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Thought to self: failure of initiality when the antecedent is a disjunction can
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1 Introduction

Revise this section to better reflect the ideas of the rest of the paper.

In natural language, counterfactuals are “what if?” questions: conditional
statements with potentially false antecedents which nevertheless have nontriv-
ial semantic content even in cases where the standard mathematical account of
implication would render them vacuously true. A number of common construc-
tions, particularly in algebra, are reminiscent of counterfactuals. For example,
the field C is intuitively the answer to the counterfactual “what if R had a root
for the polynomial q(i) = i2 + 1?”, and a claim that a formula φ holds in C
can be intuitively viewed as a claim that the formula ∃i(i2 = −1) > φ holds in
R, where > is the counterfactual conditional connective. Similarly, the integers
mod p are like the answer to the question “what if p = 0 in Z?”, and a claim φ
in Z/pZ can be seen as a claim p = 0 > φ in Z.

This concept can be clarified by a few observations. First, counterfactual
conditionals may be modeled in a system of possible worlds by introducing an
appropriate notion of “nearness” between worlds, so that the consequent of a
conditional can be interpreted in the closest world[s] satisfying the antecedent,
if any exist. By regarding structures as possible worlds, we can obtain the above Maybe cite

something
talking
about this?1



correspondences as natural consequences of a notion of nearness or “minimal
difference” that correctly picks out C as the nearest world to R with a root
for q and Z/pZ as the nearest world to Z with p = 0. Second, the shared
characteristic between these cases that identifies C or Z/pZ as being “nearest”
is the possession of a relevant universal property. In the case of C, it is that field
homomorphisms R→ K where K has a root for q factor uniquely through the
inclusion R ⊆ C once C and K are pointed with a particular root of q. In the
case of Z/pZ, it is that ring homomorphisms Z → R where p = 0 in R factor
uniquely through the quotient Z � Z/pZ.

The universal property of C hinges on there being a canonical choices of
root of q in the relevant fields; without this, it fails because of the existence
of nontrivial R-fixing automorphisms of C (e.g., conjugation). A definition of
> that works in this case would require a method of deriving the appropriate
extra conditions from the form ∃i(i2 = −1) of the antecedent. In this case, the
connection seems fairly obvious—the necessary extra equipment is a choice of
witness for the existential—but it becomes rather subtle when trying to gen-
eralize. For that reason, this paper will particularly investigate one significant
class of well-behaved antecedents: universal Horn formulas.

2 Preliminaries

Definition 2.1. A signature is a tuple σ = (Func,Rel,Const, ar), where Func,
Rel, and Const are disjoint sets of function symbols, relation symbols, and con-
stant symbols, respectively, and ar : Func∪Rel → N+ is an assignment of a
positive arity to each function and relation symbol. The variables σ and τ will
generally range over signatures.

Definition 2.2. For a signature σ = (Func,Rel,Const, ar), a σ-structure or
structure over σ is a tuple A = (A, I), where A is a non-empty set called the
universe or domain of A, and I is an interpretation of σ in A; i.e., a function
I(f) : Aar(f) → A for each f ∈ Func, a relation I(R) ⊆ Aar(r) for each R ∈ Rel,
and an element I(c) ∈ A for each c ∈ Const. We write fA for I(f), RA for I(R),
and cA for I(c). The variables A and B will generally range over structures.

Definition 2.3. For a signature σ and σ-structures A,B, a function ρ : A→ B
is homomorphism A→ B if

1. ρ(fA(x1, . . . , xn)) = fB(ρ(x1), . . . , ρ(xn)) for each n-ary function symbol
f of σ and all x1, . . . , xn ∈ A;

2. RA(x1, . . . , xn) =⇒ RB(ρ(x1), . . . , ρ(xn)) for each n-ary relation symbol
R of σ and all x1, . . . , xn ∈ A;

3. ρ(cA) = cB for all constant symbols c of σ.

It is a strong homomorphism if the implication in 2 is replaced with an equiv-
alence. An embedding is an injective strong homomorphism. The full category

2



of σ-structures, denoted by Struct(σ), is the category whose objects are the
σ-structures, whose morphisms A → B are the homomorphisms A → B, and
whose composition is just function composition. This easily does form a cate-
gory.

