A, for the derivation d followed by deriva- 
tion A,. An easy induction on typing derivations shows that rules 
(add hyp) and (type eq) do not effect the meaning of terms. 

LEMMA 7. Suppose A is a derivation of A k M:a and A, A, is a deriva- 
tion of B + M:? such that only rules (add hyp) and (type eq) appear in A,. 
Then for any q + B, we have 

where the meanings are taken with respect to derivations A and A, A,. 

Using induction on the structure of terms, and Lemmas 1, 2, and 7, we 
can now show that the meanings of “compatible” typings of a term are 
equal. 

LEMMA 8. Suppose A and A, are derivations of typings A +- M:a and 
B I- M:T, respectively, and that t-c A(x) = B(x) for ever-v x free in M. Then 

where the meanings are defined using A and A,, respectively. 
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It follows that the meaning of any well-typed term is independent of the 
typing derivation. 

COROLLARY 9. Suppose A and A, are derivations of a typing B + M:G. 
Then for any environment q k B, the meaning [B I---- M:oJ ye defined using 
induction on A is the same as the meaning defined using A,. 

This corollary allows us to regard an equation B + M = N:a as an 
equation between M and N, rather than derivations of typings Bt- M:CJ 
and B t- N:o. In addition to the corollary, Lemma 8 shows that meaning 
is a congruence with respect to type equality, which will be useful in 
showing the soundness of the equational proof rules for terms. 

A very useful fact is the following substitution lemma. 

LEMMA 10 (Substitution). (i) Suppose B, X:CJ +- M:t and B + N:cr. Zf 
v] t= B then 

(ii) If B I- M:o and t is not free in B, then 

[Bt- {t/t} M:(t/t} aJq= [Bt-M:on q[[zl] r//t]. 

(iii) If p, v are constructor expressions with V:K and v E Vi,, a uariabie 
of kind K, then 

Parts (i) and (ii) of the lemma are easily proved by induction on terms. 
Part (iii) is a well-known property of the simple typed lambda calculus. It 
is also easy to prove that the meaning [B +- M: o] r] does not depend on 
q(x) or q(t) for x or t not free in M. 

An important lemma about the environment model condition is that it 
does not depend on the set of constants of the language. 

LEMMA 11. Let B be an environment model for terms over constants %$,, 

and %,,. If we expand %ZCSt and G&,,,, to W&, and %?,&,, and interpret the 
fresh constants as any elements of F of the appropriate kinds or types, then 
we obtain an environment model for terms over constants from %‘&, and %‘&,,, 

This lemma, which will be used in the proof of the combinatory model 
theorem (Theorem 18), is easily proved using the fact that every constant 
is equal to some variable in some environment. More specifically, if we 
want to know that a term B + M:a with constants has a meaning in some 
environment q + B for frame 9, then we begin by replacing the constants 
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with fresh variables. Then, we choose some environment vi which is identi- 
cal to q on the free variables of B + M:o, and which gives the new 
variables the values of the constants they replace. If 9 is an environment 
model, then the new term must have a meaning in the chosen environment, 
and so it is easy to show that B F- M:o must have a meaning in 4. 
However, this argument applies only if we have variables of all kinds; 
without this, the hypothesis that 9 is an environment model for constants 
Y,, and Ye,, is not enough. In particular, the lemma fails if our frames 
include an arbitrary set of functions in KindT’ ‘, but do not have variables 
of kind T=> T. This was overlooked in (Bruce and Meyer, 1984). 

5. COMPLETENESS 

In this section, we show that the axioms and inference rules are sound 
and complete for deducing equations between terms. We need the usual 
definitions of satisfaction and semantic implication to state the soundness 
and completeness theorems. An environment 17 /= B for model 9 satisfies 
an equation B t M = N: 0, written 

B,r/ k BI-M=N:a. 

if [B I--- M: a] q = [B + N: a] n. A model 9 satisfies an equation B I- M = 
N: 0, written 

if F and r] satisfy B I- M = N: CJ for all 9 k B. Similarly, a model F 
satisfies a set r of equations if F satisfies every equation in r. A set r of 
equations semantically implies an equation B t- M = N: C, written 

I-+ BI-M=N:a, 

if 5F k B+M=N:a whenever 9 + f. 
It is easy to verify that the axioms and inference rules are sound for 

models without empty types. 

LEMMA 12. (Soundness). Let r be a set of equations and let 
B+M=N:a be an equation. If r proves B+M=N:a, then 
Z-k BI--M=N:a. 

Proof: The proof is entirely straightforward. We yill show that two 
axioms, (CL) and (b), are valid, leaving the details for remainmg axioms and 
inference rules to the reader. Suppose B I- Lx:@. M:a -+ r is well typed and 
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assume the variable y does not occur in B. Let 4 k B. For a = [a] q and 
b = 171 q, we have 

The second equation follows from the substitution lemma 10(i). The sound- 
ness of (a) for type variables is proved similarly using Lemma lO(ii). 

For (p), consider any term B t- (Ily : a.M) N:T with types a, b E Kindr 
the meanings of [T and 7 as above. We have 

using Lemma 10(i). The soundness of ( p) for types is proved similarly. The 
extensionality axioms (pl) depend on the fact that @G.h and @f are bijec- 
tions. It is easy to prove that semantic equality is an equivalence relation. 
The only subtlety in the (tong) and (0 rules are in (tong), and (0,) where 
we must use Lemma 8 to account for the typing differences. As mentioned 
earlier, rule (remove hyp) relies on our assumption that no Domn is empty. 
The remaining rules are straightforward. 1 

We now show that the axioms and inference rules are complete for 
environment models without empty types. 

THEOREM 13 (Completeness). Let r be a second-order theory over terms 
with constants from SfC,, and %&,, . There is an environment model F for G$,, 
and Ye,, such that F /= (BF-M=N:a) iff BcM=N:crEr. 

Prooj The proof uses a term model construction as in (Barendregt, 
1984; Friedman, 1975; Meyer, 1982). We begin by defining a kind frame 
Kind= ((Kind”}, { @ K,. .,}, 9) for G$,, . Let Kind be the “term model” for 
y,, built from equivalence classes of constructors as in (Friedman, 1975). 
Thus Kind7 is the set of equivalence classes of type expressions. We will 
use (P) to denote the equivalence class of the constructor P. As usual, the 
interpretation of a constant c E$&~ is its equivalence class (c). In par- 
ticular Y(V) = (V) and Y( -+ ) = ( -+ ). An inductive argument, sketched in 
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the proof of the Claim below, shows that Kind is a kind environment 
model. 

We will define Dom using equivalence classes of terms. We will start with 
infinitely many variables of each type, since this will make it possible to 
prove extensionality of Dom quite easily. Let A be an infinite “type assign- 
ment” A = {xl :cri, . . . } assigning each variable a single type and providing 
infinitely many variables of each type. Although the infinite set A is not a 
syntactic type assignment, we will abuse notation slightly and write 
A +- M:o to mean that A i +- M:a for some linite subset A, c A. 

We now define Dam(“) for each equivalence class (a), using sets 
of terms proved equal by ZY For any A E- M:a, let (M) denote the 
equivalence class 

and for each ( cs ) E Kind ‘, let 

Dom(“> = {(M) ( A + M:a}. 

Note that by choice of A, no Dom CO> is empty. In addition, by Lemma 2, 
Dam<“) depends only on the equivalence class (a), not the type 
expression 6. We define 9 by interpreting each constant CEG&, as its 
equivalence class -OoO,(c) = (c ). It remains to define the families of 
functions {@a,b} and {Qr}. 

For each (cJ), (z)~Kind=, define cP<~>,<~> by 

(@<,>.<,,(M))(N) = (MN), 

for all A4 and N of the appropriate types. Let [Dom(“’ -+ Dom(‘>] be the 
range of @<O>,<r>. The function @C,,j,Cr> is well defined by (tong) and can 
be shown to be one-to-one using ([), and (q). 

For each (p) E Kind=” define QCr> by 

for every A+-M:Vp and (z)EKind? We take [n,,,E,i,,rDom’Pg’g)]C 
n<p> E Kind rDomCPg> to be the range of QCPj and note that DC,,> is one-to- 
one by (02 and (q). Thus we have a frame LF = (Kind, Dom, {@Pa,h}, 
{@jr} ) for terms over constants from %$,,, and %&.,, . 

It remains to show that 9r is an environment model and that F satisfies 
precisely the equations belonging to r. We will show that 9 is a model by 
giving an explicit description of the meaning of every constructor and term. 
If q is any environment for 8, we let {q} be any substitution of construc- 
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tor expressions for constructor variables and terms for ordinary variables 
such that 

{‘I)UEYI(U) and blJX-l(X) 

for every constructor variable u and ordinary variable x. Although the 
value of (q}x is not uniquely determined, the equivalence class ((9)x) is 
uniquely determined by 9. This is sufficient, since we will only be concerned 
with the effect of (ye} up to provable equivalence from K It is easy to verify 
that if (M) = (N), then ({q>M)= ((q)N). The proof that 9 is a 
model satisfying precisely the equations in r rests on the following claim. 

CLAIM. For any constructor p, term B I- M:o, and any environment 
4 k B, we have 

bIlyI= <WP) and [BI-M:a]q= ((q}M). 

If we can verify the claim, then it is clear that 9 is an environment 
model; i.e., every constructor and term has a meaning in 9. We can also 
use the claim to show that 9 satisfies precisely the equations in r, as 
follows. First, suppose B + M = N: CT E I- and ye + B. Since q /= B, we have 
A + bl+:~yI~ f r or every X:T E B, and so by Lemma 3, it follows that 
‘4 + {VI M: kd (T, and similarly for N. By Lemma 5, it follows that 

A~(~}M=(~}N:{~}aisprovablefromB+M=N:c~~~. 

