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Introduction. The subject matter of this paper is best explained by an
example, such as that of the relation between a vector space L and its "dual"

Presented to the Society, September 8, 1942; received by the editors May 15, 1945.

231

This content downloaded from 200.145.112.217 on Thu, 14 Nov 2024 12:30:00 UTC
All use subject to https://about.jstor.org/terms



232 SAMUEL EILENBERG AND SAUNDERS MAcLANE [September

or "conjugate" space T(L). Let L be a finite-dimensional real vector space,
while its conjugate T(L) is, as is custoiiary, the vector space of all real valued
linear functions t on L. Since this conjugate T(L) is in its turn a real vector
space with the same dimension as L, it is clear that L and T(L) are isomor-
phic. But such an isomorphism cannot be exhibited until one chooses a defi-
nite set of basis vectors for L, and furthermore the isomorphism which results
will differ for different choices of this basis.

For the iterated conjugate space T(T(L)), on the other hand, it is well
known that one can exhibit an isomorphism between L and T(T(L)) without
using any special basis in L. This exhibition of the isomorphism L T(T(L))
is "natural" in that it is given simultaneously for all finite-dimensional vector
spaces L.

This simultaneity can be further analyzed. Consider two finite-dimen-
sional vector spaces L1 and L2 and a linear transformation X1 of L1 into L2;
in symbols

(1) X1: L1-+L2.
This transformation X1 induces a corresponding linear transformation of the
second conjugate space T(L2) into the first one, T(L1). Specifically, since each
element t2 in the conjugate space T(L2) is itself a mapping, one has two trans-
formations

L X L2 R;
their product t2X1 is thus a linear transformation of L1 into R, hence an element
t1 in the conjugate space T(L1). We call this correspondence of t2 to t1 the
mapping T(X1) induced by Xi; thus T(X1) is defined by setting [T(X1) ]t2 =t2X1,
so that

(2) T(Xi): T(L2) -+ T(L1).
In particular, this induced transformation T(X1) is simply the identity when
X1 is given as the identity transformation of L1 into L1. Furthermore the
transformation induced by a product of X's is the product of the separately
induced transformations, for if X1 maps L1 into L2 while X2 maps L2 into L3,
the definition of T(X) shows that

T(X2X1) = T(X1)T(X2).

The process of forming the conjugate space thus actually involves two differ-
ent operations or functions. The first associates with each space L its con-
jugate space T(L); the second associates with each linear transformation X
between vector spaces its induced linear transformation T(X)(1).

(1) The two different functions T(L) and T(X) may be safely denoted by the same letter T
because their arguments L and X are always typographically distinct.
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1945] GENERAL THEORY OF NATURAL EQUIVALENCES 233

A discussion of the "simultaneoils" or "natural" character of the iso-
morphism L_T(T(L)) clearly involves a simultaneous consideration of all
spaces L and all transformations X connecting them; this entails a simultane-
ous consideration of the conjugate spaces T(L) and the, induced transforma-
tions T(X) connecting them. Both functions T(L) and T(X) are thus involved;
we regard them as the component parts of what we call a "functor" T. Since
the induced mapping T(X1) of (2) reverses the direction of the original Xi
of (1), this functor T will be called "contravariant."

The simultaneous isomorphisms

r(L): L >~ T(T(L))

compare two covariant functors; the first is the identity functor I, composed
of the two functions

1(L) = L, I(X) = W

the second is the iterated conjugate functor T2, with components

T2(L) = T(T(L)), T2(X) = T(T(X)).

For each L, r(L) is constructed as follows. Each vector xCL and each func-
tional tET(L) determine a real number t(x). If in this expression x is fixed
while t varies, we obtain a linear transformation of T(L) into R, hence an
element y in the double conjugate space T2(L). This mapping r(L) of x to y
may also be defined formally by setting [[i-(L)]x]t=t(x).

The connections between these isomorphisms r(L) and the transforma-
tions X: L1-+L2 may be displayed thus:

7r(Li) 2L1- r() T2(L1)
I(X) } T2(X)

I z7(L2) 2L2 --E T (L2)
The statement that the two possible paths from L1 to T2(L2) in this diagram
are in effect identical is what we shall call the "naturality" or "simultaneity"
condition for t; explicitly, it reads

(3) r(L2)I(X) - T2(X)r(Li).
This equality can be verified from the above definitions of t(L) and T(X) by
straightforward substitution. A function t satisfying this "naturality" condi-
tion will be called a "natural equivalence" of the functors I and T2.

On the other hand, the isomorphism of L to its conjugate space T(L) is a
comparison of the covariant functor I with the contravariant functor T. Sup-
pose that we are given simultaneous isomorphisms
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234 SAMUEL EILENBERG AND SAUNDERS MAcLANE [September

en(L): L:r-?T(L)

for each L. For each linear transformation X: L1-+L2 we then have a diagram

L, - aT(LO) > T(L1)

1(X) { ~L2) { T(X)
L2 - a(LT(L2)

The only "naturality" condition read from this diagram is o(L1) = T(X)o-(L2)X.
Since o-(L1) is an isomorphism, this condition certainly cannot hold unless X
is an isomorphism of L1 into L2. Even in the more restricted case in which
L2- L1,=L is a single space, there can be no isomorphism u: L-+T(L) which
satisfies this naturality condition o- = T(X)o-X for every nonsingular linear
transformation X(2). Consequently, with our definition of T(X), there is no
"natural" isomorphism between the functors I and T, even in a very restricted
special case.

Such a consideration of vector spaces and their linear transformations is
but one example of many similar mathematical situations; for instance, we
may deal with groups and their homomorphisms, with topological spaces
and their continuous mappings, with simplicial complexes and their simplicial
transformations, with ordered sets and their order preserving transforma-
tions. In order to deal in a general way with such situations, we introduce
the concept of a category. Thus a category 2f will consist of abstract elements
of two types: the objects A (for example, vector spaces, groups) and the
mappings a (for example, linear transformations, homomorphisms). For some
pairs of mappings in the category there is defined a product (in the examples,
the product is the usual composite of two transformations). Certain of these
mappings act as identities with respect to this product, and there is a one-to-
one correspondence between the objects of the category and these identities.
A category is subject to certain simple axioms, so formulated as to include all
examples of the character described above.

Some of the mappings a of a category will have a formal inverse mapping
in the category; such a mapping a is called an equivalence. In the examples
quoted the equivalences turn out to be, respectively, the isomorphisms for
vector spaces, the homeomorphisms for topological spaces, the isomorphisms
for groups and for complexes, and so on.

Most of the standard constructions of a new mathematical object from
given objects (such as the construction of the direct product of two groups,

(2) For suppose a had this property. Then (x, y) = [(x) ]y is a nonsingular bilinear form
(not necessarily symmetric) in the vectors x, y of L, and we would have, for every X, (x, y)
= [O(x) ](y) = [T(X)oXx]y= [rxx]xy= (Xx, Xy), so that the bilinear form is left invariant by every
nonsingular linear transformation X. This is clearly impossible.
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1945] GENERAL THEORY OF NATURAL EQUIVALENCES 235

the homology group of a complex, the Galois group of a field) furnish a func-
tion T(A, B, * ) = C which assigns to given objects A, B, * * * in definite
categories X, Q3, * a new object C in a category C. As in the special case
of the conjugate T(L) of a linear space, where there is a corresponding in-
duced mapping T(X), we usually find that mappings a, /3, in the cate-
gories 9I, Q3, * * * also induce a definite mapping T(a, =i, * )=y in the
category (S, properly acting on the object T(A, B, * * * ).

These examples suggest the general concept of a functor T on categories
I, Q3, . to a category L, defined-as an appropriate pair of functions
T(A, B, * * ), T(a, 3, * * * ). Such a functor may well be covariant in some
of its arguments, contravariant in the others. The theory of categories and
functors, with a few of the illustrations, constitutes Chapter I.

The natural isomorphism L->T2(L) is but one example of many natural
equivalences occurring in mathematics. For instance, the isomorphism of a
locally compact abelian group with its twice iterated character group, most
of the general isomorphisms in group theory and in the homology theory of
complexes and spaces, as well as many equivalences in set theory in general
topology satisfy a naturality condition resembling (3). In Chapter II, we pro-
vide a general definition of equivalence between functors which includes these
cases. A more general notion of a transformation of one functor into another
provides a means of comparing functors which may not be equivalent. The
general concepts are illustrated by several fairly elementary examples of
equivalences and transformations for topological spaces, groups, and Banach
spaces.

The third chapter deals especially with groups. In the category of groups
the concept of a subgroup establishes a natural partial order for the objects
(groups) of the category. For a functor whose values are in the category of
groups there is an induced partial order. The formation of a quotient group
has as analogue the construction of the quotient functor of a given functor by
any normal subfunctor. In the uses of group theory, most groups constructed
are obtained as quotient groups of other groups; consequently the operation
of building a quotient functor is directly helpful in the representation of such
group constructions by functors. The first and second isomorphism theorems
of group theory are then formulated for functors; incidentally, this is used to
show that these isomorphisms are "natural." The latter part of the chapter
establishes the naturality of various known isomorphisms and homomor-
phisms in group theory(3).

The fourth chapter starts with a discussion of functors on the category
of partially ordered sets, and continues with the discussion of limits of direct
and inverse systems of groups, which form the chief topic of this chapter.

(3) A brief discussion of this case and of the general theory of functors in the case of groups
is given in the authors' note, Natural isomorphisms in group theory, Proc. Nat. Acad. Sci. U.S.A.
vol. 28 (1942) pp. 537-543.
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236 SAMUEL EILENBERG AND SAUNDERS MAcLANE [September

After suitable categories are introduced, the operations of forming direct and
inverse limits of systems of groups are described as functors.

In the fifth chapter we establish the homology and cohomology groups of
complexes and spaces as functors and show the naturality of va.rious known
isomorphisms of topology, especially those which arise in duality theorems.
The treatment of the Cech homology theory utilizes the categories of direct
and inverse systems, as discussed in Chapter IV.

The introduction of this study of naturality is justified, in our opinion,
both by its technical and by its conceptual advantages.

In the technical sense, it provides the exact hypotheses necessary to apply
to both sides of an isomorphism a passage to the limit, in the sense of direct
or inverse limits for groups, rings or spaces(4). Indeed, our naturality condi-
tion is part of the standard isomorphism condition for two direct or two in-
verse svsterns(5).

The study of functors also provides a technical background for the intui-
tive notion of naturality and makes it possible to verify by straightforward
computation the naturality of an isomorphism or of an equivalence in all those
cases where it has been intuitively recognized that the isomorphisms are in-
deed "natural." In many cases (for example, as in the above isomorphism of L
to T(L)) we can also assert that certain known isomorphisms are in fact "un-
natural," relative to the class of mappings considered.

In a metamathematical sense our theory provides general concepts ap-
plicable to all branches of abstract mathematics, and so contributes to the
current trend towards uniform treatment of different mathematical disci-
plines. In particular, it provides opportunities for the comparison of construc-
tions and of the isomorphisms occurring in different branches of mathematics;
in this way it may occasionally suggest new results by analogy.

The theory also emphasizes that, whenever new abstract objects are con-
structed in a specified way out of given ones, it is advisable to regard the con-
struction of the corresponding induced mappings on these new objects as an
integral part of their definition. The pursuit of this program entails a simul-
taneous consideration of objects and their mappings (in our terminology, this
means the consideration not of individual objects but of categories). This
emphasis on the specification of the type of mappings employed gives more
insight into the degree of invariance of the various concepts involved. For
instance, we show in Chapter III, ?16, that the concept of the commutator
subgroup of a group is in a sense a more invariant one than that of the center,

(4) Such limiting processes are essential in the transition from the homology theory of com-
plexes to that of spaces. Indeed, the general theory developed here occurred to the authors as a
result of the study of the admissibility of such a passage in a relatively involved theorem in
homology theory (Eilenberg and MacLane, Group extensions and homology, Ann. of Math.
vol. 43 (1942) pp. 757-831, especially, p. 777 and p. 815).

