
Pushouts in Algebraic Theories

6.UAP Final Report

Lawrence Wu

llwu@mit.edu

Supervised by: David I. Spivak

May 20, 2016

Contents

1 Introduction 2

1.1 Algebraic Theories . 2

1.2 Pushouts . 3

2 Existing Literature 4

2.1 Non-Pathological Cases . 4

2.2 Pathological Cases . 5

3 Approach 6

3.1 Using The Underlying Set Functor . 6

3.2 Adding Operations to the Theory . 7

4 Conclusion 10

4.1 Further Work . 11

4.2 Acknowledgements . 11

1

1 Introduction

Category theory has seen a resurgence in popularity in the 21st century as fields outside of

mathematics have realized its seemingly fundamental nature in the structure of information.

Recently, computer science has been a driver of this trend, as category theory has been

embraced in academic communities such as those of Haskell [1] and formal methods [2], as

well as incorporated in undergraduate computer science courses [3]. In this project, we study

a category theoretic construction which arises in informatics. 1

1.1 Algebraic Theories

Borrowing from the field of universal algebra, an algebra is a set equipped with a collection

of operations. A theory is a collection of axioms stating which operations, if any, must exist

and which equational laws, if any, must be satisfied by these operations. A model of a theory

is then an algebra satisfying the axioms of the theory. This view of theories and models is

analogous to the database concept of schemas and instances - the analogy has been made

explicit in the open source SQL-compatible implementation of Functional Query Language

by Patrick Schultz, David Spivak, and Ryan Wisnesky [6], to which the results of this project

would be of direct interest.

In Bill Lawvere’s 1963 PhD thesis [7], Lawvere formalizes the above idea in categorical

language. An algebraic theory is defined to be a category with finite products, algebras of

that theory are functors from the algebraic theory to Set preserving finite products, and an

algebraic category has algebras as objects and their natural transformations as morphisms.

In this project, we study single sorted algebraic theories, in which there is one generic object

T , so the objects of the algebraic theory are T 0, T 1, T 2, . . . and the theory is generated by

operations T n → T k along with any equational laws. For example, the algebraic theory
1We frequently use common category theoretic terminology, which is catalogued online at the nLab [4].

2

for groups is generated by letting T 1 be a group object, i.e. letting there be operations

m : T 2 → T , e : T 0 → T 1, inv : T 1 → T 1 and equational laws m◦(m×idT 1) = m◦(idT 1 ×m),

m ◦ (idT 1 ×e) = p1, m ◦ (e × idT 1) = p2, m ◦ (idT 1 ×inv) ◦∆ = eT 1 , m ◦ (inv × idT 1) ◦∆ =

eT 1 , where p1 and p2 are the canonical projections, ∆ is the diagonal map, and eT 1 is the

composition of the counit G → 1 with e. Then a functor from this theory to Set takes T 1

to the underlying set, m to the binary operation, e to the identity, and inv to the inverse.

1.2 Pushouts

A pushout is an example of a universal construction in category theory. Given Y
g←− X

f−→

Z, a pushout is an object P along with arrows f ′ and g′, such that the following square

commutes, and for any Q that would make the following square commute, there is a unique

universal arrow from P to Q.

X g
//

f
��

Y

f ′

��
Z

g′
// P

Pushouts generalize the idea of summing algebras; in the context of databases, they arise

when merging instances. For applications, we would like some guarantees on the behavior

of pushouts; in particular, we would like pushouts to satisfy the following:

Property 1.1. If f and g are monomorphisms, then f ′ and g′ are monomorphisms.

Here, monomorphism is analogous to injective function (we will see later that these are

in fact the same) - we want no two elements to map to the same element, otherwise in

applications we would have to handle nonsensical results such as 1 = 2. We know that

this property holds true in some, but not all algebraic categories, although a useful pattern

has not been recognized; this project is dedicated to understanding pushouts in algebraic

categories and in particular, when this property does or does not hold.

3

2 Existing Literature

Property 1.1 has been considered over all categories [8]; there is a class of categories called

adhesive categories which satisfy the property. However, we find no existing criteria, even

for algebraic categories, which are useful in practice [11]. We do, however, know of some

cases of algebraic categories where the property does or does not hold. We survey these

examples in the hopes that they will reveal a pattern, or that other cases can be reduced to

these cases (we have found this to be somewhat fruitful for the Set case).