Definition 2.4. For a signature σ, the set of terms over σ is inductively gen-
erated by a countably infinite set of variables V, the constant symbols of σ,
and n-ary application of the n-ary function symbols of σ. The variable t will
generally range over terms. The set of atomic formulas over σ is inductively
generated by equalities of terms and n-ary applications of n-ary relation symbols
to terms. The set of first-order formulas over σ, denoted FOL(σ), is inductively
generated by the atomic formulas, negation (¬), conjunction (∧), and universal
quantification (∀). Disjunction (∨), implication (→), true (>), false (⊥), and Should we

pick some
other logi-
cally com-
plete set of
connectives?
Does it mat-
ter?

existential quantification (∃) can be defined as shorthand in the usual ways. The
variables φ, ψ, and χ will generally range over formulas in FOL(σ) or extensions
of it. A term or formula with no free variables is closed. A sentence is a closed
formula.

Definition 2.5. A formula is a literal if it is either an atomic formula or a
negated atomic formula. A formula is in prenex normal form if it consists of
some quantifiers, the prenex, followed by a quantifier-free portion, the matrix.
A quantifier-free formula is in disjunctive normal form if it is a disjunction
of conjunctions of literals. A prenex-normal formula is existential if all of its
quantifiers are existential, and it is universal if all of its quantifiers are universal.
A prenex-normal formula with a disjunctive normal matrix is positive if all of
the literals are non-negated.

Definition 2.6. For a structure A, a variable assignment into A, or just an
assignment into A is a function V → A. The variable π will generally range
over variable assignments. Given a variable assignment π into a structure A,
we extend π to arbitrary terms by setting π(c) = cA and π(f(t1, . . . , tn)) =
fA(π(t1), . . . , π(tn)). If a term t is closed, then π(t) = π′(t) for any assignments
π, π′; in this event, write tA for the value of t under any assignment. The
notation π{x := a} denotes the assignment which sends x to a and otherwise
agrees with π.

Definition 2.7. The trinary satisfaction relation (A, π) |= φ between struc-
tures, variable assignments into them, and formulas, is defined inductively on
formulas by

(A, π) |= t1 = t2 ⇐⇒ π(t1) = π(t2)

(A, π) |= R(t1, . . . , tn) ⇐⇒ RA(t1, . . . , tn)

(A, π) |= ¬φ ⇐⇒ (A, π) 6|= φ

(A, π) |= φ ∧ ψ ⇐⇒ (A, π) |= φ and (A, π) |= ψ

(A, π) |= ∀xφ ⇐⇒ for all a ∈ A, we have (A, π{x := a}) |= φ.
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Write A |= φ to mean that (A, π) |= φ for all π, and write |= φ to mean that
A |= φ for all A. Two formulas φ, ψ are logically equivalent, written φ ≡ ψ, if
|= φ↔ ψ.

Definition 2.8. A theory over a signature σ is a set of sentences over σ. The
variable T will generally range over theories. A structure A is a model of a
theory T if it satisfies every sentence in T . The full category of models of T ,
denoted by Mod(T ), is the full subcategory of Struct(σ) whose objects are the
models of T .

3 Modal First-Order Logic

In order to apply the conceptual framework of possible worlds to categories of
structures, we first fix a broad notion of what kind of “categories of structures”
we will be considering.

Definition 3.1. Given a signature σ, a category of σ-structures is a subcategory
of Struct(σ). The variable C will generally range over categories of structures,
and the variables f , g, and h will generally range over their morphisms. When
some structures A and B are being considered as objects of some category
of structures C, the notation f : A → B will mean that f , beyond being a
homomorphism, specifically belongs to C.

Let C be a category of structures. If we view the objects of C as possible
worlds, then we can understand a morphism f : A→ B as a way of picking out a
counterpart in B for each individual of A, or as an exhibition of B as “analogous”
in some way to A. The fact that there may be other, distinct morphisms A→ B
reflects the fact that there may be other acceptable but “inconsistent-with-f”
ways of interpreting B as a hypothetical variation on A. This is a restricted
instance of a more general family of notions which are described in Kracht and
Kutz [3, §7]. Of the types of structures discussed there, the approach we will
take is most similar in intent to the modal structures in Kracht and Kutz [4],
although it is closer in consequences to the presheaf models in Ghilardi [1].

