Pno category

August 16, 2023

1

Pno is a category whose objects are triples of the form (A, α, a) , where A is a set

 α is a function $\alpha:A\to A$

and a is a particular, selected element.

The function α can be any function, it is not restricted in a particular way. The arrows in this category are functions:

 $f: (A, \alpha, a) \to (B, \beta, b)$

such that f(a) = b, and also that

 $f\circ\alpha=\beta\circ f.$

For some reason, it is that last equation that I found difficult and counterintuitive.

I believe I need more examples of such functions, to see this equation hold. Consider some function $f: A \to B$.

What kinds of functions f are such that $f \circ \alpha = \beta \circ f$?

I can understand this part algebraically:

Assume the existence of $f: (A, \alpha, a) \to (B, \beta, b)$ and $g: (B, \beta, b) \to (C, \gamma, c)$, such that:

f(a) = b g(b) = cand $f \circ \alpha = \beta \circ f$ $g \circ \beta = \gamma \circ g$ Consider $g \circ f$, their composition. g(f(a)) = g(b) = cso if $h = g \circ f$, h(a) = c. And $g \circ f \circ \alpha = g \circ \beta \circ f = \gamma \circ g \circ f$ So $h \circ \alpha = \gamma \circ h$ The element we have some to some Line

The algebra makes sense to me, I just feel like I don't intuitively understand the equation $f \circ \alpha = \beta \circ f$.

Are there some good concrete examples of functions satisfying this equation?