(5) H. Freudenthal, Entwickelung von Raumen und ihren Gruppen, Compositio Math. vol. 4
(1937) pp. 145-234.
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19451 GENERAL THEORY OF NATURAL EQUIVALENCES 237

which in its turn is more invariant than the concept of the automorphism
group of a group, even though in the classical sense all three concepts are
invariant.

The invariant character of a mathematical discipline can be formulated
in these terms. Thus, in group theory all the basic constructions can be re-
garded as the definitions of co- or contravariant functors, so we may formu-
late the dictum: The subject of group theory is essentially the study of those
constructions of groups which behave in a covariant or contravariant manner
under induced homomorphisms. More precisely, group theory studies func-
tors defined on well specified categories of groups, with values in another such
category.

This may be regarded as a continuation of the Klein Erlanger Programm,
in the sense that a geometrical space with its group of transformations is
generalized to a category with its algebra of mappings.

CHAPTER I. CATEGORIES AND FUNCTORS

1. Definition of categories. These investigations will deal with aggregates
such as a class of groups together with a class of homomorphisms, each of
which maps one of the groups into another one, or such as a class of topologi-
cal spaces together with all their continuous mappings, one into another.
Consequently we introduce a notion of "category" which will embody the
common formal properties of such aggregates.

From the examples "groups plus homomorphisms" or "spaces plus con-
tinuous mappings" we are led to the following definition. A category
= {A, a } is an aggregate of abstract elements A (for example, groups),
called the objects of the category, and abstract elements a (for example, homo-
morphisms), called mappings of the category. Certain pairs of tnappings
ali, a2cI determine uniquely a product mapping a =a2a,1G, subject to the
axioms C1, C2, C3 below. Corresponding to each object A C I there is a
unique mapping, denoted by eA or by e(A), and subject to the axioms C4
and C5. The axioms are:

Cl. The triple product a3(a2al) is defined if and only if (a3a2)al is defined.
When either is defined, the associative law

a3(a2al) = (-3a2)al

holds. This triple product will be written as a3a2ai.

C2. The triple product a3a2al is defined whenever both products a3a2 and a2al
are defined.

DEFINITION. A mapping eC2( will be called an identity of 21 if and only if
the existence of any product ea or je implies that ea = a and 3e = 3.

C3. For each mapping ae2f there is at least one identity e1GCf such that ae,
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238 SAMUEL EILENBERG AND SAUNDERS MAcLANE [September

is defined, and at least one identity e2GC such that e2cx is defined.

C4. The mapping eA corresponding to each object A is an identity.

C5. For each identity e of 2I there is a unique object A of 2I such that eA= e.

These two axioms assert that the rule A -eeA provides a one-to-one corre-
spondence between the set of all objects of the category and the set of all its
identities. It is thus clear that the objects play a secondary role, and could
be entirely omitted from the definition of a category. However, the manipu-
lation of the applications would be slightly less convenient were this done.

LEMMA 1.1. For each mapping aG21 there is exactly one object Al with the
product ae(Al) defined, and exactly one A2 with e(A2)a defined.

The objects A1, A2 will be called the domain and the range of a, respec-
tively. We also say that a acts on A1 to A2, and write

a: A1 -A2 in Wf.

Proof. Suppose that ae(Al) and ae(Bl) are both defined. By the proper-
ties of an identity, ae(Al) =a, so that axioms Cl and C2 insure that the prod-
uct e(A1)e(Bl) is defined. Since both are identities, e(A1) =e(A1)e(Bl) =e(Bl),
and consequently A1=B1. The uniqueness of A2 is similarly established.

LEMMA 1.2. The product a2al is defined if and only if the range of a, is the
domain of a2. In other words, a2al is defined if and only if a1:A1->A2 and
a2: A2- A 3. In that case a2a1: A 1--A3.

Proof. Let a,:A1->A2. The product e(A2)al is then defined and e(A2)al =a,.
Consequently a2al is defined if and only if a2e(A2)al is defined. By axioms C2
and Cl this will hold precisely when a2e(A2) is defined. Consequently a2al
is defined if and only if A2 is the domain of a2 SO that a2:A2->A3. To prove
that a2a,:A1-*A3 note that since axle(Ai) and e(A3)a2 are defined the products
(a2a,)e(Al) and e(A3)(a2a,) are defined.

LEMMA 1.3. If A is an object, eA:A- *A.

Proof. If we assume that e(A):Ai-*A2 then e(A)e(Al) and e(A2)e(A) are
defined. Since they are all identities it follows that e(A) =e(Ai) =e(A2) and
A =A1 =A2.

A "left identity" ,B is a mapping such that 1Oa =a whenever fOa is defined.
Axiom C3 shows that every left identity is an identity. Similarly each right
identity is an identity. Furthermore, the product eel of two identities is de-
fined if and only if e=el.

If dry is defined and is an identity, ,B is called a left inverse of y, y a right
inverse of ,B. A mapping a is called an equivalence of 21 if it has in 2t at least one
left inverse and at least one right inverse.
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1945] GENERAL THEORY OF NATURAL EQUIVALENCES 239

LEMMA 1.4. An equivalence a has exactly one left inverse and exactly one
right inverse. These inverses are equal, so that the (unique) inverse may be de-
noted by c-'.

Proof. It suffices to show that any left inverse f of a equals any right
inverse -y. Since 3a and a-y are both defined, fay is defined, by axiom C2. But
3a and a-y are identities, so that A =f3(ay) = (fa)'y =y, as asserted.

For equivalences a, f one easily proves that a-' and a: (if defined) are
equivalences, and that

(a-')-1 = a, (a3)-, = 0-1a-1

Every identity e is an equivalence, with e- = e.
Two objects A,, A2 are called equivalent if there is an equivalence a such

that a:A1-*A2. The relation of equivalence between objects is reflexive, sym-
metric and transitive.

2. Examples of categories. In the construction of examples, it is conven-
ient to use the concept of a subcategory. A subaggregate 2[o of 2t will be called
a subcategory if the following conditions hold:

10. If a,, a2z {o and a2a, is defined in 2{, then a2a,C2Eo.
20. If A E(o, then eA C2o0
30. If a:A,-*A2 in 2{ with aCe(o, then Al, A2C2f.

Condition 10 insures that 2[o is "closed" with respect to multiplication
in 2{; from conditions 20 and 30 it then follows that Wo is itself a category.
The intersection of any number of subcategories of 2W is again a subcategory
of W. Note, however, that an equivalence aC2(o of W need not remain an
equivalence in a subcategory 2to, because the inverse a-' may not be in Wo.

For example, if 2W is any category, the aggregate We of all the objects and
all the equivalences of St is a subcategory of W. Also if 2t is a category and S a
subclass of its objects, the aggregate %[ consisting of all objects of S and al.l
mappings of 2t with both range and domain in S is a subcategory. In fact,
every subcategory of W can be obtained in two steps: first, form a subcate-
gory Es; second, extract from 2!L a subaggregate, consisting of all the objects
of 2f8 and a set of mappings of W. which contains all identities and is closed
under multiplication.

The category 25 of all sets has as its objects all sets S(6). A mapping a'
of (E is determined by a pair of sets Si and S2 and a many-one correspondence
between Si and a subset of S2, which assigns to each xCS, a corresponding
element aX CS2; we then write o: Si-S2. (Note that any deletion of elements
from S or S2 changes the mapping ar.) The product of 0o2 S2 -83 and al: Si52
is defined if and only if S21 = S2; this product then maps Si into S3 by the usual

(6) This category obviously leads to the paradoxes of set theory. A detailed discussion of
this aspect of categories appears in ?6, below.
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240 SAMUEL EILENBERG AND SAUNDERS MAcLANE [September

composite correspondence (020a1)X = aT2(01X) for each x CS,('). The mapping es
corresponding to the set S is the identity mapping of S onto itself, with
esx=x for xCS. The axioms Cl through C5 are clearly satisfied. An equiva-
lence o: Sl--S2 is simply a one-to-one mapping of Si onto S2.

Subcategories of ( include the category of all finite sets S, with all their
mappings as before. For any cardinal number M there are two similar cate-
gories, consisting of all sets S of power less than m (or, of power less than or
equal to m), together with all their mappings. Subcategories of 2i can also
be obtained by restricting the mappings; for instance we may require that
each o- is a mapping of S1 onto S2, or that each o is a one-to-one mapping of Si
into a subset of S2.

The category X of all topological spaces has as its objects all topological
spaces X and as its mappings all continuous transformations t: X1-*X2 of a
space X1 into a space X2. The composition 4241 and the identity ex are both
defined as before. An equivalence in X is a homeomorphism (=topological
equivalence).

Various subcategories of X can again be obtained by restricting the type
of topological space to be considered, or by restricting the mappings, say to
open mappings or to closed mappings(8).

In particular, e can be regarded as a subcategory of X, namely, as that
subcategory consisting of all spaces with a discrete topology.

The category 5 of all topological groups(9) has as its objects all topological
groups G and as its mappings y all those many-one correspondences of a
group G1 into a group G2 which are homomorphisms(10). The composition
and the identities are defined as in 5. An equivalence ry: G1-*G2 in 65 turns out
to be a one-to-one (bicontinuous) isomorphism of G1 to G2.

Subcategories of (M can be obtained by restricting the groups (discrete,
abelian, regular, compact, and so on) or by restricting the homomorphisms
(open homomorphisms, homomorphisms "onto," and so on).

The category e3 of all Banach spaces is similar; its objects are the Banach
spaces B, its mappings all linear transformations , of norm at most 1 of one
Banach space into another("). Its equivalences are the equivalences between
two Banach spaces (that is, one-to-one linear transformations which preserve

(7) This formal associative law allows us to write 0201X without fear of ambiguity. In more
complicated formulas, parentheses will be inserted to make the components stand out.

(8) A mapping t: Xl- X2 iS open (closed) if the image under t of every open (closed) subset
of X is open (closed) in X2.

(9) A topological group G is a group which is also a topological space in which the group
composition and the group inverse are continuous functions (no separation axioms are assumed
on the space). If, in addition, G is a Hausdorff space, then all the separation axioms up to and
including regularity are satisfied, so that we call G a regular topological group.

(10) By a homomorphism we always understand a continuous homomorphism.
(11) For each linear transformation D of the Banach space B1 into B2, the norm fli3j is defined

as the least upper bound IIobI|, for all bEB, with ||b|| = 1.
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1945] GENERAL THEORY OF NATURAL EQUIVALENCES 241

the norm). The assumption above that the mappings of the category Z all
have norm at most 1 is necessary in order to insure that the equivalences in e
actually preserve the norm. If one admits arbitrary linear transformations as
mappings of the category, one obtains a larger category in which the equiva-
lences are the isomorphisms (that is, one-to-one linear transformations)('2).

For quick reference, we sometimes describe a category by specifying only
the object involved (for example, the category of all discrete groups). In such
a case, we imply that the mappings of this category are to be all mappings
appropriate to the objects in question (for example, all homomorphisms).

3. Functors in two arguments. For simplicity we define only the concept
of a functor covariant in one argument and contravariant in another. The
generalization to any number of arguments of each type will be immediate.

Let 2{, Z, and C be three categories. Let T(A, B) be an object-function
which associates with each pair of objects A ES, B CZ an object T(A, B) = C
in C, and let T(a, [) be a mapping-function which associates with each pair
of mappings ae2f, OCZ a mapping T(a, f) =,yCA. For these functions we
formulate certain conditions already indicated in the example in the introduc-
tion.

DEFINITION. The object-function T(A, B) and the mapping-function
T(a, 1) form a functor T, covariant in 2t and contravariant in 53, with values
in (S, if

(3.1) T(eA, eB) = eT(A,B),
if, whenever a:A1-?A2 in 2t and fl:B1->B2 in Q,

(3.2) T(a, A): T(A1, B2)- T(A2, B1),
and if, whenever aga,C2t and 320103,

(3.3) T(ai2ai, 32131) = T(a2, f,%)T(ai, p2).
Condition (3.2) guarantees the existence of the product of mappings appear-
ing on the right in (3.3).