We analyze systems of possible worlds by interpreting the language of modal
logic into them; later, we will also consider strict conditional and counterfactual
conditional connectives. For now, we consider the necessitation and possibility
modalities, � and ♦.

Definition 3.2. The set of modal first-order formulas over σ, denoted MFOL(σ),
is inductively generated by the first-order connectives and a new unary modal
operator �. We define ♦φ to be shorthand for ¬�¬φ. Both of these connectives
have the same precedence as negation.

In standard Kripke semantics, these connectives quantify over possible worlds,
but here this is insufficient. If a statement makes reference to individuals, then
before we can ask whether it holds in another possible world, we must know
how to translate it into a statement about some corresponding individuals in
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that world. Thus, rather than quantifying over reachable worlds, we quantify
over ways of reaching those worlds; i.e., morphisms.

Definition 3.3. The 4-ary modal satisfaction relation (A, π) |=C φ, where C is
a category of σ-structures, A is an object of C, π is an assignment into A, and
φ is a formula of MFOL(σ), is defined by adding C as a parameter to the prior
inductive definition of |=, with the existing clauses leaving it untouched, and
then adding the rule

(A, π) |=C �φ ⇐⇒ for all B ∈ C and f : A→ B, we have (B, f ◦ π) |=C φ.

Write A |=C φ to mean that (A, π) |=C φ for all π, write |=C φ to mean that
A |=C φ for all A ∈ C, and write |= φ to mean that |=C φ for all C. We will say
that φ and ψ are logically equivalent in C, written φ ≡C ψ, if |=C φ↔ ψ.

Many common validities of modal logic hold in these semantics. Notably,
axioms T and 4 follow from the existence of compositions and identities, anal-
ogously to how they follow from transitivity and reflexivity in propositional
Kripke frames.1 Should this

even be a
footnote?

Theorem 1. The basic rules of modus ponens and generalization are admissible.
I.e., for all φ, ψ ∈MFOL(σ), all C, and all A:

MP: If (A, π) |=C φ → ψ and (A, π) |=C φ, then (A, π) |=C ψ, and this also
holds when “(A, π) |=C” is replaced by any of A |=C, |=C, or |=.

Gen: If A |=C φ, then A |=C ∀xφ, and this also holds when “A |=C” is replaced
by |=C or |=.

The rules of the modal logic S4 are additionally admissible. I.e., for all φ, ψ ∈
MFOL(σ):

N: For all C, if |=C φ, then |=C �φ; if |= φ, then |= �φ.

K: |= �(φ→ ψ)→ (�φ→ �ψ)

T: |= �φ→ φ

4: |= �φ→ ��φ

Proof. MP and Gen hold by the same arguments as in ordinary first-order logic.
Each of the modal rules reduces to a complicated but easy-to-prove statement
once the definition of |= is expanded. To make things more readable, I will elide
some of the quantification.

1This analogy does not hold up perfectly—in propositional Kripke frames, one considers
frames prior to the association of specific truth assignments to them, and a converse holds
where T and 4 imply transitivity and reflexivity when they hold in all possible truth assign-
ments. In this paper, we require the objects of our category to be equipped with interpretations
from the start in order to be able to demand that morphisms are homomorphisms; and even
if we generalized to allow non-homomorphisms and the absence of composition and identities
(this is essentially the semantics of [4]), T and 4 would only imply something significantly
weaker than being a category—see [4] for details.
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N: The expanded statement of the first claim is: If (A, π) |=C φ for all (A, π),
then for all A′, π′, f : A′ → B, we have (B, f ◦ π) |=C φ. This follows by
instantiating the premise with (B, f ◦π). The second claim follows quickly
from the first.

K: The expanded statement is: If for all f : A→ B with (B, f ◦ π) |=C φ, we
have (B, f ◦ π) |=C ψ; and for all f ′ : A → B′ we have (B′, f ′ ◦ π) |=C φ;
then for all f ′′ : A → B′′, we have (B′′, f ′′ ◦ π) |=C ψ. This follows by
instantiating the premises with f ′′.

T: The expanded statement is: If (B, f ◦ π) |=C φ for all f : A→ B, then we
have (A, π) |=C φ. This follows by instantiating the premise with f as the
identity at A.