Therefore [B+-M:~]~=({v])M)=({~}N)=[B+-N:~]~. Conver- 
sely, we must show that if 9 k BI-M=N:a, then B+-M=N:aEI’. 
For any B, we can choose an environment y10 k B which maps every con- 
structor variable U“ to its equivalence class (vK) and maps every ordinary 
variable x with x:r E B to the equivalence class of some variable y with 
y:r~A. If .9 k B+-M= N:o, then we have 

Since y10 just renames ordinary variables. M is a substitution instance of 
(q,,}M and similarly for N. Therefore, by Lemma 5, we conclude 
B +- A4 = N: o E K This proves the theorem, except for the claim. 

We verify the claim using induction on constructor expressions and 
induction on typing derivations for terms. It is not hard to show [p] q = 
({s} p) by induction on constructors, using essentially the same steps we 
use for terms below. In particular, we have [a] v] = ( {q} o) for type expres- 
sions cr. We now consider terms. For any typing X:B I- X:U of a variable, 
we have 
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The application case (-+E) is also straightforward. For any B I- MN:z 
typed using (-+E) as the last step, we have 

where a = [a] q and b = [r] q. For A-abstractions typed by (-+I), we have 

j[Br--x:o.M:a-t~l]vl=~,,‘g, 

where a = [[on PJ, b = [[r] v] and g is the function satisfying 

g(d)= j[B, XX F kf:Tlj q[d/X] 

for all do Dom“. We can see that g= (@o,b( (‘I} Ax:a. M)) using the 
inductive hypothesis and the substitution lemma as follows. For any 
(N) E Dam”, we have 

g(N)= [B,~:at-hf~] ?[(N)/X] 

= w<w/~lw) 
= (({y} Ax:(r.M)N) 

= (@)a,b( iv> ~x:o.WKW. 

Since @ii is the inverse of cO~,~, it follows easily that 

[BE-Ix:o.M:o-+z]q 

=@Pu,~Pa,b({~l h:a. M)) 

= ({?/} hl:o.M). 

Similar arguments demonstrate the claim for the (VE) and (VI) cases, and 
rules (add hyp) and (type eq) are trivial. This finishes the proof of the claim 
and hence the theorem. 1 

6. COMBINATORY ALGEBRAS AND MODELS 

6.1. Introduction 

In this section, we present an alternative to the environment model. The 
environment model definition has two parts: the definition of a frame and 
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the stipulation that a frame 9 is a model only if every term has a meaning 
in 9. While the definition of frame has the same mathematical flavor as, 
say, the definition of a group or vector space, the condition distinguishing 
environment models from frames is largely syntactic since it relies on the 
inductive definition of the meanings of terms. In this section, we present an 
equivalent “combinatory model” definition based on algebraic properties 
of elements. Since second-order combinatory models are analogous to 
untyped combinatory models, we will illustrate the basic ideas by reviewing 
the untyped definitions (see Barendregt, 1984; Meyer, 1982 for further 
discussion). 

An applicative structure is said to be combinatorially complete if every 
implicitly definable function is represented in the model. More precisely, an 
untyped applicative structure $3 = (D, @) is combinatorially complete if, 
for every expression M with no occurrence of 1, all variables among 
XI, . . . . x,, and possibly containing constants from D, there is a constant 
dc D such that 

9 k M=dx, “.x,. 

Intuitively, this means that for every implicit “polynomial” description M 
of a function of n variables, there is an element of D representing this 
function. For untyped extensional applicative structures, it can be shown 
that combinatory completeness is equivalent to the environment model 
condition that every term have a meaning (Barendregt, 1984; Meyer, 1982). 

Combinatory completeness also has a relatively simple definition which 
is algebraic in nature. An untyped applicative structure 9 = (D, @) is a 
combinatory algebra if it has elements4 K, SE D satisfying 

Kxy=x 

sxyz = (xz)( yz) 

for all x, y, z E D. It can be shown that the combinators K and S are an 
“algebraic basis” for the implicitly definable functions. Consequently, an 
applicative structure ?3 is combinatorially complete iff 53 is a combinatory 
algebra (Barendregt, 1984; Koymans, 1982; Lambek, 1980; Meyer, 1982). 
Since both K and S can be defined explicitly by lambda terms, an exten- 
sional applicative structure ~3 is an untyped environment model iff 53 is an 
untyped combinatory algebra. 

4 Combinatory algebras are often defined as structures interpreting constants K and S such 
that Kv and S” satisfy the equations above. If 53 is not extensional, then the equations may 
hold for many K, SED and it may be useful to have a structure 9 single out specific K and 

S. Since our structures will be extensional. we will not require combinatory algebras to choose 
specific combinators. 
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Combinators for ordinary typed lambda calculus are similar to the 
untyped combinators, as we shall see in the discussion of kind structures 
below. Instead of using two untyped combinators K and S, typed 
combinatory algebras are characterized using an infinite family of typed K 
combinators and a similar family of typed S combinators. 

In the discussion of second-order combinatory models, we will define 
second-order combinatory completeness and second-order combinatory 
algebras. Instead of infinite collections of typed K and S combinators, 
second-order combinatory algebras will be characterized using a single 
polymorphic K, a single polymorphic S, and infinite families of additional 
combinators. As in the untyped case, each combinator is characterized by 
an equation. We will see that every second-order lambda-definable function 
can be viewed as an applicative combination of the combinators and show 
that an extensional frame 9 is a second-order environment model iff 9 is 
a second-order combinatory algebra. 

It is worth pointing out that the situation becomes more complicated 
if we do not assume extensionality. The correspondence between com- 
binatory completeness and combinatory algebras holds in general, but non- 
extensional combinatory models are more complicated than nonextensional 
combinatory algebras (see Barendregt, 1984; Koymans, 1982; Meyer, 
1982). Except for a brief discussion in Section 6.5, we will only consider 
extensional second-order frames. 

6.2. Constructor Combinators 

Recall that a kind environment model is a kind frame, 

in which every constructor has a meaning. As the first step towards giving 
a model definition that does not rely on the meanings of terms, we will 
substitute a condition involving “kinded” combinators K and S. 

As described in (Barendregt, 1984; Friedman, 1975), the requirement 
that every constructor expression has a meaning in Kind is equivalent to 
stipulating that for all kinds K~, K*, and K~, there must be elements 

K hl.h2~ I(indhl-(X2~Kl) 

K ~“Zi.~‘),~(ti,~h.2)=sh.,~Lj S,,, ~?. zj E Kind’ I 

with the familiar properties 

K,,, “z MU = IA 

SK,, “2. hj uvi4’= (uw)(vw) 

for all U, v, and MI of the appropriate kinds. (As usual, we have abbreviated 
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(@,,, ,,(@,,. KZ+KIK,r ,&b to K,, .pu, and similarly for S,,. K2. X,.) In the 
following discussion of frames and combinators, we will assume that every 
kind frame has combinators K,,, K2 and S,,, K2, ~~ for all kinds K,, K~, and 
K~. This will allow us to focus on combinators for terms. 

6.3. Second-Order Combinatory Completeness 

Intuitively, a second-order frame is second-order combinatorially com- 
plete if it is closed under definition by polynomials over ordinary variables 
and type variables. We will show that combinatory completeness is equiv- 
alent to the existence of a set of combinators, each characterized by an 
equational axiom. Later, in Section 6.4, we will see how to describe com- 
binators formally without introducing extra constants into the language. 
However, constants for elements will be convenient for discussing com- 
binatory completeness and for proving the equivalence of combinatory and 
environment model conditions. 

If 9 is a second-order frame, then the P-terms are the applicative terms 
(terms without 1x:a. M or It.M) of the language with a constant for each 
element of 9”. It is understood that if c is the “constant for d,” then 
Y(c) = d. Since the a-terms do not involve any lambda abstraction, every 
9 term has a meaning in the frame 9, regardless of whether F is an 
environment model. One minor complication with the F-terms is that the 
syntactic type of an element is not determined uniquely (since our syntax 
does not allow arbitrary equations between constructors). For example, if 
f, gEKindT” are distinct, but Vf = Vg are the same element of Kindr, 
then a constant c for de Domvf could be given syntactic type V’or Vg. We 
will take the rather brute force approach of assuming we have many con- 
stants for each element, one for each equivalence class of type expressions 
over constants from Kind. It is important to have each typing included, 
since the syntactic type of a constant determines the way the constant may 
be used in terms. 

A frame 9 = (Kind, Dam, {@o,b}, {Qf}) . 1s second-order combinatorialll 
complete if for every %-term B + M:o without free variables of higher 
kinds (kinds other than T) there is a constant d from 9 such that 

where x‘ is a list of all ordinary variables in B and s’lists all type variables 
of B + M:a. This definition is similar to the usual definition of com- 
binatory completeness for untyped lambda calculus (Barendregt, 1984; 
Meyer, 1982), but with the added consideration of types and type variables. 
We do not consider implicit functions of variables of higher kinds since we 
cannot I-bind variables of higher kinds in second-order terms. 

We will see that a second-order frame is combinatorially complete iff it 
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has elements K, S, A, B, C, and D satisfying certain equational axioms. 
Since these elements may be defined as the meanings of closed terms (in a 
language with enough constructor constants to write down their types), 
they are called combinators. The combinators K and S are similar to the 
combinators of the same names used in untyped lambda calculus, while A, 
B, C, and D are related to type application and type abstraction. A useful 
abbreviation is to write T’=> T for the kind T=> ... * T with i + 1 
occurences of T. 

