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This picture by Roice Nelson shows the ‘hexagonal tiling honeycomb’. But what is it? Roughly
speaking, a honeycomb is a way of filling 3d space with polyhedra. The most familiar one is the
usual way of filling Euclidean space with cubes. This cubic honeycomb is denoted by the symbol
{4, 3, 4}, because a square has 4 edges, 3 squares meet at each corner of a cube, and 4 cubes meet
along each edge of this honeycomb. We can also define honeycombs in hyperbolic space, which is
a 3-dimensional Riemannian manifold with constant negative curvature. For example, there is a
hyperbolic honeycomb denoted {4, 3, 5}, which is a way of filling hyperbolic space with cubes where
5 meet along each edge.

Coxeter has classified the most symmetrical hyperbolic honeycombs [2], and the hexagonal tiling
honeycomb is one of these. But it does not contain polyhedra of the usual sort. Instead, it contains
flat Euclidean planes embedded in hyperbolic space, each of which is tiled by regular hexagons.
These tiled planes can be seen as generalized polyhedra with infinitely many faces. The symbol
for the hexagonal tiling honeycomb is {6, 3, 3}, because a hexagon has 6 edges, 3 hexagons meet at
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each corner in a plane tiled by regular hexagons, and 3 such planes meet along each edge of this
honeycomb.

The hexagonal tiling honeycomb shows up naturally if we try to discretize spacetime while pre-
serving as much symmetry as we can. In special relativity, Minkowski spacetime is R4 equipped
with the nondegenerate bilinear form

(t, x, y, z) · (t′, x′, y′, z′) = tt′ − xx′ − yy′ − zz,

usually called the Minkowski metric. Hyperbolic space sits inside Minowski spacetime as the
hyperboloid of points x = (t, x, y, z) with x · x = 1 and t > 0. Equivalently, we can think of
Minkowski spacetime as the space h2(C) of 2 × 2 hermitian complex matrices, using the fact that
every such matrix is of the form

A =

(
t+ z x− iy
x+ iy t− z

)
and det(A) = t2 − x2 − y2 − z2. In these terms, hyperbolic space is the hyperboloid

H = {A ∈ h2(C) | detA = 1, tr(A) > 0} .
How can we construct the hexagonal tiling honeycomb inside H? Sitting in the complex numbers

we have the ring E of Eisenstein integers: complex numbers of the form a + bω where a, b are
integers and ω is a nontrivial cube root of 1, say ω = e2πi/3. This lets us define a lattice in Minkowski
spacetime, say h2(E), consisting of 2×2 hermitian matrices with entries that are Eisenstein integers.
This lattice can be seen as a discretized version of Minkowski spacetime. Then comes a minor
miracle: the point at the centers of hexagons in the hexagonal tiling honeycomb are precisely those
points in the lattice h2(E) that lie on the hyperboloid H.

The hexagonal tiling honeycomb also arises in algebraic geometry. An abelian variety is an
abelian group in the category of complex projective varieties. The most famous are the 1-dimensional
ones, called elliptic curves. Any elliptic curve is of the form C/L for some lattice L ⊂ C. We can
get a highly symmetrical one from the Eisenstein integers by forming the quotient C/E. We can then
form a 2-dimensional abelian variety by taking the product of two copies of this elliptic curve. The
result can also be seen as the quotient C2/E2. This is one of the most symmetrical 2-dimensional
abelian varieties of all.

The set of isomorphism classes of complex line bundles over any complex projective variety be-
comes an abelian group thanks to our ability to tensor line bundles. This group, called the Picard
group, has a natural topology, and it typically has many connected components. The set of con-
nected components is an abelian group in its own right, called the Néron–Severi group. You can
think of this as the group of equivalence classes of line bundles where two count as equivalent if one
can be deformed to another.

Thanks to some beautiful theorems on abelian varieties, the Néron–Severi group of the variety
C2/E2 is isomorphic to h2(E). The points A ∈ h2(E) with tr(A) > 0 and det(A) > 0 come from
‘ample’ line bundles, which are roughly those having enough sections to provide an embedding of
the variety into projective space. Among these points, those with det(A) = 1 correspond to some
ample line bundles that are not themselves the tensor product of two other ample line bundles. But
these points are precisely the centers of the hexagons in the hexagonal tiling honeycomb!

Thus, the picture above gives a vivid view of some concepts from algebraic geometry. But it is
just part of a larger story relating number rings to hyperbolic honeycombs [3] and the Néron–Severi
groups of abelian varieties [1, Chap. 5].
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