4: The expanded statement is: If (B, f ◦ π) |=C φ for all f : A→ B, then for
all f ′ : A → B′ and f ′′ : B′ → B′′ we have (B′′, f ′′ ◦ f ′ ◦ π) |=C φ. This
follows by instantiating the premise with f as f ′′ ◦ f ′.

Theorem 2. For any category of structures C, logical equivalence in C is a
congruence; i.e., if φ ≡C ψ, and φ occurs as a subformula of χ, then replacing
this subformula with ψ produces a result logically equivalent to χ in C. Since
this holds for all C, it is also true for full logical equivalence. Do we want

a version
of this for
|=C t = s
too?

Proof. This follows by induction on χ, showing that each connective enclos-
ing φ respects logical equivalence in C. This holds for each of the first-order
connectives by standard arguments. For �, use N and K to find that

|=C φ→ ψ =⇒ |=C �(φ→ ψ) =⇒ |=C �φ→ �ψ,

and similarly for ψ → φ. Therefore, φ ≡C ψ =⇒ �φ ≡C �ψ.

Corollary 1. For all φ, ψ ∈MFOL(σ):

• �(φ ∧ ψ) ≡ �φ ∧�ψ

• ♦(φ ∨ ψ) ≡ ♦φ ∨ ♦ψ

• |= �(φ↔ ψ)→ (�φ↔ �ψ)

Proof.

• From left to right: we have |= φ ∧ ψ → φ, so by N and K, we have
|= �(φ ∧ ψ) → �φ. By similar reasoning we have |= �(φ ∧ ψ) → �ψ.
Combining these gives |= �(φ ∧ ψ) → �φ ∧ �ψ. From right to left: we
have |= φ→ ψ → φ∧ψ, so by N and K, we have |= �φ→ �ψ → �(φ∧ψ),
and then |= �φ ∧�ψ → �(φ ∧ ψ).

• From the previous equivalence, we have �(¬φ ∧ ¬ψ) ≡ �¬φ ∧ �¬ψ.
Negating both sides and distributing the negation gives ♦(¬¬φ∨¬¬ψ) ≡
♦¬¬φ ∨ ♦¬¬ψ. Cancelling the negations gives the result.
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• Since ↔ is just a conjunction of implications, by the first equivalence we
have �(φ ↔ ψ) ≡ �(φ → ψ) ∧ �(ψ → φ). Then applying K to both
conjuncts gives the result.

If a formula φ is preserved by a morphism f : A→ B, we can think of this
as meaning that the truth of φ remains unchanged when considered in another
possible world by means of f , or that the analogy represented by f does not
distort the significance of φ’s truth. Thus, if φ is preserved by all morphisms of Say some-

thing about
what it
means to
be a homo-
morphism in
this light.

a category C, we can think of this as meaning that, in the event that φ is known,
it can be safely assumed to hold in any hypothetical as well—i.e., |=C φ→ �φ.

This is kind
of an awk-
ward shift
between
intuitive
handwaving
and unjusti-
fied formal
claims.

Then the basic preservation results give rise to modal validities.

Theorem 3. For φ ∈ FOL(σ) and C a category of σ-structures, we have |=C
φ→ �φ under any of the following conditions:

• φ is logically equivalent to an existential formula and every morphism of
C is an embedding.

• φ is logically equivalent to a positive formula and every morphism of C is
surjective.

• φ is logically equivalent to an existential positive formula.

In particular. we have |= φ → �φ for existential positive φ. This includes all
atomic formulas.

Proof. For specificity, define “f : A → B preserves φ” to mean that for all
assignments π into A, if (A, π) |=C φ, then (B, f ◦π) |=C φ. Then, by expanding
definitions and shuffling around some quantifiers, we can rephrase |=C φ→ �φ
as “for all A ∈ C and f : A → B, f preserves φ”. Then the theorem follows
from the following standard results, which can be found in, e.g., [2, §2.4]: kinda awk-

ward, non-
specific cita-
tion

Fact 1.

• Any formula logically equivalent to an existential formula is preserved by
embeddings.

• Any formula logically equivalent to a positive formula is preserved by sur-
jections.

• Any formula logically equivalent to an existential positive formula is pre-
served by all homomorphisms.