A second-order frame 9 is a second-order combinatory algebra if it 
contains elements 

KEDom VS.Vl.S + i-s 

SE Domv”.v”.v~.“‘““““‘“““, 

and, for all integers i, j, k 2 0 and all f~ KindT”’ * ‘, g E KindT” ’ q ‘, and 
h E Kind @+* a ‘, elements 

CLREDom .. vi vi[vt[(fif, - (gft)] - vr(,frf) + Vf(&)] 

Dh.f~ Dom vi.vs[vr.vu(hnu) + vr(hil(.fri))] 

with the properties described below. 
The combinators K and S must satisfy 

Kstxy = x 

Srstxyz = xz( yz) 

for all types r, s, t and all elements x, y, and z of the appropriate types. The 
types of x, y, z, omitted to improve readability, are easily determined from 
the types of the combinators. For example, to be more specific, K must 
satisfy 

Kstxy = x for all s, t E Kind’ and all x E Dam’, y E Dom’. 

The combinator B and every A, C, and D must have the following equa- 
tional properties, where again the types of x and y may be determined from 
the types given above: 

(A&) xty = (xy) t 

(Br) xt = .X 

(c&n) xyt = xt(yt) 

(Dh. [+“) xr = xr(fs’t). 
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It is worth noting that this set of combinators has been chosen for ease in 
proofs and is not intended to be minimal. 

We now introduce a language for describing elements of combinatory 
algebras. One complicating feature of second-order lambda calculus, men- 
tioned briefly earlier, is that we cannot necessarily write closed expressions 
for all of the types of any given frame. Similarly, we cannot necessarily 
define all of the elements of each kind T’d T. Since we need a closed 
expression p for f E KindT” ’ to make use of a constant for combinator 
A,, the set of constructor constants of a language limits our ability to add 
combinator constants. Therefore, we will have to pay particularly close 
attention the set ‘$,, of constructor constants in the following discussion. 
To describe the connection between lambda terms and combinators as 
generally as possible, we will use languages which contain as many 
combinator constants as the constructor expressions will allow. 

For any set V&, of constructor constants and set y,,, of term constants, 
the combinatory terms %‘Y(G&, y,,,) are the applicative second-order 
terms over constants G&, , y,,, , and additional fresh constants for the com- 
binators K, S, A, B, C, and D. Specifically, in addition to the constructor 
constants %?cst and term constants (Term, the language U2’(%$,,, y,,,) has 
fresh constants 

K:Vs.Vt.s -+ t + s 

S:Vr.Vs.Vt.(r -+ s --+ t) + (r 4.9) + r + t 

and, for all closed constructor expressions ,u : T’+ ’ * T, v : Tj+ ’ =z- T, and 
x:Tkf2* T of VL?(%‘cs,, y,,,), constants A,,, B, CP.“, and D,,,. Note that, 
as described above, the set of combinator constants depends on the set of 
closed constructor expressions. A special case of particular interest are the 
V55’(9) terms, which are the combinatory terms over the language with a 
constant for every element of every Kind” and Domu of 8. 

A model for combinatory terms will be called a combinatory frame. 
More precisely, a second-order combinatory frame for %?P’(%&,,,, y,,,) is a 
frame B for the constants of %?2’(G&t, 5&,) such that the combinator 
equations hold for all of the combinator constants in the language 
%9’(%?G~t, 9&,,). There are two differences between combinatory algebras 
and combinatory frames. The first is that a combinatory frame interprets 
constants of some %?9(%&, Yerm) with combinator constants, while a com- 
binatory algebra need not interpret any combinator constants. The second 
difference is that a combinatory frame need only have those A,, C,, and 
D,,f which have f, g, h definable in %?Y(V=,,,, @&,). If f E KindT” T is not 
the meaning of any closed constructor expression of ~LZ’(G&~‘,,, V&,,), then 
a combinatory frame might not have an element A, satisfying the 
associated equation. Essentially, combinatory algebras are frames with a 
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set of semantic properties, while combinatory frames are frames that inter- 
pret certain languages in a certain way. The two notions are very similar, 
however, if we add enough constants to our language. Specifically, if 9 is 
a combinatory frame for %‘U(9), then every combinator of 9 has a con- 
stant in %2’(9), and so 9 must be a combinatory algebra. Conversely, it 
follows easily from the definitions that any combinatory algebra 9 can 
be extended to a combinatory frame for %2’(F) by interpreting the 
combinator constants of %?9(9) appropriately. In the proof of the 
combinatory model theorem, we will use %9(F). However, we will use 
more general combinatory terms %“u(%&,, %$,,) in proving a general 
equivalence between lambda terms and combinatory terms. 

We will now justify the name “combinatory algebra” by showing that 
every combinatory algebra is combinatorially complete. It is clear that 
every combinatorially complete frame is a combinatory algebra, since each 
combinator is defined by an equation involving variables and F-terms. To 
show how combinators allow us to represent functions, we define “pseudo- 
abstraction” for ordinary variables and type variables. For every com- 
binatory term B, X:O + M: r without free variables of higher kinds, we 
define the combinatory term B + (X :a) M:o -+ 7 using induction on the 
derivation of typing B, s:ci +-- M:T as follows. We omit the trivial cases for 
(add hyp) and (type eq). Since B and r~ + 5 are clear, we only specify 
(x:a)M. 

(x:a)x = %(a + a)cJ(KcT(a -+ o))(Kao), 

(x:0)]‘= Kzoy, where r is the type of y and .v is different from x, 

(x:o)c= Kzoc, where r is the type of constant c, 

(x:a)(MN) = Sapz( (x:o)M)( (x:cT)N), where B,x:ot-M:p-+z, 

(x:~)(Mp)=(A~ps’)((x:a)M)p, 

where B, x:cr + M :Vp, ail free variables of ,u are among $ and f is the 
closed constructor 1%. 3,t, 7. 

The definition of (x:0)x is analogous to the usual untyped translation 
into combinators (X)X = SKK. If B + M: r is well typed and t does not 
occur free in B, we define B t- (t) M:Vt.t by induction on derivation of 
typing Bt M:z as follows. Again, we omit the trivial cases and only 
specify ( t ) M: 

(t)y= BTJ, where 7 is the type of JJ, 

(t)c= Bsc, where 7 is the type of constant c, 

<t)(MN)= ~,,,W<~)M)((~)~), 

643!85,,-8 
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where f and g are determined by the typing of MN as follows. If 
B I- M: 0 -+ z and B + N: D, let J and s’ be lists of type variables so that 
,f = li. 3-t. G and g = Is’. At. r are closed; 

whereSand h are determined from r and the typing B + M : Vu. cr by taking 
lists i and s‘ of type variables so that j-= G.At.r and h E Ir’.lt .Au.a are 
closed constructor expressions. 

It is not hard to verify that B+ (X:(T) M:o-+r and Bt- (t) M:Vt. z 
are well typed. The assumption that M has no free variables of higher kinds 
is needed to show that, for example, f and g in the definition of (t)(MN) 
may be closed. (If this were not possible, we could not give Cf., a closed 
type, and so C,,, would not really be constant.) The essential properties of 
pseudo-abstraction are described by the following lemma. 

LEMMA 14. Let p be a second-order combinatory frame for 
VT(WC,,,, y,,,). For any combinatory terms B, x :CJ I- M:t and B I-- N:a of 
WYA(gCst, y,,,) without free variables of higher kinds, we have 

9 + B+ ((x:a)M)N= {N/x} M:z. 

Similarly, if B + MIT with t not free in B and CJ is any type expression 
without free variables of higher kinds we have 

9 /= B+((t)M)a= {a/t} M:(ilt.z)o. 

The lemma is proved by an easy induction. Using Lemma 14 we can 
prove the following combinatory completeness theorem. 

THEOREM 15 (Combinatory completeness). A frame 9 is second-order 
combinatorially complete iff 9 is a second-order combinatory algebra. 

ProoJ If 9 = (Kind, Dom, (@Pa,b}, I@,-} ) is second-order com- 
binatorially complete, then 9 is a combinatory algebra since each com- 
binator is defined by a polynomial over 9. Conversely, suppose F is a 
combinatory algebra and let {xi :c,, . . . . ~,:a,} F M:a be any P-term 
whose free type variables are among si, . . . . si. Using Lemma 14, it is easy 
to show that 

N=(s,)~-~(~~)(x,:cr,)~~~(x~:~~)M 

is a closed term of %9(F) with 

9 /= (x1 :cr,, . ..) xj:aj} + M= Ns, “‘s/xl . ..~/.a. 

Thus 9 is combinatorially complete. 1 
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6.4. Combinatorv Models 

In this section, we show that an extensional frame 9 is an environment 
model iff F is a combinatory algebra. This will establish that the 
“algebraic” definition of combinatory algebra is equivalent to the syntactic 
condition in the environment model definition. We will use translations CL 
and LAM between lambda terms and combinatory terms over the same sets 
of constants, which may also be of independent interest. 

Let B t- M:o be a second-order lambda term over constants from gCs, 
and Yerm7 without free variables of higher kinds. We define the com- 
binatory term B I- CL(M) :O of V5Y(+&‘,,,, $,,,,) by induction on the deriva- 
tion of B+ M:a. As usual, the trivial cases (add hyp) and (type eq) are 
omitted, and, since B and cr are already determined, we mention only 
CL(M). 

cL(x)=x 

CL(MN)=CL(M)CL(N) 

CL(Ix:cl.M)=<x:o)CL(M) 

CL(MrJ)=CL(M)rJ 

CL(/b.M)= (1)CL(M). 