The formulas (3.2) and (3.3) display the distinction between co- and con-
travariance. The mapping T(a, O) = y induced by a and 3 acts from T(A1, -)
to T(A2, -); that is, in the same direction as does a, hence the covariance
of T in the argument 21. The induced mapping T(a, O) at the same time oper-
ates in the direction opposite from that of ,B; thus it is contravariant in Q3.
Essentially the same shift in direction is indicated by the orders of the fac-
tors in formula (3.3) (the covariant a's appear in the same order on both
sides; the contravariant O's appear in one order on the left and in the opposite
order on the right). With this observation, the requisite formulas for functors
in more arguments can be set down.

According to this definition, the functor T is composed of an object func-

(12) S. Banach, Thkorie des operations liniaires, Warsaw, 1932, p. 180.
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tion and a mapping function. The latter is the more important of the two;
in fact, the condition (3.1) means that it determines the object function and
therefore the whole functor, as stated in the following theorem.

THEOREM 3.1. A function T(a, f) which associates to each pair of mappings
a and A in the respective categories XI, Q3 a mapping T(a, 1G) -y in a third cate-
gory E is the mapping function of a functor T covariant in W and contravariant
in 93 if and only if the Jollowing two conditions hold:

(i) T(eA, eB) is an identity mapping in E for all identities eA, eB of I and Q8.
(ii) Whenever a2aE1 E and /201 E, then T(a2, 03) T(ai, 32) is defined and

satisfies the equation

(3.4) T(a2ai, 1211) = T(a2, 31)T(ai, (2).
If T(a, 13) satisfies (i) and (ii), the corresponding functor T is uniquely deter-
mined, with an object function T(A, B) given by the formula

(3.5) eT(A,B) = T(eA, eB).
Proof. The necessity of (i) and (ii) and the second half of the theorem are

obvious.
Conversely, let T(a, j3) satisfy conditions (i) and (ii). Condition (i) means

that an object function T(A, B.) can be defined by (3.5). We must show that
if a:A1--A2 and O:B1-*B2, then (3.2) holds. Since e(A2)a and 3e(B1) are de-
fined, the product T(e(A2), e(B1)) T(a, 13) is defined; for similar reasons the
product T(a, 3) T(e(A1), e(B2)) is defined.

In virtue of the definition (3.5), the products

e (T (A 2, B 1)) T (a, A), T(ae, ,B)e(T(Al1, B2))

are defined. This implies (3.2).
In any functor, the replacement of the arguments A, B by equivalent

arguments A', B' will replace the value T(A, B) by an equivalent value
T(A', B'). This fact may be alternatively stated as follows:

THEOREM 3.2. If T is a functor on 2f, e3 to C, and if aCe: and (3Cd are
equivalences, then T(ax, ,3) is an equivalence in S, with the inverse T(ax, f3)'
- T(C-1, (-1).

For the proof we assume that T is covariant in 2 and contravariant in Q3.
The products aa-1 and a-la are then identities, and the definition of a functor
shows that

T(a, ,)T(a-1, ,-1) = T(aa'-1, 3-1), T(a-1, #-')T(a, ,B) = T(a-1a, iY -1).

By condition (3.1), the terms on the right are both identities, which means
that T(a-1, A-1) is an inverse for T(a, ,B), as asserted.

4. Examples of functors. The same object function may appear in various
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functors, as is shown by the following example of one covariant and one con-
travariant functor both with the same object function. In the category e of
all sets, the "power" functors P+ and P- have the object function

P+(S) = P-(S) = the set of all subsets of S.

For any many-one correspondence a: S1-S2 the respective mapping functions
are defined for any subset A1CS (or A2CS2) as("3)

P+(o)Al = oA1, P-(ou)A2 =o-A2.

It is immediate that P+ is a covariant functor and P- a contravariant one.
The cartesian product XX Y of two topological spaces is the object func-

tion of a functor of two covariant variables X and Y in the category X of all
topological spaces. For continuous transformations t:XX1-*X2 and -0: Y1-? Y2
the corresponding mapping function (X71 is defined for any point (xi, yi) in
the cartesian product Xi X Yi as

t X X(X1, y1) = ({X1, t7yI).
One verifies that

t X 1: X1 X Y1 - X2 X Y2,

that t X 7q is the identity mapping of Xi X Yi into itself when t and -q are both
identities, and that

(4241) X (X02X1) = (62 X ?12)(4l X 771)

whenever the products t221 and 712711 are defined. In virtue of these facts, the
functions X X Y and ( X 7 constitute a covariant functor of two variables on
the category X.

The direct product of two groups is treated in exactly similar fashion;
it gives a functor with the set function G XH and the mapping function yX71,
defined for y: G1i-G2 and -q: H1-1H2 exactly as was t X -q. The same applies to
the category e of Banach spaces, provided one fixes one of the usual possible
definite procedures of norming the cartesian product of two Banach spaces.

For a topological space Y and a locally compact ( = locally bicompact)
Hausdorff space X one may construct the space Yx of all continuous map-
pingsf of the whole space X into Y (fxC Y for xEX). A topology is assigned
to Yx as follows. Let C be any compact subset of X, U any open set in Y.
Then the set [C, U] of all fE Yx with fCC U is an open set in Yx, and the
most general open set in Yx is any union of finite intersections [C1, U1]
n ... N'Cc, Uj.

This space Yx may be regarded as the object function of a suitable func-
tor, Map (X, Y). To construct a suitable mapping function, consider any

(13) Here aAl is the set of all elements of S2 of the form ox for xEAi, while c-1A2 consists
of all elements xE S, with crxG A2. When a- is an equivalence, with an inverse , rA2 =-lA2,
so that no ambiguity as to the meaning of c-1 can arise.
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continuous transformations t: X1-*X2, -q: Yi-* Y2. For each fE YX2, one then
has mappings acting thus:

eX1 X2 y1 Y2-
so that one may derive a continuous transformation -qft of Yx1. This corre-
spondencef-71ft may be shown to be a continuous mapping of yx2 into Yx.
Hence we may define object and mapping functions "Map" by setting,

(4.1) Map (X, y) = Yx, [Map (V , 77) f = lqft.
The construction shows that

Map (Q, -): Map (X2, Y1) -* Map (X1, Y2),

and hence suggests that this functor is contravariant in X and covariant in Y.
One observes at once that Map (Q, n) is an identity when both t and 71 are
identities. Furthermore, if the products 4241 and IW71 are defined, the definition
of "Map" gives first,

[Map (Q21, 712711) If = 21271f21 = 772(Mf62)1,

and second,

Map (Q1,72) Map (Q2, nl)f = [Map (t1, 12) ]71qft2 = lq2(771ft2)%1

Consequently

Map (%241, 712711) = Map 1, 72) Map (Q2, 711),

which completes the verification that "Map," defined as in (4.1), is a functor
on XI, X to X, contravariant in the first variable, covariant in the second,
where Xi,, denotes the subcategory of I defined by the locally compact Haus-
dorff spaces.

For abelian groups there is a similar functor "Hom." Specifically, let G
be a locally compact regular topological group, H a topological abelian groupr.
We construct the set Hom (G, H) of all (continuous) homomorphisms 4 of G
into H. The sum of two such homomorphisms 41 and 4)2 is defined by setting
(4)1+4)2)g =01g+4)2g, for each gEG(14); this sum is itself a homomorphism be-
cause H is abelian.

Under this addition, Hom (G, H) is an abelian group. It is topologized
by the family of neighborhoods [C, U] of zero defined as follows. Given C,
any compact subset of G, and U, any open set in H containing the zero of H,
[C; U] consists of all 4)CHom (G, H) with q5CC U. With these definitions,
Hom (G, H) is a topological group. If H has a neighborhood of the identity
containing no subgroup but the trivial one, one may prove that Hom (G, H)
is locally compact.

(14) The group operation in G, H, and so on, will be written as addition.
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This function of groups is the object function of a functor "Hom." For
given y: G1 -G2 and q: H1->H2 the mapping function is defined by setting

(4.2) [Hom (y, v) ]o = nofy
for each 4CHom (G2, H1). Formally, this definition is exactly like (4.1). One
may show that this definition (4.2) does yield a continuous homomorphism

Hom (y, v) :Hom (G2, H1) -* Hom (G1, H2).

As in the previous case, Hom is a functor with values in the category (Ma of
abelian groups, defined for arguments in two appropriate subcategories of (M,
contravariant in the first argument, G, and covariant in the second, H.

For Banach spaces there is a similar functor. If B and C are two Banach
spaces, let Lin (B, C) denote the Banach space of all linear transformations X
of B into C, with the usual definition of the norm of the transformation. To
describe the corresponding mapping function, consider any linear transforma-
tions f:B1->B2 and -y:C1--C2 with I|j||?1 and j!yj 1, and set, for each
XCLin (B2, C1),

(4.3) [Lin (,, y) ]X = y),O.
This is in fact a linear transformation

Lin (,, 'y) :Lin (B2, C1) -+ Lin (BI, C2)

of norm at most 1. As in the previous cases, Lin is a functor on 3, e to Q8,
contravariant in its first argument and covariant in the second.

In case C is fixed to be the Banach space R of all real numbers with the
absolute value as norm, Lin (B, C) is just the Banach space conjugate to B,
in the usual sense. This leads at once to the functor

Conj (B) Lin (B, R), Conj (,) = Lin (3, eR).

This is a contravariant functor on Q3 to Q3.
Another example of a functor on groups is the tensor product G o H of two

abelian groups. This functor has been discussed in more detail in our Proceed-
ings note cited above.

5. Slicing of functors. The last example involved the process of holding
one of the arguments of a functor constant. This process occurs elsewhere
(for example, in the character group theory, Chapter III below), and falls at
once under the following theorem.

THEOREM 5.1. If T is a functor covariant in X, contravariant in Q3, with
values in C, then for each fixed B G93 the definitions

S(A) = T(A, B), S((a) = T (a, eB)

yield a functor S on 2[ to G with the same variance (in 21) as T.
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This "slicing" of a functor may be partially inverted, in that the functor T
is determined by its object function and its two "sliced" mapping functions,
in the following sense.

THEOREM 5.2. Let X, Q0, S be three categories and T(A, B), T(a, B),
T(A, 3) three functions such that for each fixed B ?Q0 the functions T(A, B),
T(ax, B) form a covariant functor on f to C, while for each A G? the functions
T(A, B) and T(A, 3) give a contravariant functor on IO to S. If in addition for
each a::A1 -A2 in a and f:B1->B2 in e0 we have

(S.1) T(A2, 3)T(a, B2) = T (a, B1)T(A1, j),
then the functions T(A, B) and

(5.2) T (a, ,3) = T(a, B1) T(A1, $)
form a functor covariant in X1, contravariant in 53, with values in (E.

Proof. The condition (5.1) merely states the equivalence of the two paths
about the following square:

T(A B2) T(a, B2) T(A2, B2)

T(A1, ) T(A2,9)
T(A1, B1) T(c, T (A2, Bi)

The result of either path is then taken in (5.2) to define the mapping function,
which then certainly satisfies conditions (3.1) and (3.2) of the definition of a
functor, The proof of the basic product condition (3.3) is best visualized by
writing out a 3 X3 array of values T(A , B,).

The significance of this theorem is essentially this: in verifying that given
object and mapping functions do yield a functor, one may replace the veri-
fication of the product condition (3.3) in two variables by a separate verifica-
tion, one variable at a time, provided one also proves that the order of
application of these one-variable mappings can be interchanged (condition
(5.1)).