Maybe also bring up the Barcan and converse Barcan schemata?
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4 Conditionals

Definition 4.1. The strict conditional φ J ψ is defined as notation for �(φ→
ψ). It will be right-associative in our notation and will have the same precedence
as →. If we expand the semantics for � and →, we see that

(A, π) |=C φ J ψ ⇐⇒ for all B ∈ C and f : A→ B such that (B, f ◦ π) |=C φ,

we have (B, f ◦ π) |=C ψ.

This conditional expresses necessary, as opposed to contingent, consequence.
To say φ J ψ is to say that any hypothetical which affirms φ must also affirm
ψ, or, contrapositively, that to reject ψ for the purpose of a hypothetical forces
one to also lose φ.

The basic properties of the strict conditional drop out of the basic properties
of �.

Theorem 4. The following rules are admissible for all φ, ψ, χ ∈MFOL(σ): Figure out
which rules
and non-
rules are
actually im-
portant and
then write
them down!!!

• For all C, if |=C φ→ ψ, then |=C φ J ψ; if |= φ→ ψ, then |= φ J ψ.

• |= �ψ J φ J ψ

• |= ¬♦φ J φ J ψ

• (φ J ψ) ≡ (¬ψ J ¬φ)

• |= (φ J ψ)→ (ψ J χ)→ (φ J χ)

However, we have the following non-rules (for some choices of φ, ψ, χ, in each
case):

• 6|= ψ J φ J ψ.

• 6|= ¬♦φ J φ J φ.

Write a proof.

The strict conditional can be used to express claims like “if −1 were to have
at least one square root, then it would have to have exactly two square roots”:
if F is the theory of fields, then it is true and non-vacuous that

R |=Mod(F ) ∃i(i2 = −1) J ∃=2i(i
2 = −1),

where ∃=n is the usual first-order-definable “exists exactly n” quantifier. But
for some purposes, the strict conditional is too strong. In particular, it has been
critiqued as an inadequate interpretation of natural language counterfactuals on
the basis that such conditionals are non-monotonic; that is, they can fail if their
antecedent is strengthened. One major approach to explaining their meaning is Elaborate

and/or cite
something!!

given by Stalnaker [6] as follows:
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Consider a possible world in which A is true, and which otherwise
differs minimally from the actual world. “If A, then B” is true (false)
just in case B is true (false) in that possible world.

This view can be naturally applied to statements within the framework set up
thus far. Consider the claim of the integers that “if 2 were equal to 0, then
every number would have to be equal to either 0 or 1”. If we interpret this as a
strict conditional—i.e., as 2 = 0 J ∀n(n = 0 ∨ n = 1)—then the claim is false:
letting R be the theory of rings with 1,

Z 6|=Mod(R) 2 = 0 J ∀n(n = 0 ∨ n = 1).

This is because there are ring homomorphisms out of Z whose codomains satisfy
the antecedent but not the consequent—for example, there is a homomorphism
to Z/2Z× Z/2Z (the quotient followed by the diagonal), but

Z/2Z× Z/2Z 6|=Mod(R) 2 = 0→ ∀n(n = 0 ∨ n = 1).

If we think of the informal claim as a counterfactual, however, we shouldn’t care
about Z/2Z × Z/2Z, because it differs from Z in ways other than the one we
are interested in. What we should really be interested in is Z/2Z, the obvious
contender for “a ring in which 2 = 0, and which otherwise differs minimally
from Z”; and in Z/2Z, the consequent is of course true, rendering the overall
conditional true when thought of as a counterfactual.

The reason why Z/2Z is the obvious contender for this position is that it
is the quotient of Z by the ideal generated by 2, quotients are fairly intuitively
the meaning of “identifying together some elements”, and “generated by” is
a kind of minimality. But the reason why quotients are the correct notion of
“identification of elements” is, from the perspective of category theory, because
they satisfy a universal property: in this case, any homomorphism from Z to a
ring of characteristic 2 factors uniquely through the quotient map to Z/2Z; or
in other words, the quotient map is initial in the category of rings under Z of
characteristic 2.
Connect “minimal difference” to “freeness” to “initiality”.