2.1 Non-Pathological Cases

From Categories for the Working Mathematician [9], we know that Property 1.1 holds in

Grp and any abelian category (notably Ab) and also that the pushout Y
⊔

X Z in Set is

the disjoint union of Y and Z identifying fx and gx for each x ∈ X, along with the inclusion

maps. The following is also thus known:

Lemma 2.1. Property 1.1 holds in Set.

Proof. First, note that the monomorphisms of Set are exactly the injective functions. Indeed,

if f : X → Y is injective then for all g1, g2 : Z → X, we have for all z ∈ Z, fg1(z) = fg2(z)

implies g1(z) = g2(z). Thus, fg1 = fg2 implies g1 = g2 so f is monic. Conversely, if f is

monic, then f(x) = f(x′) implies fg1 = fg2 so g1 = g2 so x = x′, where g1 is the mapping

from a singleton to x and g2 is the mapping from the singleton to x′. Now, in a set pushout:

X g
//

f
��

Y

f ′

��
Z

g′
// P

if f and g are monic, then they are injective, so the pairs fx, gx are disjoint. Thus no

elements are identified in f ′ or g′, so f ′ and g′ are injective and thus also monic.

4

2.2 Pathological Cases

Property 1.1 does not hold in CRing, the algebraic category of commutative rings, by the

following counterexample, quoted from [10]:

Let k be a field, let R = k[a, b]/(a2, ab, b2), A = R[x]/(a− bx, x2),

B = R[y]/(b− ay, y2); then

A⊗RB ∼= R[x, y]/(a−bx, x2, b−ay, y2) ∼= k[a, b, x, y]/(a2, ab, b2, a−bx, x2, b−ay, y2)

but

a = (a− bx) + (b− ay)x + (a− bx)xy + (x2)by

b = (b− ay) + (a− bx)y + (b− ay)xy + (y2)ax

so (a, b) ⊆ ker(R→ A⊗R B).

Propert 1.1 also fails in CMon, the algebraic category of commutative monoids, by the

following counterexample, quoted from [11]:

Take A = {u, v, 1, 0} to be any commutative monoid with identity element 1

and null element 0. Define B = A t {b}, adjoining a new element b to A, and

extending the multiplication on A by bu = ub = v and b · 1 = 1 · b = b and

bx = xb = 0 for any x /∈ {u, 1}. Similarly define C = A t {c} with cv = vc = u

and c · 1 = 1 · c = c and cx = xc = 0 for x /∈ {v, 1}. Let iB : A → B and

iC : A → C be the inclusion maps, and let P be the pushout of iB and iA with

coproduct coprojections j : B → P , k : C → P . I claim k ◦ iC : A → P is not

monic. The short version of the calculation is that in P we have

5

u = vc = buc = b · 0 = 0

3 Approach

We build up from the most basic results. Restricting our attention to single-sorted algebraic

theories allows us to reason more easily about the resulting algebraic categories.

3.1 Using The Underlying Set Functor

Any algebraic category T-Alg has an underlying set functor U : T-Alg→ Set (in the case

of single-sorted theories, taking A0, A1, . . . to A1), which has a left adjoint, the free functor

[12]. Since every map between sets from T n is a product of the maps between sets from T 1,

U is faithful. Note that f : A→ B is a monomorphism iff the following is a pullback square:

A
1A
//

1A
��

A

f
��

A
f
// B

but pullbacks are limits, and right adjoints preserve limits, so right adjoints preserve monomor-

phisms, so U preserves monomorphisms. Also, if U(f) is monic, then for all g1, g2 ∈ T-Alg,

fg1 = fg2 implies U(f)U(g1) = U(f)U(g2) by functoriality, which implies U(g1) = U(g2) by

monicity, which implies g1 = g2 by faithfulness. Hence, U also reflects monomorphisms in

addition to preserving them. We can now think of monomorphisms in algebraic category as

follows:

Remark 3.1. An arrow in an algebraic category is monic if and only if the underlying

function between sets is injective.