We can use Lemma 14 to show 

LEMMA 16. Suppose 9 is an extensional combinatory frame for 
%2’(‘%l,,, , gt,,,,,) and B & M: rs is a second-order lambda term over K,, and 
%? term without free variables of higher kinds. If q t= B, then the meaning of 
B I- M: D exists in 9 and is given by 

We will use the lemma later to show that every combinatory model is an 
environment model. In doing so, we will eliminate the restriction on free 
variables of higher kinds. 

Proof The lemma is proved by induction on the typing of terms. The 
only nontrivial cases are (+I) and (VZ). Since these two cases are similar, 
we only consider the first. Recall that the meaning of B t Ax :o. M :(T + t 
typed by (-+I) is 

where g(d) = [B, X:CJ t M:T] ~[G!/.u] for all d E Dom” and a, b are the 
meanings of o and 7 in q. 
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By the inductive hypothesis, 

g(d) = [B, x:5 + cL(fI4):7j q[d/x] for all d E Dam”. 

By the substitution lemma and Lemma 14, 

(@a,bBB + (x:5> CLWJ :cr~~gvl)d=IB,x:~~c~(M):zl q[d/‘x]=g(d) 

for all dE Dom”. Therefore, 

proving the lemma. 1 

We now show how to translate combinatory terms into lambda terms. 
For any combinatory term B + M:z of %?9(%‘CS~, G$,,,), we define the 
lambda term B I- LAM(M) : r over ‘&, and $:,,,, as follows: 

LAM(X) =X 

LAM(C) = C for c E %&,, 

LAM(K)=h.;lt.~x:~.~y:t.x 

LAM(S) = h.h.it.~X:r +s -P t.Ay:r + s.Az:r.xz(yz) 

LAM&) = A.r./G.Ax:r -+ Vt(fs’).;lt.~y:r.xyt, 

LAM(B) = h.1x:r.k.x 

LAM(Cf,.) = rii.ni.nX:k((fr’t) -+ (gft)).~y:tlt(f:t).h.(Xt)(yt), 

LAM(D,/)=;Ij.;Ist.;IX:Vt.vU(hr’t#).~t.Xt(fs’t) 

LAM( MN) = LAM( b!f) LAM(N) 

LAM(hfO) = LAM(h’.f)(T. 

Note that for combinators indexed by constructors, such as A,, we have A, 
in %9(%$‘,,,, G&,,) only iffis a closed constructor expression. Therefore, for 
every A/ in %?S?(G&, , %?,,,), the term LAM(A/) will be a closed lambda term 
over %&, and %,;,,,. In the special case that %P’(%&,, y,,) is G?Z(@), then 
LAM translates every combinator of 9 into a closed lambda term over con- 
structor constants from 9’. 

If 9 = (Kind, Dom, {@o,6}, {@.}) is an environment model for terms 
over Y,, and %,,,,, then we define 9+ to be the result of extending Yb,, 
to interpret the fresh combinator constants of %Y.Y(G&, C&.,,) as the 
lambda terms above. It is easy to prove the following lemma. 

LEMMA 17. Let 9 be an extensional environment model for terms over 
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KS, and Grm. Then F + is a combinatory frame for %‘Y(VCst:,,, G&,,) such 
that for every B I--- M:a of WY(%$,,,, %&.,,), we have 

Using Lemmas 16 and 17, we can now prove the combinatory model 
theorem. This theorem is analogous to the combinatory model theorem of 
(Meyer, 1982, but somewhat more simply stated since we have only 
considered extensional structures. 

THEOREM 18 (Combinatory model theorem). An extensional second- 
order frame F is an environment model $7 9 is a combinatory algebra. 

Proof: First, suppose 9 is an environment model. By Lemma 11, the 
environment model condition does not depend on the choice of constants, 
and so we may assume 9 is an environment model for lambda terms over 
constants from 9. Therefore, by Lemma 17, 9 + is a combinatory frame 
for %2(F), and so 9 must be a combinatory algebra. 

We now suppose B is a combinatory algebra and show that S must be 
an environment model. To prove this, we must remove the restriction of 
Lemma 17 to terms without free variables of higher kinds. This will be 
done by substituting constants for variables. To this end, we first extend 9 
to be a combinatory frame for %3(T) with constants for every element 
of 9:. 

Let Y” be any set of constructor variables, not containing any type 
variables, let qO be any environment for 9, and let &r-,VO be the class of all 
environments for 9 which agree with qO on all variables from ^Y, i.e., 

v(v) = rldv) for all q E G$-,~~ and v E I’“. 

We will say that B I- M:a is a V-term if all free variables of B c- M:o are 
ordinary variables, type variables, or variables from Y. If B t- M:a is a 
Y-term, then let MY-.,, by the result of replacing each variable v from V 
by the constant for qO(v). By Lemma 16, we know that every B t- M,,,,:a 
has a meaning in 9. An easy induction shows that for every Y-term 
B t M: 0, and every environment q E &Y-,qO, we have 

Thus every Y-term has a meaning in 5. Since every term is a V-term for 
some “t’, it follows that 9 is an environment model. 1 
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6.5. Second-Order Type Theory 

The combinatory characterization of untyped lambda models shows how 
to reduce untyped lambda calculus to first-order logic. Specifically, when 
combined with the extensionality axiom, 

Vz( xz = yz) 3 x = y, 

the combinator axioms 

vx, y . Kxy = x, 

vx, y, z.sxyz = (xz)( yz) 

provide a first-order axiomatization of extensional models for untyped 
lambda calculus (Barendregt, 1984; Meyer, 1982). Second-order com- 
binatory algebras and models may also be defined in first-order logic. 
However, since the details of interpreting second-order lambda calculus in 
first-order logic are not very enlightening, we will show how to axiomatize 
combinatory algebras and models in the logical system YY of “second- 
order type theory.” This axiomatization is relatively natural since the type 
structure of YY matches that of second-order lambda calculus. By a 
further reduction of YY to first-order logic, which is entirely routine, one 
may see that the semantics of second-order lambda calculus is reducible to 
first-order model theory. However, we will not go into the details of the 
reduction to first-order logic. 

The language YY is built from applicative second-order terms using 
equality, the logical connectives, and quantification. To be more precise, an 
9.F atomic formula is an equation B +-- M= N:o without lambda binding 
of ordinary variables or type variables in M or N. If B t- G, and B I-- G2 
are YY formulas. then so are 

B+G, A G2 and B+-- lG,. 

In addition, if u“ does not appear free in B, then 

B+Qv”.G 

is an YY formula. Similarly, if B, X:O I--- G is an YY formula, then 

B+Vx:a.G 

is an YY formula as well. Finally, we need an (add hyp) rule for formulas 
since formulas include type assignments for ordinary variables. We do not 
need (type eq) for formulas since the types of formulas are not part of the 
syntax. Formulas of YY are interpreted by giving the logical connectives 
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A and 1 their usual meanings and by interpreting quantifiers as ranging 
over the appropriate sets of the frame. Since only applicative terms appear 
in formulas of Y5, we can interpret logical formulas over any second- 
order frame for the appropriate set of constants. 

It is easy to read through the definition of combinatory algebra and see 
that all the combinator axioms may be formalized in YY. In axiomatizing 
combinatory algebras, we may replace constants by existential quantifiers. 
For example, K is described by the axiom 

3K:VsVt(s + t -+ s).Vs.Vt.Vx:s.Vy: t. Kstxy = x. 

The axioms for A, C, and D involve variables of higher kinds. In addition, 
we need infinitely many axioms for each family of combinators. For exam- 
ple, for each i > 0, we need the A axiom 

v. T’+‘*T.3A, :vr, q(r + Vt.fs’) -+ Vt.(r -fit)]. 

vr.v’s’.v.x:(r+vt.fs’)vt.vy:r.(Afrs’)xty=(xy)t. 

It should be clear that an extensional frame 9 satisfies the collection of 
Y.Y combinator axioms iff 9 is a combinatory algebra. Therefore, we may 
axiomatize combinatory algebras without introducing constants into the 
language. 

The language YY may be reduced to first-order logic using a relatively 
straightforward method, similar to the reduction of ordinary type theory to 
first-order logic outlined in (Monk, 1976). However, in the reduction to 
first-order logic, we must be careful to specify that frames are extensional. 
Essentially, this involves introducing axioms 

VP “‘.vf:(v/ll).vg:(Vp).(vt.ft= gt)3f= g 

Vs.Vt.Vf:s + t.vg:s -3 t.(Vx:s.,fx= gx) 3f= g 

to say that elements which have identical functional behavior must be 
equal. By including typed extensionality axioms and reducing to first-order 
logic, we can show that second-order lambda calculus is reducible to first- 
order logic. It is worth emphasizing that, as with other versions of lambda 
calculus, the first-order axioms are not equational (due here to exten- 
sionality), so second-order lambda calculus is not an algebraic theory. One 
consequence is that the class of second-order lambda models is not closed 
under homomorphism (cf. Barendregt, 1984; Meyer, 1982). 

6.6. Nonextensional Models 

Throughout this paper, we have emphasized extensional models. Essen- 
tially, the extensionality axioms (q) state that if two elements d and e 
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behave the same way as functions (i.e., if dx = ex for all x of the 
appropriate type or kind), then d and e must be equal. These axioms are 
quite reasonable, but nonextensional models are occasionally of interest 
also. Semantically, the extensionality axiom is reflected in the fact that we 
have assumed a bijection @u,b between Dom”‘h and [Dom,+Domb], 
and similarly for each GP Thus every function g E [Dom” -+ Domb] 
corresponds to precisely one element @-r(g) E Doma-’ b. In nonextensional 
models, we let two different elements d # e E DomU+’ represent the same 
function @u,b(d) = @O.b(e). This leads to some complication, since we used 
@- ’ to find the meanings of lambda abstractions. 