6. Foundations. We remarked in ?3 that such examples as the "category
of all sets," the "category of all groups" are illegitimate. The difficulties and
antinomies here involved are exactly those of ordinary intuitive Mengenlehre;
no essentially new paradoxes are apparently involved. Any rigorous founda-
tion capable of supporting the ordinary theory of classes would equally well
support our theory. Hence we have chosen to adopt the intuitive standpoint,
leaving the reader free to insert whatever type of logical foundation (or ab-
sence thereof) he may prefer. These ideas will now be illustrated, with particu-
lar reference to the category of groups.
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It should be observed first that the whole concept of a category is essen-
tially an auxiliary one; our basic concepts are essentially those of a functor
and of a natural transformation (the latter is defined in the next chapter).
The idea of a category is required only by the precept that every function
should have a definite class as domain and a definite class as range, for the
categories are provided as the domains and ranges of functors. Thus one
could drop the category concept altogether and adopt an even more intuitive
standpoint, in which a functor such as "Homr" is not defined over the category
of "all" groups, but for each particular pair of groups which may be given.
The standpoint would suffice for the applications, inasmuch as none of our
developments will involve elaborate constructions on the categories them-
selves.

For a more careful treatment, we may regard a group G as a pair, consist-
ing of a set Go and a ternary relation g h = k on this set, subject to the usual
axioms of group theory. This makes explicit the usual tacit assumption that
a group is not just the set of its elements (two groups can have the same ele-
ments, yet different operations). If a pair is constructed in the usual manner
as a certain class, this means that each subcategory of the category of "all"
groups is a class of pairs; each pair being a class of groups with a class of
mappings (binary relations). Any given system of foundations will then legiti-
mize those subcategories which are allowable classes in the system in question.

Perhaps the simplest precise device would be to speak not of the category
of groups, but of a category of groups (meaning, any legitimate such cate-
gory). A functor such as "Hom" is then a functor which can be defined for any
two suitable categories of groups, (M and .S. Its values lie in a third category
of groups, which will in general include groups in neither 5 nor ,. This pro-
cedure has the advantage of precision, the disadvantage of a multiplicity of
categories and of functors. This multiplicity would be embarrassing in the
study of composite functors (?9 below).

One might choose to adopt the (unramified) theory of types as a founda-
tion for the theory of classes. One then can speak of the category 05m of all
abelian groups of type m. The functor "Hom" could then have both argu-
ments in 0,m while its values would be in the same category .5m+, of groups of
higher type m+k. This procedure affects each functor with the same sort of
typical ambiguity adhering to the arithmetical concepts in the Whitehead-
Russell development. Isomorphism between groups of different types would
have to be considered, as in the simple isomorphism Hom (a, G)_G (see ?10);
this would somewhat complicate the natural isomorphisms treated below.

One can also choose a set of axioms for classes as in the Fraenkel-von
Neumann-Bernays system. A category is then any (legitimate) class in the
sense of this axiomatics. Another device would be that of restricting the cardi-
nal number, considering the category of all denumerable groups, of all groups
of cardinal at most the cardinal of the continuum, and so on. The subsequent
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developments may be suitably interpreted u-nder any one of these viewpoints.

CHAPTER II. NATURAL EQUIVALENCE OF FUNCTORS

7. Transformations of functors. Let T and S be two functors on Xf, eb
to (5 which are concordant; that is, which have the same variance in 2f and the
same variance in Q3. To be specific, assume both T and S covariant in 2f and
contravariant in QT. Let r be a function which associates to each pair of ob-
jects A G2f, B Et a mapping r(A, B) =-y in G.

DEFINITION. The function r is a "natural" transformation of the functor
T, covariant in '1 and contravariant in 3, into the concordant functor S pro-
vided that, for each pair of objects A C 1, BCB3,

(7.1) r(A,B):T(A,B)->S(A,B) in (E,
and provided, whenever a:Ai-*A2 in 2f and 3:B1->B2 in Q3, that

(7.2) -r(A2, Bl)T(a, 3) = S(a, 3)-r(Ai, B2).
When these conditions hold, we write

-r: T -- S.

If in addition each r(A, B) is an equivalence mapping of the category (E, we
call r a natural equivalence of T to S (notation: rT:iTzS) and say that the
functors T and S are naturally equivalent. In this case condition (7.2) can be
rewritten as

(7. 2a) r(A2, B1) T(a, i3) [r(A1, B2)]' = S(a, p).

Condition (7.1) of this definition is equivalent to the requirement that
both products in (7.2) are always defined. Condition (7.2) is illustrated by the
equivalence of the two paths indicated in the following diagram:

T(A1, B2) (a, T(A2, B1)

r(A1, B2) r(A2, B1)
S(Ai1 B2) S S(A2, Bi)

Given three concordant functors T, S and R on Xf, e3 to (E, with natural
transformations r: T->S and o-: S->R, the product

p(A, B) = cr(A, B)r(A, B)

is defined as a mapping in (E, and yields a natural transformation p: T->R. If r
and a are natural equivalences, so is p = ar.

Observe also that if r: T->S is a natural equivalence, then the function
T-' defined by -1(A, B)= [r(A, B)]-1 is a natural equivalence -1: S->T.
Given any functor T on Xf, e3 to (E, the function
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-ro(A, B) = eT(A,B)

is a natural equivalence ro: T;Z?T. These remarks imply that the concept of
natural equivalence of functors is reflexive, symmetric and transitive.

In demonstrating that a given mapping T(A, B) is actually a natural
transformation, it suffices to prove the rule (7.2) only in these cases in which
all except one of the mappings a, f, * * - is an identity. To state this result
it is convenient to introduce a simplified notation for the mapping function
when one argument is an identity, by setting

TQ(a, B) = T(a, eB), T(A, I3) = T(eA, I)

THEOREM 7.1. Let T and S befunctors covariant in 9I and contravariant in 9,
with values in (S, and let T be a function which associates to each pair of objects
A C9I, B C3 a mapping with (7.1). A necessary and sufficient condition that r
be a natural transformation T: T-*S is that for each mapping a: A 1-A2 and each
object B Ez3 one has

(7.3) -r(A2, B)T(a, B) = S(a, B)'r(A1, B),
and that, for each A C?2 and each A: B1->B2 one has

(7.4) T(A, Bl)T(A, j) = S(A, f)'r(A, B2).
Proof. The necessity of these conditions is obvious, since they are simply

the special cases of (7.2) in which ,3=eB and a =eA, respectively. The suffi-
ciency can best be illustrated by the following diagram, applying to any
mappings a:A --A2 in ? and f:B1-+B2 in eI:

T(A B2) T(Al, B2) S(A, B2)

T(a, B2) B S(ar, B2)
T(A2, B2) S(A 2, B2)

T(A2, j) S(A2, )
1. r(A2, B1) 1.T(A2, B)) S(A2, Bi)

Condition (7.3) states the equivalence of the results found by following
either path around the upper small rectangle, and condition (7.4) makes a
similar assertion for the bottom rectangle. Combining these successive equiv-
alences, we have the equivalence of the two paths around the edges of the
whole rectangle; this is the requirement (7.2). This argument can be easily
set down formally.
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8. Categories of functors. The functors may be made the objects of a
category in which the mappings are natural transformations. Specifically,
given three fixed categories Xt, Q3 and S, form the category Z for which the
objects are the functors T covariant in 2f and contravariant in Q3, with values
in S, and for which the mappings are the natural transformations r: T-S.
This requires some caution, because we may have r: T--S and r: T'->S' for
the same function r with different functors T, T' (which would have the same
object function but different mapping functions). To circumvent this diffi-
culty we define a mapping in the category T to be a triple [r, T, S] with
r: T-*S. The product of mappings [r, T, S] and [a-, S', R] is defined if and
only if S = S'; in this case it is

[lo, S, R] [r, T, S] = [T, T, R].

We verify that the axioms C1-C3 of ?1 are satisfied. Furthermore we define,
for each functor T,

er = [TT, T, TI, with TT(A, B) = eT(A,B),

and verify the remaining axioms C4, CS. Consequently Z is a category. In
this category it can be proved easily that [r, T, S] is an equivalence mapping
if and only if r: T;iS; consequently the concept of the natural equivalence
of functors agrees with the concept of equivalence of objects in the category 5:
of functors.

This category Z is useful chiefly in simplifying the statements and proofs
of various facts about functors, as will appear subsequently.

9. Composition of functors. This process arises by the familiar "function
of a function" procedure, in which for the argument of a functor we substitute
the value of another functor. For example, let T be a functor on 21, e3 to (,
R a functor on X, Z to I. Then S = R (T, I), defined by setting

S(A, B, D) = R(T(A, B), D), S(a, #, B) = R(T(a, 3), 6),

for objects A ES2, BEQ3, DCEz and mappings aC 2, #3CQ3, b , is a functor
on 21, Q3, Z to (E. In the argument Z, the variance of S is just the variance
of R. The variance of R in 21 (or Q3) may be determined by the rule of signs
(with + for covariance, - for contravariance): variance of S in 21 = variance
of R in (Xvariance of T in 2W.

Composition can also be applied to natural transformations. To simplify
the notation, assume that R is a functor in one variable, contravariant on E
to Y, and that T is covariant in 21, contravariant in e3 with values in (. The
composite R 0 T is then contravariant in 21, covariant in Q3. Any pair of natu-
ral transformations

p:R-*R', r T-*T'
gives rise to a natural transformation
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p X r:R 0 T'- R' 0 T

defined by setting

p 0 -r(A, B) = p(T(A, B))R(r(A, B)).

Because p is natural, p Or could equally well be defined as

p 0 r(A, B) = R'(r(A, B))p(T'(A, B)).

This alternative means that the passage from R 0 T'(A, B) to R' 0T(A, B)
can be made either through R0T(A, B) or through R'0T'(A, B), without
altering the final result. The resulting composite transformation pOr has all
the usual formal properties appropriate to the mapping function of the "func-
tor" R O T; specifically,

(P2P1) 0 (-riT2) = (P2 0 T2)(P1 0 Ti),

as may be verified by a suitable 3 X3 diagram.
These properties show that the functions R 0 T and p Or determine a func-

tor C, defined on the categories St and S of functors, with values in a cate-
gory e of functors, covariant in St and contravariant in ? (because of the
contravariance of R). Here 9Z is the category of all contravariant functors R
on G to (E, while e and ? are the categories of all functors S and T, of ap-
propriate variances, respectively. In each case, the mappings of the category
of functors are natural transformations, as described in the previous section.
To be more explicit, the mapping function C(p, r) of this functor is not the
simple composite p?Or, but the triple [p?Or, R?T', R'OT].

Since p ?r is essentially the mapping function of a functor, we know by
Theorem 3.2 that if p and r are natural equivalences, then p ?r is an equiva-
lence. Consequently, if the pairs R and R', T and T' are naturally equivalent,
so is the pair of composites R 0 T and R' 0 T'.

It is easy to verify that the composition of functors and of natural trans-
formations is associative, so that symbols like R 0 TO S may be written with-
out parentheses.

If in the definition of p Or above it occurs that T= T' and that r is the
identity transformation T->T we shall write p?T instead of p Or. Similarly
we shall write R?r instead of pOr in the case when R=R' and p is the iden-
tity transformation R->R.

10. Examples of transformations. The associative and commutative laws
for the direct and cartesian products are isomorphisms which can be regarded
as equivalences between functors. For example, let X, Y and Z be three topo-
logical spaces, and let the homeomorphism

(10.1) (XX Y) XZ_XX (YXZ)
be established by the usual correspondence r=r(X, Y, Z), defined for any
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point ((x, y), z) in the iterated cartesian product (XX Y) XZ by

r(X, Y, Z)((x, y), z) = (x, (y, z)).

Each r(X, Y, Z) is then an equivalence mapping in the category X of spaces.
Furthermore each side of (10.1) may be considered as the object function of a
covariant functor obtained by composition of the cartesian product functor
with itself. The corresponding mapping functions are obtained by the parallel
composition as (Q X 7) X R and { X (77 X P). To show that r(X, Y, Z) is indeed
a natural equivalence, we consider three mappings t:X1-+X2, 0: Y1-+ Y2 and
:Z1-+Z2, and show that

T(X2, Y2,Z2)[(t X 1) X t] = k X (n X t)]r(Xi, Y1,Z1).

This identity may be verified by applying each side to an arbitrary point
((xi, yi), z1) in the space (X1 X Y1) X Z1; each transforms it into the point
xi , (qyl, Rz1)) in X2 X ( Y.2 XZ2).