6

3.2 Adding Operations to the Theory

We noted, in Lemma 2.1, that Property 1.1 holds for Set, for which the algebraic theory has

no operations and no equational laws. Since we have seen that equational laws potentially

cause trouble (e.g. in CMon and CRing), we study what happens if we have any operations

but no equational laws. Intuitively, such algebraic categories should not behave significantly

differently from Set, so our approach relates Lemma 2.1, the underlying set functor, and

the following fact, to extend Property 1.1 from Set to arbitrary algebraic theories without

equational laws.

Lemma 3.1. If there is Q such that the following square commutes with all arrows monic,

then the pushout square of Y
⊔

X Z is also monic.

X g
//

f
��

Y

f ′′

��
Z

g′′
// Q

Proof. The universal property gives us an arrow h : P → Q:

X g
//

f
��

Y

f ′′

��
f ′′

��

Z

g′′ ++

g′
// P

h

��
Q

Since g′′ = hg′ is a monomorphism, g′ is also a monomorphism, since

g′k1 = g′k2 =⇒ hg′k1 = hg′k2 =⇒ k1 = k2.

Similarly, f ′ is a monomorphism.

Now, we are ready to prove the main result of this section.

Proposition 3.1. Property 1.1 holds in any algebraic category with no equational laws.

7

Proof. Let T = T 0, T 1, . . . be an algebraic theory with no equational laws, and T-Alg be the

category of algebras of T. Suppose, in T-Alg, Y g←− X
f−→ Z has f and g monic. Since f and

g are natural transformations (of algebras, which are Set-valued functors), they commute

with each operation s : T n → T of the theory. Now consider the following pushout in Set:

U(X)
U(g)

//

U(f)

��

U(Y)

f ′

��
U(Z)

g′
// Q1

If we can find a square containing Y
g←− X

f−→ Z which commutes and is taken to the above

square by U , then we are done, since Lemma 2.1 and the fact that U reflects monomorphisms

would imply that this square satisfies the assumptions of Lemma 3.1. Let f ′′ : Y → Q be

the natural transformation consisting of (f ′)n : Y n → Qn := (Q1)n for each n ∈ N0 and

g′′ : Z → Q be similarly formed by products of g′. For these to exist, we need an algebra Q

defined on underlying set Q1 with each operation s : T n → T defined on Q to commute with

f ′′ and g′′. If Q1 is empty, then so are Y and Z, so the claim is trivially true. Otherwise,

we can pick an arbitrary element r of Q1. Note that for q ∈ Qn, if q = f ′′(y) = g′′(z)

for some y ∈ Y n, z ∈ Zn then since Q1 is a set pushout, there are x1, x2 ∈ Xn such that

y = g(x1), z = f(x2), but since the natural transformation f ′′g = g′′f is composed of injective

functions (Remark 3.1), we have x := x1 = x2, so

f ′′(sY (y)) = f ′′(sY (g(x))) = f ′′(g(sX(x))) = g′′(f(sX(x))) = g′′(sZ(f(x))) = g′′(sZ(z)).

Thus we are allowed to define

sQ(q) =

f ′′(sY (y)) q = f ′′(y)

g′′(sZ(z)) q = g′′(z)

r neither of the above

8

Now s clearly commutes with f ′′ and g′′, as desired.

Note that the CMon counterexample shows how this proof breaks down when equational

laws are introduced: if we try to apply the construction from our proof, then sQ(b, SQ(u, c)) =

sQ(b, 0) = 0 but sQ(sQ(b, u), c) = sQ(v, c) = u, breaking the equational law for associativity!

We suspect that products in equational laws break our construction by "mixing" codomains

- indeed, we can extend our result to support this idea.

Proposition 3.2. Property 1.1 holds in any algebraic category with no equational laws re-

lating operations of arity greater than 1.

Proof. We can rewrite the theory with all equational laws of the form s = ab, since the

codomain of a product can only the the domain of an operation of arity greater than 1.

Now construct Q as in the proof of Proposition 1.1. If q = f ′′(y) then bQ(q) = f ′′(bY (y))

so aQ(bQ(q)) = f ′′(aY (bY (y))) = sQ(q). Similarly, if q = g′′(z) then bQ(q) = g′′(bZ(z)) so

aQ(bQ(q)) = g′′(aZ(bZ(z))) = sQ(q). By definition of Q1, one of the previous assumptions on

q must hold, so the equational laws are satisfied by this construction.