In nonextensional models, the main difficulty in interpreting lambda 
terms becomes the weak extensionality property of second-order lambda 
calculus. Intuitively, weak extensionality states that if A4 and N both define 
the same function of X:C-J, then 1,x:0. A4 must equal 2x:0. N, and similarly 
if M and N both define the same function of t, then 1.t.M must equal it. N. 
This is formalized in the inference rules 

(51, 
B,x:rs+M=N:p,+p=z 

B+,lx:~~.M=h:z.N:a+p 

(4)z 
B+M=N:a 

B +- At.M= h.N:Vt.a 
t not free in B. 

We satisfy weak extensionality using “choice functions” to determine the 
meaning of Ax:a.M or At. M. Specifically, we wish to define the meaning 
of B+-ix:o.M:a-+r from the function 

g(d) = [B, X:(T + M:tl q[d/x]. 

In a nonextensional structure, there may be several elements representing 
g, so we need some extra machinery to choose which one. We need to 
make sure that if B, x : CJ c- M: t and B, x: cr F-- N: r give us the same func- 
tion g, then we choose the same meaning for B F-- Ax : 0. M:o -+ r and 
B F- Ax : cr. N: c + z. The simplest way to do this is to use a choice function 
Y& to select the meaning ul,,,(g) of a lambda abstraction. 

To be more precise, a nonextensional frame is defined in the same way 
as an extensional frame, except that instead of requiring each @U,b and @,,. 
to be bijections, we require additional functions Y,,b and Yf such that 

Y a. b ’ @a, b = IdCDornu - Domh] and Y,.o @,.= Id CG,K~~~T’- Dom”l. 

(We make no assumptions about the reverse compositions @u,bo Y,,b and 
are YP) The functions lu,,, and Yf then replace @,L and @i’ in defining 
the meanings of terms of the form Ax: a.M and It. M. The completeness 
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proof for the nonextensional case is a simple modification of the complete- 
ness proof given in Section 5 (see the completeness proof for nonexten- 
sional untyped lambda calculus in (Meyer, 1982)). 

Nonextensional combinatory models are somewhat more complicated 
than extensional combinatory models. One important feature of the com- 
binatory model definition is that it reduces the definition of model to a set 
of first-order axioms. It is therefore appropriate to remove the condition 
Yn @ = Id from the definition of frame and incorporate it into the set of 
axioms. To do this, we use a family of “choice elements” {E} corresponding 
to the family of choice functions { Y}. The basic idea is illustrated in the 
following discussion of untyped combinatory models. 

An untyped combinatory modef is an untyped combinatory algebra 
9 = (D, c@) with element ? ED satisfying 

(&,l) Vd, e(ed)e = de, 

(~2) Ve(d, e = d,e) 3 EdI = cdl, 

(E.3) EE = E. 

Untyped lambda abstraction can be interpreted using E as 

[[Ax. m r/ = Ed, 

where 

de = IIMa vlCelx1 for all e ED. 

Since 9 is a combinatory algebra, an element d E D with de = [n/rll q[e/x] 
for all e E D will exist for any M. Furthermore, weak extensionality (<) 
follows from the properties of E. Note that 

A comprehensive discussion of the equivalence between the environment 
and combinatory model definitions for untyped lambda calculus is given in 
Meyer (1982). Note that since the combinatory algebra axioms are equa- 
tional, nonextensional combinatory algebras from an algebraic variety 
(Gritzer, 1968). However, the axioms for E, like the extensionality axioms 
discussed in the preceding subsection, are not equational. 

In the case of second-order lambda calculus, we need a family of typed 
E’S. At the very least we need an 

E a.6 = ,lx:a + bAy:a.xy 

for every a, b E Kind’ and, for every f~ Kind ‘* ‘, 

Ef= iX:vf.k.Xt 
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to serve the roles of ul,., and ul,. However, these are not quite enough 
since we have no way of defining, say, 

from combinators and the above E’S. Essentially, we need to be able to 
define E,~~ as a function of a and 6. 

There seem to be a number of ways of defining nonextensional second- 
order combinatory models and we have not made a thorough study of 
the possibilities. One set of choice elements that yields a combinatory 
characterization of nonextensional models includes 

&(J=/lS.~t.~x:S-+ t.;ly:s.xy, 

from which we can define any E,,~ by application, and for each f: T’ * T, 
an 

The types and axioms for these E’S are easily derived from the lambda terms 
above. The details of this combinatory model definition are cumbersome, 
but essentially straightforward. (The family of choice elements s0 and Ed for 
all f: T’* T repair an oversight in Mitchell, 1984b.) 

7. EXAMPLES OF MODELS 

7.1. Introduction 

We will discuss models of second-order lambda calculus that are 
constructed from untyped structures. These are the simplest examples of 
models, and historically the first. The models fall into two groups. In the 
first class of models, types are represented by elements of a “universal” 
domain. This allows us to use ordinary untyped lambda calculus to define 
operations on types. In the second class of models, types are quotients of 
subsets of an untyped value space. Another class of models, Girard’s 
qualitative domains, are too recent for us to survey here (Girard, 1986). In 
addition to describing two kinds of second-order models, we will also see 
that the ideal model of type inference (MacQueen and Sethi, 1982; 
MacQueen, Plotkin, and Sethi, 1986) is not a model, and that there are no 
nontrivial finite models. 

There are several variations on both universal domain and HE0 models, 
but we will not take the time to discuss all of them. Universal domain 
models may be constructed using closures, tinitary retracts, or finitary pro- 
jections of certain domains. We will discuss the closure model and refer to 
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the literature on finitary retracts and projections. Girards’ HEO, is a 
specific model based on recursive function application. The main idea may 
be used to construct a second-order model over any “partial combinatory 
algebra,” a class of structures which includes all models of untyped lambda 
calculus (Plotkin, 1985; Rosolini, 1986). Some variations are discussed in 
(Mitchell, 1986b) and some connections between retracts and equivalence 
relations are discussed in Section 7 of (Scott, 1976). 

Although it is not very exciting, it is probably worth mentioning a trivial 
model construction. Any model 22 of the untyped ,I-calculus may be viewed 
as a second-order model by taking ~3 as the sole element of Kind? 

1.2. Retract Models 

There are three kinds of models built using retracts of universal domains. 
A retraction is a function f with the property that f 0 f =f, and the range 
of a retraction is called a retract. In the retract models, the types are chosen 
to be some class of retractions of a model of untyped lambda calculus. One 
of the reasons why retract models are easy to work with is that type 
operators like --f and V may be represented by lambda-definable functions 
on retractions (see Scott, 1976 for further discussion). An important 
property of the three models below is that in each case, a very rich class 
of retractions is itself a retract of the untyped value space. Because of this, 
each model will have a “type of all types,” something which is not generally 
required of second-order lambda models. The three models will differ 
primarily in the class of retractions used as the type of types. 

The first model construction was based on Scott’s 5% model of untyped 
lambda calculus, with types represented by a special class of retracts 
called closures. This model is due to McCracken (1979) drawing on ideas 
presented in (Scott, 1976). We assume that the reader is familiar with the 
Bo model of the untyped lambda calculus (Scott, 1976), with 

@=fun:9Pw+ [9%0-+2P0] 

mapping each element of 2%~ to a continuous function on Yo, and 

!J’=ggraph:[9w+9co] -+9% 

mapping every continuous function to some element of 90. (An important 
relationship between @ and Y is that @a Y is the identity function on 
[So + L?+%II].) A certain amount of notational clutter will be eliminated by 
writing closed lambda terms to describe elements of 90, as well as writing 

de for (@d)(e) when d, e E P&u, 

doeforix.d(ex)whend,eEpm. 
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A retraction in ~3% is an element Y(f) EPCO such that the function 
f:Po + PO is a retraction. This is equivalent to saying that a retraction in 
CF’OJ is an element a E 90 with a 0 a = a in the notation above. 

We can build a second-order model from P’w by using the closures as 
types. We say a retraction a E &O is a closure if 

ad>d for all de 9%~ 

and let 

Kind’= (aE9w (aisaclosure} 

be the collection of closures. The elements of type a are the elements fixed 
by a, i.e., for every a E KindT, we let 

Dom”= {ad ( dE&o). 

We may think of the closure a as coercing untyped elements of PO into 
elements of type a. Since a is a retraction, this coercion leaves elements of 
type a unchanged. As shown in (Scott, 1976), there is a closure VE Kind7 
of all closures, so that Dom’ = Kind? This is a particular property of 
closures of 5%~ which fails for retractions. Specifically, the collection of all 
retractions in 90 is not a retract of 90 (Scott, 1976). If a is a closure, then 
it will be convenient to write 

d:a for d = ad, 

which is equivalent to saying d E Dam”. In addition, a useful abbreviation 
is 

Ax:a.M for 1~. { ay/x > M. 

Intuitively, E.x:a. M is the function lx.M, restricted to the range of 
closure a. 