In similar fashion the homeomorphism XX Y_ YXX may be interpreted
as a natural equivalence, defined as r(X, Y)(x, y) = (y, x). In particular, if
X, Y and Z are discrete spaces (that is, are simply sets), these remarks show
that the associative and commutative laws for the (cardinal) product of two
sets are natural equivalences between functors.

For similar reasons, the associative and commutative laws for the direct
product of groups are natural equivalences (or natural isomorphisms) between
functors of groups. The same laws for Banach spaces, with a fixed convention
as to the construction of the norm in the cartesian product of two such spaces,
are natural equivalences between functors.

If J is the (fixed) additive group of integers, H any topological abelian
group, there is an isomorphism

(10.2) Hom (J, H) H
in which both sides may be regarded as covariant functors of a single argu-
ment H. This isomorphism r = r(H) is defined for any homomorphism
kEHom (J, H) by setting r(H)4=4(1) GH. One observes that r(H) is in-
deed a (bicontinuous) isomorphism, that is, an equivalence in the category of
topological abelian groups. That r(H) actually is a natural equivalence be-
tween functors is shown by proving, for any r7:H1-+H2, that

T(H2) Hom (es, -i) = -tr(Hi).

There is also a second natural equivalence between the functors indicated in
(10.2), obtained by setting r'(H)4=4(-1).

With the fixed Banach space R of real numbers there is a similar formula

(10.3) Lin (R, B)a n r B
for any Banach space B. This gives a natural equivalence T =T(B) between
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two covariant functors of one argument in the category 5e of all Banach
spaces. Here T(B) is defined by setting r(B)l =1(1) for each linear transforma-
tion lELin (R, B); another choice of T would set T(B)l =I(-1).

For topological spaces there is a distributive law for the functors "Map"
and the direct product functor, which may be written as a natural equivalence

(10.4) Map (Z, X) X Map (Z, Y) _ Map (Z, X X Y)
between two composite functors, each contravariant in the first argument Z
and covariant in the other two arguments X and Y. To define this natural
equivalence

r(X, Y, Z):Map (Z, X) X Map (Z, Y) ? Map (Z, X X Y),

consider any pair of mappings f Map (Z, X) and gCMap (Z, Y) and set,
for each zCZ,

[r(f, g) ] (z) = (f(z), g(z)).

It can be shown that this definition does indeed give the homeomorphism
(10.4). It is furthermore natural, which means that, for mappings t:X1->X2,
: Y1-> Y2 and ?:Z1->Z2,

r(X2, Y2, Z1) [lMap (L, t) X Map (i, n)] = Map (, t X 71)r(Xl, Y1, Z2).

The proof of this statement is a straightforward application of the vari-
ous definitions involved. Both sides are mappings carrying Map (Z2, X1)
X Map (A, Y1) into Map (Z1, X2X Y2). They will be equal if they give iden-
tical results when applied to an arbitrary element (f2, g2) in the first space.
These applications give, by the definition of the mapping functions of the
functors "Map" and " X," the respective elements

T(X2, Y2, Zl)(Qf2L, 71020), ( X 77)-(Xl, Yl, Z2) (f2, 92)r.

Both are in Map (Z1, X2X Y2). Applied to an arbitrary zCZ1, we obtain in
both cases, by the definition of T, the same element (Qf2r(z), 9g2?(Z)) GX2X Y2.

For groups and Banach spaces there are analogous natural equivalences

(10.5) Hom (G, H) X Hom (G, K)_Hom (G,H X K),

(10.6) Lin (B, C) X Lin (B, D)-Lin (B, C X D).

In each case the equivalence is given by a transformation defined exactly as
before. In the formula for Banach spaces we assume that the direct product is
normed by the maximum formula. In the case of any other formula for the
norm in a direct product, we can assert only that T is a one-to-one linear trans-
formation of norm one, but not necessarily a transformation preserving the
norm. In such a case T then gives merely a natural transformation of the func-
tor on the left into the functor on the right.
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For groups there is another type of distributive law, which is an equiva-
lence transformation,

Hom (G, K) X Hom (H, K) _ Hom (G X H, K).

The transformation r(G, H, K) is defined for each pair (q, 41) GHom (G, K)
XHom (H, K) by setting

[r(G, H, K)(4, 4t')](g, h) = Og + /1h

for every element (g, h) in the direct product GXH. The properties of r are
proved as before.

It is well known that a function g(x, y) of two variables x and y may be
regarded as a function rg of the first variable x for which the values are in
turn functions of the second variable y. In other words, rg is defined by

[[rg](X)](y) = g(x, y).

It may be shown that the correspondence g->rg does establish a homeomor-
phism between the spaces

91xxr_ Cz)

where Z is any topological space and X and Y are locally compact Hausdorff
spaces. This is a "natural" homeomorphism, because the correspondence
r=r(X, Y, Z) defined above is actually a natural equivalence

r(X, Y, Z):Map (X X Y, Z) ? Map (X, Map (Y, Z))

between the two composite functors whose object functions are displayed
here.

To prove that r is natural, we consider any mappings t: X1-X2, v: Y1-> Y2,
:Z1-Z2, and show that

(10.7) r(Xl, Y1, Z2) Map (Q X , 7) = Map (Q, Map (Oi, O))T(X2, Y2, Z1).

Each side of this equation is a mapping which applies to any element
g2CMap (X2X Y2, Z1) to give an element of Map (X1, Map (Y1, Z2)). The
resulting elements may be applied to an x1 CX1 to give an element of
Map (Y1, Z2), which in turn may be applied to any yiC Y1. If each side
of (10.7) is applied in this fashion, and simplified by the definitions of T and of
the mapping functions of the functors involved, one obtains in both cases the
same element 9g2(Qx1, ny'1)CZ2. Hence (10.7) holds, and T is natural.

Incidentally, the analogous formula for groups uses the tensor product
G o H of two groups, and gives an equivalence transformation

Hom (G o H, K) - Hom (G, Hom (H, K)).

The proof appears in our Proceedings note quoted in the introduction.
Let D be a fixed Banach space, while B and C are two (variable) Banach
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spaces. To each pair of linear transformations X and ,u, with I1X11?1 and

II|u| < 1, and with

B - C D,
there is associated a composite linear transformation 1A, with 1A:B- -D. Thus
there is a correspondence T =T(B, C) which associates to each XCLin (B, C)
a linear transformation rX with

[TX](,u) = AX C Lin (B, D).

Each rX is a linear transformation of Lin (C, D) into Lin (B, D) with norm
at most one; consequently r establishes a correspondence

(10.8) r(B, C):Lin (B, C) - Lin (Lin (C, D), Lin (B, D)).

It can be readily shown that r itself is a linear transformation, and that
1lr(X)|| = ||X|| so that T is an isometric mapping.

This mapping r actually gives a transformation between the functors in
(10.8). If the space D is kept fixed("5), the functions Lin (B, C) and
Lin (Lin (C, D), Lin (B, D)) are object functions of functors contravariant
in B and covariant in C, with values in the category e0 of Banach spaces.
Each r r (B, C) is a mapping of this category; thus r is a natural transforma-
tion of the first functor in the second provided that, whenever 3:B,-+B2 and
'y: C1-C2,

(10.9) r(Bi, C2) Lin (,B, -y) = Lin (Lin (-y, e), Lin (,B, e))i-(B2, C1),

where e =eD is the identity mapping of D into itself. Each side of (10.9) is a
mapping of Lin (B2, C1) into Lin (Lin (C2, D), Lin (B1, D)). Apply each side
to any XCLin (B2, C1), and let the result act on any ,ueLin (C2, D). On the
left side, the result of these applications simplifies as follows (in each step the
definition used is cited at the right):

{[r(Bi, C2) ] Lin (,B, y)X IAj

= {[r(B1, C2)](YXO) }IA (Definition of Lin (p, -y))
= juyXf (Definition of r(Bi, C2)).

The right side similarly becomes

{Lin (Lin (y, e), Lin (,B, e)) [,r(B 2, Cl)\ ]

= {Lin (B, e) [r(B2, C1)X] Lin (-y, e) }, (Definition of Lin (-, ))

= Lin (,, e) { [r(B2, Cl)X](yY) } (Definition of Lin ( y, e))
= Lin (,B, e) (wyX) (Definition of r(B2, C1))
-AyX3 (Definition of Lin (,B, e)).

(15) We keep the space D fixed because in one of these functors it appears twice, once as a
covariant argument and once as a contravariant one.
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The identity of these two results shows that r is indeed a natural transforma-
tion of functors.

In the special case when D is the space of real numbers, Lin (C, D) is
simply the conjugate space Conj (C). Thus we have the natural transforma-
tion

(10. 10) -r(B, C) :Lin (B, C) ---Lin (Conj C, Conj B).

A similar argument for locally compact abelian groups G and H yields a
natural transformnation

(10. 1 1) r(G, H):Hom (G, H) -* Hom (Ch H, Ch G).

In the theory of character groups it is shown that each r(G, H) is an isomor-
phism, so (10.11) is actually.a natural isomorphism. The well known iso-
morphism between a locally compact abelian group G and its twice iterated
character group is also a natural isomorphism

r(G):G t- Ch (Ch G)

between functors('6). The analogous natural transformation

r(B):B -> Conj (Conj B)

for Banach spaces is an equivalence only when B is restricted to the category
of reflexive Banach spaces.

11. Groups as categories. Any group G may be regarded as a category
5G in which there is only one object. This object may either be the set G
or, if G is a transformation group, the space on which G acts. The mappings
of the category are to be the elements 7y of the group G, and the product of
two elements in the group is to be their product as mappings in the category.
In this category every mapping is an equivalence, and there is only one iden-
tity mapping (the unit element of G). A covariant functor T with one argu-
ment in 65G and with values in (the category of) the group H is just a homo-
nmorphic mapping X = T(y) of G into H. A natural transformation r of one
such functor T1 into another one, T2, is defined by a single element r(G)
=-qoCH. Since -1o has an inverse, every natural transformation is automati-
cally an equivalence. The naturality condition (7.2a) for r becomes simply
qoT(-y)-q -I = T2(Qy). Thus the functors T1 and T2 are naturally equivalent if
and only if T1 and T2, considered as homomorphisms, are conjugate.

Similarly, a contravariant functor T on a group G, considered as a cate-
gory, is simply a "dual" or "counter" homomorphism (T(7Y2yl) = T(7l)T(Y2)).

A ring R with unity also gives a category, in which the mappings are the
elenments of R, under the operation of multiplication in R. The unity of
the ring is the only identity of the category, and the units of the ring are the
equivalences of the category.

(16) The proof of naturality appears in the note quoted in footnote 3.
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12. Construction of functors as transforms. Under suitable conditions a
mapping-function -r(A, B) acting on a given functor T(A, B) can be used to
construct a new functor S such that r: T--S. The case in which each r is an
equivalence mapping is the simplest, so will be stated first.

THEOREM 12.1. Let T be a functor covariant in 21, contravariant in 23, with
values in G. Let S and -r be functions which determine for each pair of objects
A C t, B CQ3 an object S(A, B) in ( and an equivalence mapping

r(A, B): T(A, B)- S(A, B) in C.

Then S is the object function of a uniquely determined functor S, concordant with
T and such that r is a natural equivalence -r: T:?S.

Proof. One may readily show that the mapping function appropriate to S
is uniquely determined for each a:A1--A2 in 2f and 3:B1-*B2 in 23 by the
formula

S(a, 3) = r(A 2, Bi) T(a, 3) [r(A 1, B2)ft'.

The companion theorem for the case of a transformation which is not nec-
essarily an equivalence is somewhat more complicated. We first define map-
pings cancellable from the right. A mapping aC2J will be called cancellable
from the right if Oa =oya always implies 3 =,y. To illustrate, if each "formal"
mapping is an actual many-to-one mapping of one set into another, and if the
composition of formal mappings is the usual composition of correspondences,
it can be shown that every mapping a of one set onto another is cancellable
from the right.