As another example, suppose a counterfactual in R (considered as a field)
has antecedent ∃i(i2 + 1 = 0). It is intuitive that the field in which this is
true, and which otherwise differs minimally from R—i.e., the field in which the
consequent of the counterfactual should be considered—is C. This is because
C is the field extension of R given by the polynomial p(i) = i2 + 1 = 0. Once
again, this can be justified as the correct notion of “adding a square root of −1”
because there is a universal property: given a field homomorphism f : R → F
such that F has a root for p, and in particular a fixed choice of root iF , there
is a unique extension f̃ : C → F of f such that f̃(i) = iF . In other words, the
inclusion R ⊆ C is initial in the category of fields under R equipped with a root
of p, once C is equipped with i.

Finally, suppose a counterfactual in N, considered as a poset, has antecedent
∀n∃n′(n′ < n). While not as obvious as the prior two cases, it is at least
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plausible that the poset in which the consequent should be considered is Z. For
a third time, this can be justified—albeit a bit more tenuously—by suggesting
a universal property: for any monotone function f : N → P , and choice of
function p : P → P such that p(x) < x for all x, there is a unique monotone
extension f̃ : Z→ P such that f̃(n−1) = p(f(n)). In other words, the inclusion
N ⊆ Z is initial in the category of posets under N equipped with a “choice of
smaller element” function, once Z is equipped with the predecessor operation.

These examples suggest that, to give semantics to counterfactuals in a vein
similar to Stalnaker [6], a reasonable approach to finding a “minimally different”
world in which to evaluate the consequent is to look for a morphism out of the
current world which is initial in some appropriate category of structures under
the current world. Unfortunately, the latter two examples require a choice of ex-
tra equipment for these structures. In these cases, the type of equipment offered
has a clear resemblance to the form of the antecedent, but finding a well-behaved
general criterion is subtle; for example, the antecedent of the N example is log-
ically equivalent to ¬∃l∀n(l ≤ n), which is no longer obviously identifiable with
the structure of a “choice of smaller element” function. One appealing approach
would would be to Skolemize any antecedent of a counterfactual and use the
newly-introduced function and constant symbols as the needed extra structure,
but there could perfectly well be more than one Skolem normal form, and the
truth of the counterfactual might not be the same between the options. For
this paper, we resign ourself to a semantics for counterfactuals which considers
initiality only in an under category with no extra equipment on the structures.
This cannot account for the field and poset examples, but it does give rise to
the ring example, and it has at least one significant class of very well-behaved
cases which is investigated in §5.

Definition 4.2. The set of counterfactual first-order formulas over σ, denoted
CFOL(σ), is inductively generated by the first-order connectives, the unary
modal operator �, and the counterfactual conditional connective >. Like J, Which re-

sults from
above might
fail if the
formulas in
them are
allowed to
include >? I
don’t think
any, at the
moment.
Probably
worth men-
tioning in
the text.

this connective will be right-associative in our notation and will have the same
precedence as →.

The semantics for > will be a refinement of those for J. As with (A, π) |=C
φ J ψ, we will want to consider morphisms f : A→ B such that (B, f ◦π) |=C φ,
but instead of evaluating ψ in all cases, we check it only in the f (if any) which
is initial, as discussed above. We first define precisely which category we mean
for f to be initial in, making use of the soon-to-be-defined satisfaction relation
for CFOL(σ).2

Definition 4.3. Let C be a category of σ-structures, A an object of C, π a
variable assignment V → A, and φ a formula of CFOL(σ). Let A ↓ C denote
the under category of morphisms out of A. Then define (A, π) ↓φ C to be the
full subcategory of A ↓ C whose objects (B ∈ C, f : A → B) are those that
satisfy (B, f ◦ π) |=C φ.

2Even though the satisfaction relation refers back to this definition, there is not a true
circularity, just a diversion in the self-reference used by the inductive definition of |=.
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Note that

Fact 2.

(A, π) |=C φ J ψ ⇐⇒ for all objects (B, f) of (A, π) ↓φ C,

we have (B, f ◦ π) |=C ψ.

We can now give semantics to >.

Definition 4.4. We extend the modal satisfaction relation to CFOL(σ) by
extending its definition with

(A, π) |=C φ > ψ ⇐⇒ for all initial objects (B, f) of (A, π) ↓φ C,
we have (B, f ◦ π) |=C ψ.

Since any two initial objects are isomorphic, this is equivalent to

(A, π) |=C φ > ψ ⇐⇒ either (A, π) ↓φ C has no initial objects,

or there is an initial (B, f) with (B, f ◦ π) |=C ψ.