If a and b are closures, then we want a -+ b to be a closure which coerces 
every element d of Pw to a mapping from Domu to Domb. In addition, we 
would like to have each function D(d) mapping Dom” into Dom” represen- 
ted exactly once in the range of a -P 6, so that Domu* b is an extensional 
collection of functions (see Scott, 1976 for further discussion). Both of these 
goals may be accomplished by taking 

Intuitively, a -+ b works by taking any element d and producing the ele- 
ment b 0 do a which, when used as a function, first coerces its argument to 
an element of type a, then applies d, and then coerces the result to type 6. 
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It is easy to see that if x:a, then ((bodoa)x):6, so (bod~a) represents a 
function from Dom” to Dom ‘. In addition, if d already represents a 
function from Dom” to Domb, so dx: b whenever .X :a, then (b 0 do u)x = d-x 
for all x :a. What is a little less obvious is that if (b 0 d, c a)x = (b 0 d, 0 a).~ 
for all x:u, then b 0 d, 0 u = b 0 d, 3 a’, This means that range of a + b contains 
exactly one representative for each continuous function on Y’w that maps 
a into b. Based on this discussion, we define 

-+ =h: V.Ab: V.(Ax.boxoa) 

and write + as an infix operator, as in a + 6. It is easy to verify that for 
any a, b E P?‘w, the element a + b is a closure (see Scott, 1976). 

Since KindT= Dam”, we will use the same function space constructor -+ 
for both types and kinds. For each kind expression IC, we let TP(K) be the 
expression obtained by replacing all occurrences of T in k’ by V and all 
occurrences of 3 by +. Using the definition of + above, we may interpret 
TP(K) as a closure, and so we take Kind” = DomTP(X). It is now easy to 
show that + is in KindTDCT’ ‘). We leave this to the reader. 

The intuition behind V is quite straightforward. If f: V --) V is a function 
from closures to closures, then every element x :Vf should map each closure 
(type) t : V, to some element xt of type ft. Therefore, Vf should be a func- 
tion that coerces any x E 9’0 to a function which, given any t : V, returns an 
element xt:ft. Writing this out as a lambda term (including the type 
assumptions), we are led to the definition 

v = I*$: v-r V.2x.h: V.(ft)(xt). 

Recall that xt:ft is an abbreviation for xt = (ft)(xt), so we have used 
(ft)(xt) in the definition of V. It is easy to verify that iffc KindT’ ‘, then 
V’E KindT, and that V E KindCT’ ‘I* ‘. 

To complete the definition of a second-order frame, it remains to define 
a family of @h.,,T2 functions that give us a kind structure, and @rr,h and Qr 
for every a, b E Kind7 and f~ Kind’*? Surprisingly, all of these may be 
obtained as restrictions of the untyped @ mapping 90 to [PO -+ Pw]. 
With QK,, “z defined to be the restriction of @ to Kind”’ * Q and 4 defined 
as above on --f and V, it is not hard to verify that Kind,, = 
({Kind”, (@x,.xz),~> is a kind structure. Assuming %&,, is empty, we 
leave Yb,, empty and take 

Dom.p,o = ((Dam” 1 uEKindr}, &,,). 

’ This is proved by noticing that the restriction to x:a is inessential. and so (bo d, oa)x = 
(b 0 dz 0 a),~ holds in 90. Therefore, by rule (5) of untyped lambda calculus, Ix. (b 0 d, 0 a)x = 

11. (b 0 d, oa)x. Working out the delinition of D gives the desired equation. 
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For a, bEKind’, dEDom”‘b,fEKindT’T, and eEDomvf, we let 

@0,6(d) = @(a Dorn~ and @f(e) = @P(e)1 Kindr. 

These restrictions of the “untyped” @ have some remarkable properties: 

LEMMA 19. (i) @a,b is a one-to-one and onto function from DomU+b to 
[Dom”+ Domb], where [Dom” + Domb] is the set ofcontinuousfunctions 
from Domcl to Domb. 

(ii) @.r is a one-to-one and onto function from Darn’.’ to 
[nacKlndTDomf(fl’], where [Z7,Eki,drDomf(a)] is the set of continuous 
functions from ZZ,, kindrDomf(‘). 

Proof (i) (Sketch) Note that dEDom”‘b implies d=bodoa. Thus 
@(d)(e) = b(d(ae)) E Domb. It can also be shown that the range of @o,b is 
all of [Dom” + Domb]. Suppose there are d,, d, E Dom”‘b such that 
@a.b(d,) = @u,b(d2). It is then easy to show that @(d,)= @(d2). Hence, 
Y(@(d,))= Y(@(d,)). However d,,d,EDomn’b implies di=bod,oa for 
i= 1, 2, and therefore Y(@(d,))= Y(@(bodioa))=bodioa=di, where the 
middle equation holds since b 0 die a is of the form Y(g) and 
ul(@( Y(g)))= Y(g). Thus d, = Y(@(d,)) = Y(@(d,)) = d2, and it follows 
that oio,b is one to one. (ii) Similar. m 

This shows that 9$, = (Kind,, , Domdw, (@, b, Cp,} ) is a second-order 
frame. Since [Dom” -+ Domb] and [n,, kindiDomf(n)] consist of all 
continuous functions of the appropriate functionality, it is easy to verify 
that this is an extensional second-order model. 

THEOREM 20 [McCracken, 19791. Fq, = (Kind,,, Dam,,, 
{ @a,b, Or} ), as defined above, is an extensional second-order model. 

The model FL, has several interesting features. Perhaps most interesting 
is that Kindle Dom, giving the set of types a very rich structure. In par- 
ticular we can solve recursive domain equations in this model. Somewhat 
surprisingly, given the definition of Kind=, the correspondence between 
KindT and Dom is bijective, i.e., a = b iff Dom” = Domb. 

A similar argument shows that the class of finitrary retract models, 
developed in McCracken (1984b) using ideas of Scott (1980b), is also an 
extensional second-order model. We say a cpo is a domain if it is 
o-algebraic and consistently complete, and a retraction r is finitary if the 
range of r is a domain. The finitary retract model is built from a domain 
model of untyped lambda calculus by taking finitary retracts as types. 
While similar to the closure model described above (e.g., in the definitions 
of -+ and V), there are some differences. For example, the relation between 
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KindT and Dom is not bijective. A similar extensional model using finitary 
projections appears in Amadio et al. (1986); the ideas behind this model 
also appear implicitly in several papers of Scott. The linitary projection 
model is again bijective in the relationship between Kind’ and Dom. In 
Amadio et al (1986) it is shown how to solve higher order recursive 
domain equations in this model. The same paper also shows that the type 
structures of all three models are very similar. 

1.3. The Ideal Model of Polymorphic Type Inference 

The ideal model proposed in (MacQueen and Sethi, 1982; MacQueen, 
Plotkin, and Sethi, 1986) was designed to explain polymorphic type 
inference for untyped lambda calculus. In the programming language ML, 
for example, the untyped identity function 2x.x is given all types of the 
form a -+ a, where tx may be any “monotype” without V (Milner, 1978). The 
assignment of types to untyped terms is formalized as a deductive system 
for assertions like ix.x:cr -+ cc A natural extension of ML typing is to 
assign second-order types to untyped lambda terms, giving the untyped 
identity type Vt. t + t, from which all of the ML typings can be obtained. 
A semantic explanation of the deductive system for polymorphic type 
assignment involves a structure for interpreting untyped lambda expres- 
sions and a way of associating a predicate with each second-order type 
(Mitchell, 1984b). The ideal model is an example of such a structure, using 
ideals over complete partial orders as types (Milner, 1978; Shamir and 
Wadge, 1977). It is sometimes thought that the ideal model is in fact a 
model of second-order lambda calculus. However, we will see that it is not. 
The shortcomings of the ideal model (as a second-order model) will be 
used to motivate the HE0 model in the next subsection. We should 
emphasize that this model was only intended to explain type membership, 
not equality between typed terms. So it is through no fault of the authors 
of (MacQueen and Sethi, 1982; MacQueen, Plotkin, and Sethi, 1986) that 
the ideal model is not a second-order lambda model. 

Although there may be trivial or contrived ways of treating the ideal 
model as a model of second-order lambda calculus, the most natural way 
would be to interpret each typed term as the term obtained by erasing all 
type information. This makes some sense, since the meaning of any typed 
term ends up belonging to the correct semantic type. The problem with this 
interpretation of terms is that it is not even weakly extensional, let alone 
extensional. Every model of second-order lambda calculus (or any other 
typed lambda calculus) must satisfy the axiom 

IfM=Nforallx:t,thenix:r.M=i.u:t.N. 

We will construct a counterexample to this axiom in the ideal model. For 
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concreteness, the counterexample will use the type Vt. t. However, the 
argument is quite general. 

Let P and Q be any two closed terms of the same type t which have 
different meanings in the ideal model. (To be more concrete, we could take 
P=At.Ix:t.Ay:t.x and Q=lt.~x:t.~y:t.y of type t=Vt.t+t+t.) Since 
Vt. t has only one element I, we have 

XTP=XTQ= 1 

for all x:Vt. t. Therefore, we would like to obtain equal lambda terms by 
lambda abstracting x:Vt. t on both sides of the equation. However, we have 

lx:(tlt.t).xzP#ix:(vt.t).xzQ 

in the ideal model, since Lx.xP and Ax.xQ are distinct. Thus weak exten- 
sionality fails. For similar reasons, weak extensionality generally fails in 
interpretations of second-order typed lambda calculus based on the models 
of type inference discussed in (Mitchell, 1984b). 

7.4. HEOz and Related Models 

The main reason that ideal model and related structures do not form 
models of second-order lambda calculus is that equality is untyped, or 
independent of type. However, we can construct second-order models in 
much the same spirit if, in addition to a membership predicate, we also 
associate an equivalence relation with each type. Essentially, the predicates 
say what the elements of each type are, and the equivalence relations say 
when two elements are to be regarded as equal with respect to that type. 
One intuitive explanation for this view of types is based on computer 
implementation. In compiling a typed language, we might choose to repre- 
sent characters or boolean values as single bytes. Any byte would be accep- 
ted as a valid representation of either a boolean or a character. However, 
we are likely to regard any byte with least significant bit 1 as a representa- 
tion of true, and so any two bytes ending with 1 will be regarded as equal 
booleans. However, all bytes with the same least significant bit will not be 
considered equal characters. Thus, although characters and booleans may 
have the same membership predicate on machine-level representations, the 
equality relations are different. 