Proposition 3.1 implies that Property 1.1 holds in the categories of pointed sets (there is

one operation T 0 → T 1) and magmas (there is one operation T 2 → T 1).

9

Example: Magmas
Suppose we have

X = {1, 2}

sX(1, 1) = 1, sX(1, 2) = 1, sX(2, 1) = 1, sX(2, 2) = 2

Y = {1, 2, 3}

sY (1, 1) = 1, sY (1, 2) = 1, sY (2, 1) = 1, sY (2, 2) = 2,

sY (1, 3) = 2, sY (2, 3) = 2, sY (3, 1) = 2, sY (3, 2) = 2, sY (3, 3) = 3

Z = {1, 2, 4}

sZ(1, 1) = 1, sZ(1, 2) = 1, sZ(2, 1) = 1, sZ(2, 2) = 2

sZ(1, 4) = 4, sZ(2, 4) = 4, sZ(4, 1) = 4, sZ(4, 2) = 4, sZ(4, 4) = 4

where every map is the inclusion. Then our construction gives (with r = 1)

Q = {1, 2, 3, 4}

sQ(1, 1) = 1, sQ(1, 2) = 1, sQ(2, 1) = 1, sQ(2, 2) = 2

sQ(1, 3) = 2, sQ(2, 3) = 2, sQ(3, 1) = 2, sQ(3, 2) = 2, sQ(3, 3) = 3

sQ(1, 4) = 4, sQ(2, 4) = 4, sQ(4, 1) = 4, sQ(4, 2) = 4, sQ(4, 4) = 4

sQ(3, 4) = 1, sQ(4, 3) = 1

4 Conclusion

We were able to prove a result which we did not know previously (Proposition 3.1). This

project proved instructive about algebraic theories, and category theory in general. Existing

techniques surveyed here and techniques developed here are of potential use in attacking the

10

problem further.

4.1 Further Work

We currently have not explored an easy way to generate and reason about counterexamples

- these could be studied in the future. Conditions could also be greatly refined - Lemma 3.1

gives a straightforward, but not obviously useful in general, condition for Property 1.1 to

hold. While Lemma 3.1 does not seem computationally applicable, Proposition 3.1 showed

that it was mathematically useful for proving Property 1.1 on an entire class of algebraic

categories. Having such a guarantee is itself reassuring in applications, and refining the

method to achieve further guarantees would be desirable. However, examples such as Ab

show that we will need a more flexible construction than that of Proposition 3.1, which is

potentially grounds for new approaches.

4.2 Acknowledgements

The author would like to thank David Spivak for his input and supervision of this work.

11

References

[1] https://www.haskell.org/tutorial/monads.html

[2] https://homotopytypetheory.org/

[3] http://www.cs.cornell.edu/courses/cs6117/2014Fa/

[4] https://ncatlab.org/nlab/show/HomePage

[5] J. Adámek; J. Rosický; E. M. Vitale (18 November 2010). Algebraic Theories: A Cat-

egorical Introduction to General Algebra. Cambridge University Press. ISBN 978-1-139-

49188-4.

[6] http://categoricaldata.net/fql.html

[7] F. W. Lawvere, Functorial Semantics of Algebraic Theories, Ph.D. thesis, Columbia

University, 1963.

[8] Martin Brandenburg, When is the pushout of a monic also monic?, URL (version: 2012-

06-06): http://math.stackexchange.com/q/154591

[9] Lane, Saunders Mac. Categories for the Working Mathematician. New York: Springer-

Verlag, 1971. Print.

[10] Zhen Lin, Tensor product of injective ring homomorphisms, URL (version: 2014-09-02):

http://math.stackexchange.com/q/916443

[11] Todd Trimble, Monomorphisms in operad algebras, URL (version: 2016-03-05):

http://mathoverflow.net/q/232864

[12] https://ncatlab.org/nlab/show/Lawvere+theory#FreeAlgebras

12

	Introduction
	Algebraic Theories
	Pushouts

	Existing Literature
	Non-Pathological Cases
	Pathological Cases

	Approach
	Using The Underlying Set Functor
	Adding Operations to the Theory

	Conclusion
	Further Work
	Acknowledgements