THEOREM 12.2. Let T be a functor covariant in 21 and contravariant in Q3,
with values in C. Let S(A, B) and S(a, 3) be two functions on the objects (and
mappings) of 2t and Q, for which it is assumed only, when a: A 1-*A2 in 2f and
P3. B1 -B2 in 23, that

S(a, (3):S(Al, B2) --S(A2, B1) in C.

If a function -r on the objects of 21, e3 to the mappings of C satisfies the usual
conditions for a natural transformation r: T-*S; namely that

(12.1) r(A, B):T(A, B) >S(A, B) in C,
(12.2) r(A2, B1)T(a, (3) = S(a, f)T(A1, B2),

and if in addition each -r(A, B) is cancellable from the right, then the functions
S(a, f) and S(A, B) form a functor S, concordant with T, and r is a transforma-
tion -r: T-*S.

Proof. We need to show that

(12.3) S(eA, eB) = es(A,B),
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(12.4) S(a2al, 03201) = S(a2, f3)S(al, 12)-
Since T is a functor, T(eA, eB) is an identity, so that condition (12.2) with
A1=A2, B1=B2 becomes

T(A, B) = S(eA, eB)T(A, B).

Because r(A,-B) is cancellable from the right, it follows that S(eA, eB) must
be the identity mapping of S(A, B), as desired.

To consider the second condition, let ai:Al->A2, a2:A2--A3, j3: B1->B2
and 32:B2->B3, so that a2a1 and 32f1 are defined. By condition (12.2) and the
properties of the functor T,

S(a2a1, 0201)T(A1, B3) = T(A3, Bi)T(a2ai, 3231)

= T(A3, Bi)T(a2, 31) T(al, %2)

= S(a2, 131)T(A2, B2)T(ai, 32)

= S(a2, 01)S(al, 32)T(Al, B3).

Again because r(Al, B3) may be cancelled on the right, (12.4) follows.
13. Combination of the arguments of functors. For n given categories

W1, * * *2f, the cartesian product category

(13. 1) S IWi = 2fl X W2 X ... X 2fn
i

is defined as a category in which the objects are the n-tuples of objects
[A1, I * * An], with AiE'Ci, the mappings are the n-tuples [la, . . ., (Xn] of
mappings aiCz2fi. The product

al, ... I * an] [I131, . . I. n] = [a13i, * ** , ann]

is defined if and only if each individual product ai4i is defined in Wi, for
i=1, , n. The identity corresponding to the object [A1, l * *, An] in the
product category is to be the mapping [e(A 1), * * * , e(A n) ]. The axioms which
assert that the product 21 is a category follow at once. The natural corre-
spondence

(13.2) P(A1, * . , An) = [A1, a, In]

is a covariant functor on the n categories t , * **, n to the product category.
Conversely, the correspondences given by "projection" into the ith coordi-
nate,

(13.4) Qi([A1, * * * , An]) = Ail Qi([al, . ., ajn]) = ai,

is a covariant functor in one argument, on 2I to fi.
It is now possible to represent a functor covariant in any number of argu-
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ments as a functor in one argument. Let T be a functor on the categories
W1i, * * *, I,, (e, with the same variance in 21i as in 21i; define a new functor
T* by setting

T*([All * I A,],A4 B) = T(A1, , I An, B),

T*([CYl ... * * 1na, i) = T(CY1, .. , a, tn ).

This is a functor, since it is a composite of T and the projections Qi of (13.4);
its variance in the first argument is that of T in any A i. Conversely, each func-
tor S with arguments in W1X . . . X9ln and e3 can be represented as S= T*,
for a T with n+1 arguments in W1i, * * , n1, 58, defined by

T(A1 l* .. * Any B) = S([All .. * An]? B) = S(P(All .. I An), B),

T(ai, , * , O 3nt A) = S([C1i, . . , CYn ] 3 A) = S(P(t , ..., aIn1), i3).

Again T is a composite functor. These reduction arguments combine to give
the following theorem.

THEOREM 13.1. For given categories s91, * * *, 581y . . . * 5 (S, there is a
one-to-one correspondence between the functors T covariant in Wi, * * *, I1W, con-
travariant in 01, * * with values in C, and the functors S in two arguments,
covariant in W,X . . . X 2n and con travariant in 3X * * * X53m, with values
in the same category G. Under this correspondence, equivalent functors T corre-
spond to equivalent functors S, and a natural transformation wr: T1--T2 gives rise
to a natural transformation (: S1-*S2 between the functors S, and S2 correspond-
ing to T1 and T2 respectively.

By this theorem, all functors can be reduced to functors in two arguments.
To carry this reduction further, we introduce the concept of a "dual" cate-
gory.

Given a category 2X, the dual category W* is defined as follows. The objects
of W* are those of W ; the mappings a* of W* are in a one-to-one correspondence
aya* with the mappings of W2. If a:A1-)A2 in W, then a*:A2- >*A1 in W*. The
composition law is defined by the equation

0Y2*CO1*= (011012)*,

if aia2 is defined in W. We verify that W* is a category and that there are
equivalences

The mapping

D(A) = A, D(ct) =

is a contravariant functor on 2X to W*, while D-1 is contravariant on W* to W!.
Any contravariant functor T on 2f to C can be regarded as a covariant
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functor T* on W* to C, and vice versa. Explicitly, T* is defined as a composite

T*(A) = T(D-1(A)), T*(a*) = T(D-l(a*)).

Hence we obtain the following reduction theorem.

THEOREM 13.2. Every functor T covariant on W , 2ln and contravariant
on ... , 23m with values in C may be regarded as a covariant functor T' on

( wi) x(IIi*

with values in C, and vice versa. Each natural transformation (or equivalence)
-r: T1 ->T2 yields a corresponding transformation (or equivalence) -r': T' ->T2' .

CHAPTER III. FUNCTORS AND GROUPS

14. Subfunctors. This chapter will develop the fashion in which various
particular properties of groups are reflected by properties of functors with
values in a category of groups. The simplest such case is the fact that sub-
groups can give rise to "subfunctors." The concept of subfunctor thus de-
veloped applies with equal force to functors whose values are in the category
of rings, spaces, and so on.

In the category 5 of all topological groups we say that a mapping
G' ->G2' is a submapping of a mapping y: G1-*G2 (notation: y' Cy) when-

ever Gl%CG,, G2' CG2 and y'(gi) =-y(gi) for each gizG'. Here Gf CG1 means
of course that Gf is a subgroup (not just a subset) of G1.

Given two concordant functors T' and T on W and e3 to 5, we say that
T' is a subfunctor of T (notation: T'CT) provided T'(A, B) C T(4, B) for
each pair of objects A ES, B CG and T'(a, a) C T(a, A) for each pair of map-
pings a C, # GE3. Clearly T'CT and TCT' imply T= T'; furthermore this
inclusion satisfies the transitive law. If T' and T" are both subfunctors of
the same functor T, then in order to prove that T'C T" it is sufficient to
verify that T'(A, B)CT"(A, B) for all A and B.

A subfunctor can be completely determined by giving its object function
alone. The requisite properties for this object function may be specified as
follows:

THEOREM 14.1. Let the functor T covariant in W and contravariant in e3 have
values in the category (S of groups, while T' is a function which assigns to each
pair of objects A CI and BCG?3 a subgroup T'(A, B) of T(A, B). Then T' is
the object function of a subfunctor of T if and only if for each a:A1-*A2 in 9f
and each f3:B1-3B2 in QB the mapping T(a, ,B) carries the subgroup T'(A1, B2)
into part of T'(A2, B1). If T' satisfies this condition, the corresponding mapping
function is uniquely determined.

Proof. The necessity of this condition is immediate. Conversely, to prove
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the sufficiency, we define for each a and A a homomorphism T'(a, A) of
T'(A1, B2) into T'(A2, B1) by setting T'(a, 3)g=T(a, 3)g, for each
gGT'(Ai, B2). The fact that T' satisfies the requisite conditions for the
mapping function of a functor is then immediate, since T' is obtained by
"cutting down" T.

The concept of a subtransformation may also be defined. If T, S, T', S'
are concordant functors on XI, Q3 to 65, and if r: T-)S and r': T'--S' are nat-
ural transformations, we say that r' is a subtransformation of r (notation:
r'Cr) if T'CT, S'CS and if, for each pair of arguments A, B, r'(A, B) is a
submapping of r(A, B). Any such subtransformation of r may be obtained
by suitably restricting both the domain and the range of r. Explicitly, let
,r:T-)S, let T'CT and S'CS be such that for each A, B, r(A, B) maps the
subgroup T'(A, B) of T(A, B) into the subgroup S'(A, B) of S(A, B). If then
T'(A, B) is defined as the homomorphism r(A, B) with its domain restricted
to the subgroup T'(A, B) and its range restricted to the subgroup S'(A, B),
it follows readily that r' is indeed a natural transformation r': T'-*S'.

Let r be a natural transformation r: T-*S of concordant functors T and S
on t and e3 to the category (M of groups. If T' is a subfunctor of T, then the
map of each T'(A, B) under r(A, B) is a subgroup of S(A, B), so that we may
define an object function

S'(A, B)- (A, B) [ T'(A , B) ], A G . St B E t3.
The naturality condition on r shows that the function S' satisfies the condi-
tion of Theorem 14.1; hence S'=TT' gives a subfunctor of S, called the r-
transform of T'. Furthermore there is a natural transformation r': T'-.S', ob-
tained by restricting r. In particular, if r is a natural equivalence, so is r'.

Conversely, for a given r: T-+S let S" be a subfunctor of S. The inverse
image of each subgroup S"(A, B) under the homomorphism r(A, B) is then
a subgroup of T(A, B), hence gives an object function

T"(A, B) = r(A, B)-1[S" (A, B)], A C X, B C 3.
As before, this is the object function of a subfunctor T"CT which may be
called the inverse transform r-1S" = T" of S". Again, r may be restricted
to give a natural transformation r": T"-+S". In case each r(A, B) is a homo-
morphism of T(A, B) onto S(A, B), we may assert that (1-'S"/) =S/.

Lattice operations on subgroups can be applied to functors. If T' and T"
are two subfunctors of a functor T with values in G, we define their meet
T'nT" and their join T'UT" by giving the object functions,

[T' n T"](A, B) = T'(A, B) n T"(A, B),

[T' U T"](A, B) = T'(A, B) U T"(A, B).

We verify that the condition of Theorem 14.1 is satisfied here, so that these
object functions do uniquely determine corresponding subfunctors of T. Any
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lattice identity for groups may then be written directly as an identity for the
subfunctors of a fixed functor T with values in O.

15. Quotient functors. The operation of forming a quotient group leads
to an analogous operation of taking the "quotient functor" of a functor T
by a "normal" subfunctor T'. If T is a functor covariant in 21 and contra-
variant in Q3, with values in 5, a normal subfunctor T' will mean a subfunctor
T'CT such that each T'(A, B) is a normal subgroup of T(A, B), while a
closed subfunctor T' will be one in which each T'(A, B) is a closed subgroup
of the topological group T(A, B). If T' is a normal subfunctor of T, the quo-
tient functor Q = T/T' has an object function given as the factor group,

Q(A, B) = T(A, B)/T'(A, B).

For homomorphisms a:A -+A2 and f:B1-+B2 the corresponding mapping
function Q (a, 3) is defined for each coset(17) x+T'(A1, B2) as

Q(a, B) [x + T'(A1, B2) ] = [T(o, ,B)x] + T'(A2, B1).

We verify at once that Q thus gives a uniquely defined homomorphism,

Q(a, j):Q(A1, B2) -?Q(A2, B1).

Before we prove that Q is actually a functor, we introduce for each A C2t
and B CQ3 the homomorphism

v(A, B):T(A, B) ->Q(A, B)

defined for each xGT(A, B) by the formula

v(A, B)(x) = x + T'(A, B).

When a: A i-A2 and 3:B1-?B2 we now show that

Q(a, O)v(Ai, B2) = v(A2, Bi) T(a, A).

For, given any xET(A1, B2), the definitions of v and Q give at once

Q(a, #)[v(A1, B2)(x)] = Q(a, ,B)[x + T'(A1, B2)]

= [T(a, j) (x) ] + T'(A2, B1)

= v(A2, B1) [T(o, j) (x) ].