This can be checked to validate the above example in rings:

Z |=Mod(R) 2 = 0 > ∀n(n = 0 ∨ n = 1).

As mentioned, however, it fails to pick out C in the example in fields: C is not
initial in (R, π) ↓φ C, because it has nontrivial automorphisms fixing R.

Theorem 5. The strict conditional is weaker than the counterfactual condi-
tional; i.e., for all φ, ψ ∈ CFOL(σ),

|= (φ J ψ)→ (φ > ψ).

The converse does not hold in general: there exist φ, ψ such that

6|= (φ > ψ)→ (φ J ψ).

Proof. The first claim follows immediately from Fact 2 and the definition of >.
The second claim follows from the counterexample in Z.

When reasoning counterfactually, we get some tools unsound for the strict
conditional that arise from the fact that the consequent of a counterfactual is
evaluated in at most one world (up to isomorphism).

Theorem 6. The counterfactual conditional satisfies a kind of law of excluded
middle: for all φ, ψ,

|= (φ > ψ) ∨ (φ > ¬ψ).

This immediately implies that

|= (φ 6> ψ)→ (φ > ¬ψ).

Proof. Consider any particular C, A, π; we show that (A, π) |=C (φ > ψ)∨ (φ >
¬ψ). If (A, π) ↓φ C has no initial objects, then this holds vacuously. If it does
have an initial object (B, f), then either (B, f ◦ π) |=C ψ or (B, f ◦ π) |=C ¬ψ;
in either case, we have our goal.

11



5 Universal Horn Formulas

Probably’d be a good idea to talk at some point about prior art on the ap-
plication of Horn formulas to counterfactual-y stuff.

We consider the case where C is the full category of models of some universal
Horn theory and the antecedent of > is logically equivalent to a universal Horn
formula; this case will turn out to have very good behavior.

Definition 5.1. A basic Horn formula is one of the form φ1 ∧ · · · ∧ φn → ψ,
where each φn is atomic and ψ is either atomic or ⊥. A Horn formula is a
prenex-normal formula whose matrix is a conjunction of basic Horn formulas.
A universal Horn theory is a theory whose axioms are all logically equivalent
to universal Horn formulas. We will frequently abuse the distinction between
Horn formulas and formulas logically equivalent to them.

Universal Horn theories include, for example, the theories of groups, unital
rings, preorders, and partial orders; but not, for example, the theories of fields
(an existential quantifier is needed for existence of multiplicative inverses) or
total orders (a disjunction is necessary to express totality).

In this setting, we will always have the initial models we want, as long as
the antecedent is possible.

Theorem 7. Let T be a universal Horn theory over σ, A a model of T , π a
variable assignment into A, and φ a universal Horn formula (not necessarily a
sentence) of FOL(σ). Then

(i) (A, π) ↓φ Mod(T ) has an initial object iff it is nonempty.

(ii) For any initial (B, f), f is surjective.

Proof. We will need a key fact about universal Horn theories.

Fact 3. Let T ′ be a universal Horn theory over a signature containing at least
one constant symbol. For any theory ∆ of atomic sentences, Mod(T ′ ∪∆) has
an initial object iff it is nonempty. Furthermore, every element of the initial
object will be the value of some closed term.

Proof. This is essentially a rephrasing of Theorem 3.8 in [5].

With this in hand, we will prove our result by giving a T ′,∆ satisfying these
conditions, and such that (A, π) ↓φ Mod(T ) is equivalent to Mod(T ′∪∆). Then
(i) follows immediately, and (ii) is easy: if (B, f) is initial, and b ∈ B, then Fact
3 says that there is some closed term t with tB = b, and then since f is a
homomorphism, f(tA) = tB = b.

Our T ′,∆ will be over the signature σ(A) given by extending σ with fresh
constant symbols ca for a ∈ A. Set T ′ to be T ∪ {φπ}, where φπ is the sentence
given by replacing each free variable x of φ with cπ(x), and set ∆ to be the
positive diagram of A—i.e., the σ(A)-theory comprising every atomic sentence
true in A (but not the negations of those that are false). Then by the assump- Wait that’s

not well-
typed
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tions on T and φ, and by the definition of the positive diagram, T ′,∆ satisfy
the conditions of Fact 3.