When we formalize the two-part interpretation of types, it is technically 
convenient to combine membership predicates and equivalence relations 
into a single notion. Intuitively, a partial equivalence relation on a set S is 
intended to be an equivalence relation R on a subset S, 5 S. However, it 
turns out that the predicate S, is superfluous. To begin with S, = 
{s E S 1 (s, s) E R}, so it is easy to see that S, is determined by R. In addi- 
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tion, R is an equivalence relation on some subset of S iff R is a symmetric 
and transitive relation on all of S. Therefore, we will simplify the technical 
details by working with symmetric, transitive relations instead of predicates 
and equivalence relations. If S is any set, we say a binary relation R on S 
is a partial equivalence relation if R is symmetric and transitive. 

The use of partial equivalence relations has a significant history. Partial 
equivalence relations for first-order function types were introduced in 
(Myhill and Shepherdson, 1955) and extended to higher order functional 
types CJ -+ z in (Kreisel, 1959). Kreisel’s structure is also described in 
(Troelstra, 1973), where it is called HEO, for the hereditarily effective 
operations. The structure HE0 was extended to an interpretation of 
predicative polymorphic types in (Beeson, 1982) and to a second-order 
model HEO, in (Girard, 1972; Troelstra, 1973). The structure HEO, 
was also discovered independently by Moggi and Plotkin (personal 
communication, 1985). A partial equivalence relation interpretation of 
functional types (in a somewhat more general setting) is also discussed in 
(Scott, 1976) and taken up in the study of polymorphic type inference in, 
e.g., (Hindley, 1983a; Coppo and Zacchi, 1986). Further discussion and 
some general results about partial equivalence relation models of second- 
order lambda calculus are given in Mitchell (1986b). 

We will now concentrate on Girard’s model HEO,, which is a particular 
model of second-order lambda calculus based on partial equivalence rela- 
tions. Instead of using partial equivalence relations over untyped lambda 
models, HEOz is based on the integers with partial recursive function 
application. We assume some enumeration of all partial recursive functions, 
and write {n}m for the application of the nth recursive function to m. As 
in (Girard, 1972), we will assume that the recursive functions are numbered 
so that {O 1 m = 0 for every integer m. With this assumption on the coding 
of recursive functions, we will end up with at least one element of every 
type (namely, the equivalence class of 0). 

The first step in describing HEO, is to define the kind frame Kin&o. 
We let Kind* be the set of all partial equivalence relations R over the 
integers, subject to the constraint that (0,O) E R. The remaining Kind“ are 
defined inductively, with Kind”““’ the set of all functions from Kind”’ to 
Kind”‘. Since Kind”’ *“l is a set of functions, we let @,,, “2 be the identity. 
For any R, SE KindT, we let R + S be the relation 

R+S={(n,, n2> I if(m,,mz)ERthen ({n,]m,, {n,jm2)ES}. 

It is easy to see that (0,O) E R +S, and so --f ~Kind”‘~“. If fg 
Kind T* r is any function from types (partial equivalence relations) to 
types, then we define Vf by 

vf= n f(R). 
R c Kmd7 
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It is also quite easy to see that (0,O) E VA and so V is a function of the 
appropriate kind. We let Kind= ((Kind”, { Qti,, K1}, S) with ,a(+) and 
Y(V) as above. Since Kind is a full function hierarchy, it is clear that every 
constructor expression has a meaning in Kind. 

For every R E KindT and every integer IZ with (n, n) E R, we let [n] R be 
the equivalence class 

Cnlg+= {m I (v+R), 

and define DomR to be the set of all such equivalence classes 

We then take Dam,,, to be the collection of all DomR. Note that since 
(0,O) E R for every R, every DomR is nonempty. The functions @R,S and 
Qr are defined by 

and the sets [DomR -+ Dom”] and [Z7RGki,,dT.DomT11(R)] are defined to be 
the ranges of functions @R,S and @,-, respectively. It is easy to see that both 
functions are well defined on equivalence classes. Although Qr may look 
trivial, it is not entirely so since [nlfcR, will generally be a larger equiv- 
alence class than [nlw At this point, we have a frame 

HE% = (K&Eo, DomHEo, {@a.6r Gf> > 

and it remains to show that every term has a meaning. 
The proof that HEO, is a model relies on elementary facts from recur- 

sive function theory, such as recursive sequencing functions and the sy 
theorem (see, e.g., Rogers, 1967). The main idea is to show inductively that 
for every term B + M: c, there is a recursive function for the meaning 
[B + M:alj. This shows not only that every term has a meaning, but that 
we can compute the meaning of every term as a function of the environ- 
ment. Since I-IEO, contains only recursive functions, we use the stronger 
induction hypothesis to show that lambda abstractions have meaning in 
the model. 

Recall that the meaning of a term depends only on the finite sequence of 
values given to its free variables, not the entire environment. Consequently, 
we may regard [B +-- M:oj as a function on finite sequences of values, the 
types of these values given by B. Since every value in HE02 is an equiv- 
alence class of integers, we will consider [B I- M:aJ recursive if we have 
a corresponding recursive function on integer representatives (or “codes”) 
for values. More precisely, we say f is a recursive function for 



SECOND-ORDER LAMBDA CALCULUS SEMANTICS 125 

xk:frkj +M:oJ if, for any environment q k {xi:(~i, . . . . xk:gk} 
, 3 . . . . nk) of integers with n,~q(xi), the function f 

computes an integer 

f((n,, . ..) rlk))E [(x,:a,, . ..) Xk:cTk) +M:.jq. 

A straightforward induction shows that there is a recursive function for the 
meaning of every term and that the recursive function for [B I- M:o] has 
the appropriate type. The only nontrivial case is lambda abstraction, which 
uses the s; theorem. It follows that HEO, is a second-order lambda model. 

7.5. Finite Models 

One distinction between untyped lambda calculus and the ordinary 
typed lambda calculus is that typed lambda calculus has nontrivial models 
in which all types are finite, but the untyped lambda calculus has no finite 
models (see Barendregt, 1984, Proposition 51.15). A simple argument due 
to Gordon Plotkin (private communication, 1985) shows that there are no 
nontrivial models of second-order lambda calculus in which all types are 
finite. The numerals are the terms of the form 

it.Af:t + t.llX:t.fnX, 

where f”x is the term f(f.. . (fx) . . . ) with n occurences off (see Statman, 
1981; Fortune et al., 1983). All of the numerals have type Vt.(t --+ t) + t + t. 
We write fi for the numeral At.if: t -+ t.,lx: t.f”x. 

Since every integer function which can be proved total recursive in 
analysis is definable in second-order lambda calculus (Girard, 1972; 
Statman, 1981) there is a term EQ with 

+ EQ %i = true if m=n 

+ EQ mn = false if m #n, 

where true and false are the terms 

true ::=h~x:tAy:t.x 

false ::= Atix : tAy : t . y 

with type Vt. t + f -+ t. (The term EQ can also be constructed explicitly 
using the arithmetic functions given in (Fortune et al., 1983, p. 167.) If 9 
is a finite model, then clearly 9 + r?r = fi for some m #n, since there are 
only finitely many elements of type Vt. (t + t) + t -+ t. Therefore, in any 
finite model 9, we have 

9 k false = EQ tin = EQ fifi = true. 
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However, it is easy to see that if true = false, then for any type t and x, y : t, 
we have 

x = true txy = false txy = y. 

It follows that every equation holds in 9, and 5 is a trivial model. This 
concludes the proof that the only second-order model with no infinite types 
is the trivial model. 

8. SUMMARY AND DIRECTIONS FOR FUTURE WORK 

The second-order lambda calculus is a very expressive, explicitly typed 
extension of the ordinary typed lambda calculus. In this paper, we have 
examined the semantics of the language. Intuitively, a term Ix:a.M 
denotes a function from type (T to some type T, and a term &.A4 denotes 
a function from types to the union of all types. However, since terms like 
At.Ax: t.x can be applied to their own types, the naive interpretation of 
second-order lambda terms contradicts standard set theory. Borrowing an 
idea from the semantics of untyped lambda calculus (Barendregt, 1984; 
Meyer, 1982; Scott, 1976), we use a set together with an “element-to- 
function” map @ in place of a set of functions. We interpret a A-abstraction 
with domain a and range b as an element d which we may regard as a 
function by applying the map @a,b to d. Since the range of @a,b need not 
be all set-theoretic functions from type a to 6, we can associate a set with 
each type and avoid set-theoretic paradoxes. 

A collection of sets, one for each type and kind, together with an 
appropriate collection of bijective “element-to-function” maps, is called an 
extensional second-order frame. Second-order frames are analogous to 
untyped functional domains (Meyer, 1982) for untyped lambda calculus 
and type frames for ordinary typed lambda calculus (Henkin, 1950). Like 
their analogs, second-order frames have the right structure for interpreting 
terms, but may not contain enough elements to give meanings to all terms. 

Environment models are defined as frames in which every well-typed 
term has a meaning. Although it depends on the inductive definition of 
meanings of terms, this model definition is straightforward and useful. The 
soundness and completeness theorems suggest that the definition is 
reasonable and not too restrictive. The soundness theorem shows that 
every structure which meets our definition has the right equational proper- 
ties, while completeness demonstrates that every theory has a model. More 
evidence that our model definition is useful for studying second-order 
lambda calculus is provided by observing that several models proposed in 
the literature also meet our definition. However, it is worth mentioning 
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that our soundness and completeness theorems apply only to models 
without empty types. 