Notice also that v(A, B) maps T(A, B) onto the factor group Q(A, B), hence
is cancellable from the right. Therefore, Theorem 12.2 shows that Q = T/T'
is a functor, and that v is a natural transformation v: T-?T/T'. We may call v
the natural transformation of T onto T/T'.

In particular, if the functor T has its values in the category of regular
topological groups, while T' is a closed normal subfunctor of T, the quotient

(17) For convenience in notation we write the group operations (commutative or not) with
a plus sign.
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functor T/T' has its values in the same category of groups, since a quotient
group of a regular topological group by a closed subgroup is again regular.

To consider the behavior of quotient functors under natural transforma-
tions we first recall some properties of homomorphisms. Let a:G- +H be a
homomorphism of the group G into H, while a': G'-+H' is a submapping of a,
with G' and H' normal subgroups of G and H, respectively, and v and , are
the natural homomorphisms v:G->G/G', ,u:H-H/H'. Then we may define a
homomorphism O3:G/G'- +H/H' by setting f(x+G') =ax+H' for each xCG.
This homomorphism is the only mapping of G/G' into H/H' with the prop-
erty that /3v =ya, as indicated in the figure

G ---- H

l1 tv
G/G' --- H/Hl'

We may write j3= a/a'. The corresponding statement for functors is as fol-
lows.

THEOREM 15.1. Let r: T-+S be a natural transformation between functors with
values in 5; and let r': T'-*S' be a subtransformation of r such that T' and S'
are normal subfunctors of T and S, respectively. Then the definition p(A, B)
=-r(A, B)/r'(A, B) gives a natural transformation p= T/T',

p: T/T' -* S/S'.

Furthermore, pv = ,r, where v is the natural transformation v: T-*T/T' and Pt
is the natural transformation IA: S--S/S'.

Proof. This requires only the verification of the naturality condition for p,
which follows at once from the relevant definitions.

The 'kernel" of a transformation appears as a special case of this theorem.
Let r: T-*S be given, and take S' to be the identity-element subfunctor of S;
that is, let each S'(A, B) be the subgroup consisting only of the identity (zero)
element of S(A, B). Then the inverse transform T'==r-S' is by ?14 a (nor-
mal) subfunctor of T, and r may be restricted to give the natural transforma-
tion r': T'--S'. We may call T' the kernel functor of the transformation r.
Theorem 15.1 applied in this case shows that there is then a natural trans-
formation p: T/T'->S such that p =TrV. Furthermore each p(A, B) is a one-
to-one mapping of the quotient group T(A, B)/T'(A, B) into S(A, B). If in
addition we assume that each T(A, B) is an open mapping of T(A, B) onto
S(A, B), we may conclude, exactly as in group theory, that p is a natural
equivalence.

16. Examples of subfunctors. Many characteristic subgroups of a group
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may be written as subfunctors of the identity functor. The (covariant) iden-
tity functor I on 05 to 5 is defined by setting

I(G) = G, 1(Y) .-
Any subfunctor of I is, by Theorem 14.1, determined by an object function

T(G) CG

such that whenever y maps G1 homomorphically into G2, then y [T(G1)]
CT(G2). Furthermore, if each T(G) is a normal subgroup of G, we can form
a quotient functor I/T.

For example, the commutator subgroup C(G) of the group G determines
in this fashion a normal subfunctor of I. The corresponding quotient functor
(I/C) (G) is the functor determining for each G the factor commutator group
of G (the group G made abelian).

The center Z(G) does not determine in this fashion a subfunctor of I, be-
cause a homomorphism of G1 into G2 may carry central elements of G1 into
non-central elements of G2. However, we may choose to restrict the category
5 by using as mappings only homomorphisms of one group onto another. For
this category, Z is a subfunctor of I, and we may form a quotient functor I/Z.

Thus various types of subgroups of G may be classified in terms of the
degree of invariance of the "subfunctors" of the identity which they generate.
This classification is similar to, but not identical with, the known distinction
between normal subgroups, characteristic subgroups, and strictly character-
istic subgroups of a single group(18). The present distinction by functors refers
not to the subgroups of an individual group, but to a definition yielding a sub-
group for each of the groups in a suitable category. It includes the standard
distinction, in the sense that one may consider functors on the category with
only one object (a single group G) and with mappings which are the inner
automorphisms of G (the subfunctors of I=normal subgroups), the auto-
morphisms of G (subfunctors=characteristic subgroups), or the endomor-
phisms of G (subfunctors=strictly characteristic subgroups).

Still another example of the degree of invariance is given by the automor-
phism group A (G) of a group G. This is a functor A defined on the category 5
of groups with the mappings restricted to the isomorphisms Y G1 -G2 of one
group onto another. The mapping function A (y) for any automorphism oi of
G1 is then defined by setting

[A (Y)0-1g2 = YOY-1g2, g2 C G2.
The types of invariance for functors on 5 may thus be indicated by a

table, showing how the mappings of the category must be restricted in order
to make the indicated set function a functor:

(18) A subgroup S of G is characteristic if a(S) CS for every atuomorphism - of G, and
strictly (or 'strongly") characteristic if a (S) CS for every-endomorphism of G.
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Functor Mappings y:G G2
C(G) Homomorphisms into,
Z(G) Homomorphisms onto,
A (G) Isomorphisms onto.

For the subcategory of 65 consisting of all (additive) abelian groups there
are similar subfunctors: 1?. Go, the set of all elements of finite order in G;
20. Gm, the set of all elements in G of order dividing the integer m; 30. mG, the
set of all elements of the form mg in G. The corresponding quotient functors
will have object functions G/Go (the "Betti group" of G), G/Gm, and G/mG
(the group G reduced modulo m).

17. The isomorphism theorems. The isomorphism theorems of group the-
ory can be formulated for functors; from this it will follow that these isomor-
phisms between groups are "natural."

The "first isomorphism theorem" asserts that if G has two normal sub-
groups G1 and G2 with G2CG1, then G1/G2 is a normal subgroup of G/G2, and
there is an isomorphism r of (G/G2)/(G1/G2) to G/G1. The elements of the
first group (in additive notation) are cosets of cosets, of the form (x+G2)
+G1/G2, and the isomorphism T is defined as

(17.1) T[(x+G2) +G1/G2] =x +G1.
This may be stated in terms of functors as follows.

THEOREM 17.1. Let T1 and T2 be two normal subfunctors of a functor T with
values in the category of groups. If T2 CTi, then T1/T2 is a normal subfunctor of
T/T2 and the functors

(17.2) T/T1 and (T/T2)/(T1/T2)
are naturally equivalent.

Proof. We assume that the given functor T depends on the usual typical
arguments A and B. Since (T1/T2)(A, B) is clearly a normal subgroup of
(T/T2)(A, B), a proof that T1/T2 is a normal subfunctor of T/T2 requires
only a proof that each (Ti/T2)(a, f), is a submapping of the corresponding
(T/T2) (a, ,3) for any a:A 1-A2 and f:B1-*B2. To show this, apply (T1/T2)
*(a, f) to a typical coset x + T2(Al, B2). Applying the definitions, one has

(TI/T2) (Ca, I3) [x + T2(A1, B2)] = Ti(a, 3)(x) + T2(A2, B1)

=T(a, A)(x) + T2(A2, B1)

= (T/T2) (a, ,3) [x + T2(A1, B2) ],

for Ti(a, ,B) was assumed to be a submapping of T(a, p).
The asserted equivalence (17.2) is established by setting, as in (17.1),

T(A, B)g [x + T2(A, B)] + (T1/T2)(A, B)} = x + T1(A, B).
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The naturality proof then requires that, for any mappings a:A1->A2 and
3:B1->B2,

T(A2, Bi)S(a, f3) = (T/Ti)(a, fl)T(Al, B2),

where S= (T/T2)/(T1/T2). This equality may be verified mechanically by
applying each side to a general element [x+T2(Al, B2)]+(Ti/T2)(A1, B2) in
the group S(A1, B2).

The theorem may also be stated and proved in the following equivalent
form.

THEOREM 17.2. Let T' and T" be two normal subfunctors of a functor T
with values in the category G of groups. Then T'nT" is a normal subfunctor of
T' and of T, T'/T'nT" is a normal subfunctor of T/T'CT", and the functors

(17.3) T/T' and (T/T' r, T")/(T'/T' n T")
are naturally equivalent.

Proof. Set T1= T', T2= T'nT".
The second isomorphism theorem for groups is fundamental in the proof

of the Jordan-H6lder Theorem. It states that if G has normal subgroups G1
and G2, then G1nG2 is a normal subgroup of G1, G2 is a normal subgroup of
G1UG2, and there is an isomorphism u of Gl/G1nG2 to G1UG2/G2. (Because
G1 and G2 are normal subgroups, the join GiUG2 consists of all "sums" g1+g2,
for giEGi, so is often written as G1UG2=G1+G2.) For any xCG1, this iso-
morphism is defined as

(17.4) A[x + (G1n G2)] = x + G2.
The corresponding theorem for functors reads:

THEOREM 17.3. If T1, T2 are normal subfunctors of a functor T with values
in G, then T1n T2 is a normal subfunctor of T1, and T2 is a normal subfunctor
of T1J T2, and the quotient functors

(17.5) T1/(T1 l T2) and (T1 J T2)/T2
are naturally equivalent.

Proof. It is clear that both quotients in (17.5) are functors. The requisite
equivalence IA(A, B) is given, as in (17.4), by the definition

,u(A, B) [x + (T1(A, B) n T2(A, B))] = x + T2(A, B),

for any xC T1(A, B). The naturality may be verified as before.
From these theorems we may deduce that the first and second isomor-

phism theorems yield natural isomorphisms between groups in another and
more specific way. To this end we introduce an appropriate category W.* An
object of (M* is to be a triple G* = [G, G', G"] consisting of a group G and two
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of its normal subgroups. A mapping y: [G1,G 1, G' ]-*[G2, G2', G2" ] of (M* is
to be a homomorphism y: G1-*G2 with the special properties that y(Gl ) CG2'
and ,y(Gf' ) CG2". It is clear that these definitions do yield a category 5*. On
this category 6* we may define three (covariant) functors with values in the
category 6 of groups. The first is a 'projection" functor,

P([G, G', G" 3) = G, P(y) = a;

the others are two normal subfunctors of P, which may be specified by their
object functions as

P'( [G, G', G"1]) =G', P"( [G, G', GIl) = G".

Consider now the first isomorphism theorem, in the second form,

(17.6) G/G' (G/(G' n G"))/(G'/(G' G G")).
If we set G*= [G, G', G"], the left side here is a value of the object
function of the functor, P/P', and the right side is similarly a value of
(P/P'CnP")/(P'/P'0P"). Theorem 17.2 asserts that these two functors are
indeed naturally equivalent. Therefore, the isomorphism (17.6) is itself natu-
ral, in that it can be regarded as a natural isomorphism between the object
functions of suitable functors on the category W*.

TFhe second isomorphism theorem

(G' U G1")IG" =- Gll(G' n G"I)

is natural in a similar sense, for both sides can be regarded as object functions
of suitable (covariant) functors on W.*

It is clear that this technique of constructing a suitable category 6* could
be used to establish the naturality of even more complicated "isomorphism"
theorems.

18. Direct products of functors. We recall that there are essentially two
different ways of defining the direct product of two groups G and H. The "ex-
ternal" direct product GXH is the group of all pairs (g, h) with geG, hGH,
with the usual multiplication. This product G XH contains a subgroup G',
of all pairs (g, 0), which is isomorphic to G, and a subgroup H' isomorphic
to H. Alternatively, a group L with subgroups G and H is said to be the "in-
ternal" direct product L-G X H of its subgroups G and H if gh = hg for every

gGEG, hICH and if every element in L can be written uniquely as a product gh
with g EG, hICH. The intimate connection between the two types of direct
products is provided by the isomorphism GXH~GX H and by the equality
GXH=G'XH', where G'-G, H'_H.

As in ?4, the external direct product can be regarded as a covariant functor
on 6 and 65 to 6, with object function GXH, and mapping function yXn7,
defined as in ?4.