We now define an inverse pair of functors F : (A, π) ↓φ Mod(T )→ Mod(T ′∪
∆) and G : Mod(T ′ ∪∆)→ (A, π) ↓φ Mod(T ).

For an object (B, f : A→ B) of F ’s domain, define F (B, f) to be the σ(A)-
structure which expands B by interpreting each new constant symbol ca as f(a).
For a morphism ρ : (B, f) → (B, f ′) of F ’s domain, just set F (f) = f . For
an object B of G’s domain, define B to be the σ-structure given by removing

the interpretations of the cas from B, define f : A→ B by f(a) = cBa , and set

G(B) = (B, f). For a morphism f : B→ B
′

of G’s domain, just set G(f) = f .
These both trivially preserve identities and composition, and are easily seen to
be inverses of each other, so we just need to show that the constructions given
actually produce objects and morphisms of the codomains.

For F , we must show that F (B, f) really is a model of T ′ ∪ ∆, and that
F (f) will always be a homomorphism of σ(A)-structures. F (B, f) models T
because B was drawn from Mod(T ); it models φπ because (B, f ◦ π) |=C φ; and elaborate
it models ∆ because. . .

Invoke dia-
gram lemma
or some-
thing?

For G, we must show that. . .

Corollary 2. For universal Horn T and φ, and positive ψ,

|=Mod(T ) ψ → φ > ψ.

Proof. Suppose (A, π) |=Mod(T ) ψ. If (A, π) ↓φ Mod(T ) has no initial object,
then the result is vacuously true. If it does have one, call it (B, f); we want to
show that (B, f ◦ π) |=Mod(T ) ψ. Then this follows because f is surjective by
Theorem 7 and surjections preserve positive formulas by Fact 1.

If initial models may not exist, then φ > ψ can be vacuously true even
while φ J ¬ψ is non-vacuously true. The existence (when possible) of initial
models precludes this; a counterfactual statement is only vacuously true when
the corresponding strict conditional is.

Corollary 3. For universal Horn T and φ,

(φ > ⊥) ≡Mod(T ) (φ J ⊥),

and hence also (by negating both sides)

(φ 6> ⊥) ≡Mod(T ) ♦φ.

Proof. Consider any (A, π). On the left, (A, π) |=Mod(T ) φ J ⊥ iff (A, π) ↓φ
Mod(T ) is empty. On the right, (A, π) |=Mod(T ) φ > ⊥ iff (A, π) ↓φ Mod(T )
has no initial object. Theorem 7 says that these are equivalent.

Counterfactuals do coincide with strict conditionals for a limited class of
consequents, meaning that we can derive necessary consequence for certain kinds
of facts by considering them only in a minimally different case.
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Theorem 8. For universal Horn T and φ, and ψ logically equivalent to an
existential positive formula,

(φ > ψ) ≡Mod(T ) (φ J ψ).

Proof. The right-to-left direction is just Theorem 5. For the left-to-right direc-
tion, suppose that (A, π) |=Mod(T ) φ > ψ; we want (A, π) |=Mod(T ) φ J ψ. If
(A, π) ↓φ Mod(T ) is empty, then this holds vacuously. Otherwise, it has an
initial object (B, f), and by the assumption, (B, f ◦ π) |=Mod(T ) ψ. Using Fact
2, suppose that (B′, f ′) is another object; we want (B′, f ′ ◦π) |=Mod(T ) ψ. Since
(B, f) is initial, there is a morphism ρ : B → B′ of (A, π) ↓φ Mod(T ), which
by definition of the under category satisfies f ′ = ρ ◦ f . Then since ψ is logically
equivalent to an existential positive formula, Fact 1 tells us that ρ preserves it,
so (B′, ρ ◦ f ◦ π) |=Mod(T ) ψ, as desired.

We can formally state one kind of “minimal difference”.

Theorem 9. For universal Horn T and φ, and ψ logically equivalent to an
existential positive formula,

|=Mod(T ) (φ 6J ψ)→ (φ > ¬ψ).

Proof. Taking the contrapositive of the left-to-right direction of Theorem 8 gives
|=Mod(T ) (φ 6J ψ)→ (φ 6> ψ). Then we can compose this with Theorem 6.

Intuitively: if taking φ does not force us to take ψ, then ψ is false when only
φ is taken as a counterfactual.

. . .
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