After preliminary work on this paper was completed, we became aware 
of a class of models based on partial equivalence relations, as described in 
Section 7.4. In some natural variations on these models, there exist empty 
types. While it is easy to remove the assumption that all types are non- 
empty from our model definition, the appropriate changes to the proof 
system are not entirely straightforward. To preserve soundness, the rule 
(remove hyp) must be discarded. In Meyer et al. (1987), additional proof 
rules for reasoning about empty types are given and a completeness 
theorem is proved. 

In showing that certain structures are models in Section 7, we make use 
of independent characterizations of functions, like continuity or recursive- 
ness. In the absence of such additional structure in the model, it might be 
more difficult to certify that a second-order frame is actually an environ- 
ment model. Therefore, we provide an algebraic equivalent of the environ- 
ment model condition that “everything must work out right.” Combinatory 
models are defined as second-order frames which contain combinators S, 
K, A, B, C, D, where each combinator is characterized by an equation. We 
prove that the environment and combinatory model definitions are 
equivalent and, in the process, show how to translate between lambda 
terms and equivalent second-order combinatory terms. The combinatory 
model definition also shows that the model theory of second-order lambda 
calculus is reducible to the standard model theory of first-order logic. 

Product types, sums, and existential types can be added to second-order 
lambda calculus by adding additional constructor constants and either 
term constants or additional term formation rules. Although we have not 
presented the details here, our model definition extends relatively easily. 
For example, a model of second-order lambda calculus with existential 
types is a model of the second-order lambda calculus with constructor 
constant 3 E %&, of kind (T* T) * T and term formation rules given in 
(Mitchell and Plotkin, 1988). The extra constructor constant produces 
additional elements of KindT, and the additional structure associated with 
sets Dom3j is easily determined from the operations rep and sum discussed 
in (Mitchell and Plotkin, 1988). 

The Automath languages (De Bruijn, 1980) are essentially extensions of 
the typed lambda calculus formed by allowing the types of terms to be 
functions of elements of other types. Automath expressions of “first-order 
dependent type” define elements of Lrdc ,,, Domfcd’ for A E Dom and f: A -+ 
Kind’. In (Barendregt and Rezus, 1983), a model for Classical Automath 
is constructed using closures, as in the models we discussed in Section 7. 
A general model definition for Classical Automath, along the lines we have 
proposed for second-order lambda calculus, seems relatively easy to work 
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out. We are grateful to Robert Harper for extending the semantics of 
second-order lambda calculus to include first-order dependent types (pri- 
vate communication, 1986). Other extensions of our language, presented 
in McCracken ( 1979), and the languages F3, F4, . . . of Girard mentioned 
earlier, allow terms of the form lu”.M, where v’ is a variable of higher 
kind. We believe that a straightforward extension of the model definition 
given here will suffice for this language, but have not worked out the 
details. The Calculus of Constructions developed by Coquand and Huet 
(1988) encompasses some of these extensions, but we have not worked out 
a precise model definition. 

We have not considered second-order theories involving equations 
between constructors. The language is defined to suggest this possibility 
and the term model construction in the completeness proof does not seem 
to rely on the absence of constructor axioms. However, there are some 
complications that must be resolved. To begin with, Lemma 1 fails: if we 
take g’I -+ ti = crZ + r2 as a nonlogical axiom, it does not follow that cr, = 
oz or zi = r2. Since Lemma 1 figures crucially in the proof of Lemma 8, it 
is no longer possible to show that the meaning of every well-typed term 
B I- M:cr is independent of the way in which the typing is derived. Since 
Lemma 8 is important in our understanding of what an equation means 
(as discussed in Section 4.3), it would seem best to add more type informa- 
tion to terms so that Lemma 8 can be restored. Essentially, the syntax of 
terms would have to determine the types of all subterms up to constructor 
equivalence. For example, applications (MN) would have to be typed in a 
way that makes the types of M and N unambiguous. Some related discus- 
sion of ordinary typed lambda calculus with type equations is given in 
(Breazu-Tannen and Meyer, 1985). 

Another extension of the second-order lambda calculus involving 
“bounded quantification” is proposed in (Cardelli and Wegner, 1985). A 
polymorphic function of the form EJ < r . M will take any subtype of r as a 
type parameter. In this calculus, we may write functions such as the iden- 
tity At < int.Ax: t. t on all subtypes of int. (A related form of polymorphism 
was developed in Mitchell, 1984a.) This extension is designed to model the 
uses of subtypes and inheritance in object-oriented languages. A semantics of 
this language based on the PER model of Section 7.4 is developed in Bruce 
and Longo (1988), while a semantics based on interval models is presented 
in Martini (1988). While bounded quantification seems more expressive in 
an intuitive sense, there is an interpretation of bounded quantification into 
pure second-order lambda calculus (Breazu-Tannen et al., 1989). This 
interpretation allows us to use models of second-order lambda calculus as 
models of bounded quantification. 

There are a number of interesting open problems involving the semantics 
of the second-order lambda calculus. Recent work on a category theoretic 
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approach to second-order lambda calculus (Moggi, 1984; Seely, 1986; 
Pitts, 1987; Meseguer, 1989) seems quite promising in presenting another 
way of looking at this language. Based on recent work on categorical 
models of ordinary typed lambda calculus (Mitchell and Moggi, 1987) we 
expect the categorical models of second-order lambda calculus to be intui- 
tionistic versions of our model definition. However, the details of this 
correspondence have yet to be worked out. Another direction for investiga- 
tion is the relationship between our model definition and models based on 
Girard’s qualitative domains (Girard, 1986), which were developed after 
the bulk of this paper was written. Since maps from types to types in 
Girard’s model (and the related model of Coquand et af., 1989) are 
functors rather than functions, extensionality may fail for kind T* T. We 
believe that if our extensionality requirement is dropped, then these models 
satisfy our definition. However, we have not checked the details. Although 
there are a growing number of examples of second-order models, we still 
do not know very much about them. It would be interesting to discover 
more models and study both the local structure (equational theories) and 
global structure of models. 

One way to study the global structure of models is by examining the 
isomorphisms or retractions between types. In Reynolds (1984) it is shown 
that in every “set-theoretic” model there is some type S which is 
isomorphic to (S + B) -+ B for some nontrivial B. This conflicts with classi- 
cal set-theoretic function spaces quite clearly, implying that set-theoretic 
models (i.e., models in which the function space construction gives the full 
classical set-theoretic funcltion space) do not exist. In contrast, Bruce and 
Longo (1985) have characterized the class of isomorphisms that must hold 
in every second-order model. Essentially, these isomorphisms all follow 
from the “commutativity” of Cartesian product, i.e., 0 x 7 is isomorphic to 
T x 0. This property of x applies to the language without x since 0 x 7 -+ p 
is isomorphic to both 0 + 7 -+ p and 7 -+ (T + p, and so we expect (T -+ 7 -+ p 
and 7 -+ g --, p to be isomorphic. Similarly, regarding Vt(o --) 7) as a type of 
functions from types to CJ to 7, we expect Vt(a + 7) to be isomorphic to 
(T --f Vt.7 when t does not appear free in CJ. Since these are all the 
isomorphisms that hold in all models, Reynolds’ problematic isomorphism 
does not hold, in general. This leaves open the possibility of relatively 
“natural” models which do not satisfy isomorphisms like S isomorphic to 
(S-+ B) -+ B. We might gain further insight by studying retractions instead 
of isomorphisms. 

In our models, higher order operations on types are elements of higher 
kinds. For example, pair, sum, list stack, tree, etc. are all type constructors 
of kind T * T. We can avoid having a separate hierarchy of kinds by 
making the set of types a domain. Once we have Kindle Dom, it is natural 
to identify the function-space constructor 3 on kinds with the function- 
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space constructor + on types, putting every Kind” into Dom. All of the 
retract models in Section 7.2 have this property. In the finitary projection 
model, with kinds as types and recursion over all types, Amadio, Bruce, 
and Longo (1986) have shown how to solve recursive domain equations. A 
natural question to ask is whether every second-order model 4 can be 
embedded in a model 9 with Kind,TE Dom, so that 9 and 9 satisfy the 
same equations between second-order terms. Meyer and Reinhold have 
shown that adding a type of all types to the syntax of a related language 
has dramatic effects (Meyer and Reinhold, 1986), but this does not settle 
the question for second-order lambda calculus. 

Since much of the interest in second-order lambda calculus stems from 
the similarity between the typing rules of the calculus and typing in 
programming languages like Ada, CLU, ML, and Russell, we expect the 
semantics of second-order lambda calculus to be useful for studying seman- 
tic properties of modern programming languages. One important property 
of typed programming languages is “representation independence,” which 
has been studied by Reynolds and others (Donahue, 1979; Fokkinga, 1981; 
Haynes, 1984; Reynolds, 1974; Reynolds, 1983). Roughly speaking, 
representation independence ensures that the meaning of a program does 
not depend on whether the boolean value true is represented by 1 and false 
by 0, or vice versa. All that matters is that the operations on booleans 
behave properly. Two of the authors have studied representation inde- 
pendence for second-order lambda calculus using the model theory 
proposed in the present paper (Mitchell and Meyer, 1985; Mitchell, 1986a), 
proving general representation independence theorems. Another important 
topic in programming languages is full abstraction (Milner, 1977; Plotkin, 
1977). While it is probably more difficult to construct fully abstract model 
for second-order lambda calculus than for ordinary typed lambda calculus 
(without polymorphism), this topic is well worth investigating. 
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