Direct products of functors may also be defined, with the same distinction
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between "external" and "internal" products. We consider throughout func-
tors covariant in a category ?, contravariant in ~3, with values in the cate-
gory (o of discrete groups. If T1 and T2 are two such functors, the external
direct product is a functor T, X T2 for which the object and mapping functions
are respectively

(18.1) (Ti X T2)(A, B) = T1(A, B) X T2(A, B),
(18.2) (Ti X T2)(a, A) = Ti(a, () X T2(a, ,B).

If T77 (A, B) denotes the set of all pairs (g, 0) in the direct product T1(A, B)
XT2(A, B), TI is a subfunctor of T, X T2, and the correspondence g->(g, 0)
provides a natural isomorphism of T, to TI. Similarly T2 is naturally iso-
morphic to a subfunctor TY of T1X T2.

On the other hand, let S be a functor on 9t, e3 to o with subfunctors Si
and S2. We call S the internal direct product S1X S2 if, for each A e2f and
BCQB, S(A, B) is the internal direct product S1(A, B)XS2(A, B). From this
definition it follows that, whenever a:A1-*A2 and ,3:B1->B2 are given map-
pings and giGSj(Ai, B2) are given elements (i =1, 2), then, since Si(ax, X)

S(a, 13)glg2 = [Sl(a, f)g1] [S2(a, O3)g2].

This means that the correspondence r defined by setting [r(Al, B2)] (g9g2) = g2
is a natural transformation r S-*S2. Furthermore this transformation is
idempotent, for r(Al, B2OT(A1, B2) =r (Al, B2) .

The connection between the two definitions is immediate; there is a natu-
ral isomorphism of the internal direct product S1X S2 to the external product
S1XS2; furthermore any external product T XT2 is the internal product
Tl X T2' of its subfunctors T1 _Ti, T2 -T2.

There are in group theory various theorems giving direct product decom-
positions. These decompositions can now be classified as to "naturality." Con-
sider for example the theorem that every finite abelian group G can be repre-
sented as the (internal) direct product of its Sylow subgroups. This decom-
position is "natural"; specifically, we may regard the Sylow subgroup Sp(G)
(the subgroup consisting of all elements in G of order some power of the prime
p) as the object function of a subfunctor S, of the identity. The theorem in
question then asserts in effect that the identity functor I is the internal direct
product of (a finite number of) the functors S,. This representation of the
direct factors by functors is the underlying reason for the possibility of ex-
tending the decomposition theorem in question to infinite groups in which
every element has finite order.

On the other hand consider the theorem which asserts that every finite
abelian group is the direct product of cyclic subgroups. It is clear here that
the subgroups cannot be given as the values of functors, and we observe that
in this case the theorem does not extend to infinite abelian groups.
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As another example of non-naturality, consider the theorem which asserts
that any abelian group G with a finite number of generators can be repre-
sented as a direct product of a free abelian group by the subgroup T(G) of all
elements of finite order in G. Let us consider the category 65,af of all discrete
abelian groups with a finite number of generators. In this category the "tor-
sion" subgroup T(G) does determine the object function of a subfunctor TCI.
However, there is no such functor giving the complementary direct factor
of G.

THEOREM 18.1. In the category ~$5af there is no subfunctor FCI such that
I = FX T, that is, such that, for all G,

(18.3) G = F(G) X T(G).
Proof. It suffices to consider just one group, such as the group G which is

the (external) direct product of the additive group of integers and the addi-
tive group of integers mod m, for m O0. Then no matter which free subgroup
F(G) may be chosen so that (18.3) holds for this G, there clearly is an iso-
morphism of G to G which does not carry F into itself. Hence F cannot be a
functor.

This result could also be formulated in the statement that, for any G with
GH T(G) # (0), there is no decomposition (18.3) with F(G) a (strongly) char-
acteristic subgroup of G. In order to have a situation which cannot be re-
formulated in this way, consider the closely related (and weaker) group theo-
retic theorem which asserts that for each G in 5af there is an isomorphism
of G/T(G) into G. This isomorphism cannot be natural.

THEOREM 18.2. For the category (3af there is no natural transformation,
: I/T->I, which gives for each G an isomorphism r(G) of G/T(G) into a sub-
group of G.

This proof will require consideration of an infinite class of groups, such as
the groups Gm = J X J(m) where J is the additive group of integers and J(m) the
additive group of integers, modulo m. Suppose that r(G): G/T(G)-*G existed.
If A(G): G->G/T(G) is the natural transformation of G into G/T(G) the prod-
uct a(G) =r(G)A(G) would be a natural transformation of G into G with
kernel T(G). For each of the groups Gm with elements (a, b(m)) for aEJ,
b(mf)CJ(m,), this transformation o-m=o(Gm) must be a homomorphism with
kernel J(m), hence must have the form

a.m(a, b(m)) = (rma, (sma)(n)),

where rm and Sm are integers. Now consider the homomorphism y: Gm-Gm
defined by setting 'y(a, b(m)) = (0, b(m)). Since am is natural, we must have
am'y ='yam. Applying this equality to an arbitrary element we conclude that
Sm=O (mod m). Next consider 6: Gm-Gm defined by (a, b(m)) = (0, a(m)). The
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condition 0m 8 = b8om here gives rm 0 (mod m), so that we can write rm =mtrn.
Therefore for each m

um(ta, b(m)) = (mtma, 0).

Now consider two groups Gm, Gn with a homomorphism A: Gm4Gn defined by
setting j3(a, b(m))= (a, 0(n)). The naturality condition o/3=3am now gives
mtm = ntn. If we hold m fixed and allow n to increase indefinitely, this contra-
dicts the fact that mtm is a finite integer. The proof is complete.

It may be observed that the use of an infinite number of distinct groups
is essential to the proof of this theorem. For any subcategory of 65af containing
only a finite number of groups, Theorem 18.2 would be false, for it would be
possible to define a natural transformation r(G) by setting [r(G)]g=kg for
every g, where the integer k is chosen as any multiple of the order of all the
subgroups T(G) for G in the given category.

The examples of "non-natural" direct products adduced here are all ex-
amples which mathematicians would usually recognize as not in fact natural.
What we have done is merely to show that our definition of naturality does
indeed properly apply to cases of intuitively clear non-naturality.

19. Characters(19). The character group of a group may be regarded as a
contravariant functor on the category (15jca of locally compact regular abelian
groups, with values in the same category. Specifically, this functor "Char"
may be defined by "slicing" (see ?5) the functor Hom of ?4 as follows. Let P
be the (fixed) topological group of real numbers modulo 1, define "Char" by
setting

(19.1) Char G = Hom (G, P), Char y = Hom (Qy, ep).

Given gEG and XEChar G it will be convenient to denote the element
x(g) of P by (x, g). Using this terminology and the definition of Hom we ob-
tain for y: G1-G2, XCChar G2 and g1 CG1,

(19.2) (Char (T)x, g) = (x, yg).
As mentioned before (?10) the familiar isomorphism Char (Char G)-G is

a natural equivalence.
The functor "Char" can be compounded with other functors. Let T be

any functor covariant in Xf, contravariant in !, with values in (5lca. The com-
posite functor Char T is then defined on the same categories 2f and e3 but is
contravariant in 1 and covariant in Q3. Let S be any closed subfunctor
of T. Then for each pair of objects A E-I, B CQ, the closed subgroup
S(A, B)CT(A, B) determines a corresponding subgroup Annih S(A, B) in
Char T(A, B); this annihilator is defined as the set of all those characters
xCChar T(A, B) with (X, g) =0 for each gCS(A, B). This leads to a closed

(19) General references: A. Weil, L'integration dans les groupes topologiques et ses applica-
tions, Paris, 1938, chap. 1; S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloquium Pub-
lication, vol. 27, New York, 1942, chap. 2.
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subfunctor Annih (S; T) of the functor Char T, determined by the object
function

[Annih (S; T)](A, B) = Annih S(A, B) in Char T(A, B).

It is well known that

Char [T(A, B)/S(A, B)] = Annih S(A, B),

Char S(A, B) = Char T(A, B)/Annih S(A, B).

These isomorphisms in fact yield natural equivalences

(19.3) a:Annih (S; T) z Char (TIS),
(19.4) T Char T/Annih (S; T) T? Char S.

For example, to prove (19.4) one observes that each XCChar T(A, B)
may be restricted to give a character ro(A, B)X of S(A, B) by setting

(19.5) (ro(A, B)x, h) = (X, h), h i S(A, B).
This gives a homomorphism

'ro(A, B): Char T(A, B) -* Char S(A, B)

with kernel Annih S(A, B). This homomorphism ro will yield the required
isomorphism r of (19.4); by Theorem 15.1 a proof that ro is natural will imply
that r is natural.

To show ro natural, consider any mappings a:A1-*A2 and f:B1-*B2 in
the argument categories of T. Then y = T(a, f) maps T(A1, B2) into T(A2, B1),
while a = S(a, f) is a submapping of "y. The naturality requirements for r0 is

(19.6) (Char 6)ro(A2, B1) = ro(A I, B2) Char 'y.

Each side is a homomorphism of Char T(A2, B1) into Char S(Al, B2). If the
left-hand side be applied to an element XC Char T(A2, B,), and the resulting
character of S(A1, B2) is then applied to an element h in the latter group, we
obtain

(Char S(To(A2, B1)X), h) = (ro(A2, Bi)X, Ai) = (x, Ah)

by using the definition (19.2) of Char a and the definition (19.5) of to. If the
right-hand side of (19.6) be similarly applied to X and then to h, the result is

(ro(Al, B2)((Chat -)x), h) = ((Char 7y)x, h) = (x, yth).

Since 5Cy, these two results are equal, and both T0 and r are therefore natu-
ral.

The proof of naturality for (19.3) is analogous.
If R is a closed subfunctor of S which is in turn a closed subfunctor of T,

both of these natural isomorphisms may be combined to give a single natural
isomorphism
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(19.7) p: Char (S/R) >? Annih (S; T)/Annih (R; T).

CHAPTER IV. PARTIALLY ORDERED SET$ AND PROJECTIVE LIMITS

20. Quasi-ordered sets. The notions of functors and their natural equiva-
lences apply to partially ordered sets, to lattices, and to related mathematical
systems. The.category Z0 of all quasi-ordered sets(20) has as its objects the
quasi-ordered sets P and as its mappings 7w P1->P2 the order preserving trans-
formations of one quasi-ordered set, P, into another. An equivalence in this
category is thus an isomorphism in the sense of order.

An important subcategory of e0 is the category ZCd of all directed sets(21).
One may also consider subcategories which are obtained by restricting both
the quasi-ordered sets and their mappings. For example, the category of lat-
tices has as objects all those partially ordered sets which are lattices and as
mappings those correspondences which preserve both joins and meets. Alter-
natively, by using these mappings which preserve only joins, or those which
preserve only meets, we obtain two other categories of lattices.

The category 5 of sets may be regarded as a subcategory of Z0, if each set
S is considered as a (trivially) quasi-ordered set in which pi <P2 in S means
that pl=P2. The category Q3 of well-ordered sets is another subcategory of D0.
These categories provide a basis for appjying the study of functors to cardinal
and ordinal arithmetic. Specifically, the general theory of arithmetic of par-
tially ordered sets, as developed recently by Birkhoff(22), can be viewed as
the construction of a large number of functors (cardinal power, ordinal power,
and so on) defined on suitable subcategories of Z, together with a collection
of natural equivalences and transformations between these functors(23).

The construction of the category -e of all quasi-ordered sets is not the
only such interpretation of partial order. It is also possible to regard the ele-
ments of a single quasi-ordered set P as the objects of a category; with this
device, one can represent an inverse or a direct system of groups (or of spaces)
as a functor on P.

If a quasi-ordered set P be regarded as a category Tp, the objects of the
category are the elements p EP and the mappings are the pairs w= (P2, pi)
of elements PiEP such that Pl<P2. To each object p we assign the pair
ep= (p, p) as the corresponding identity mapping, while the product (p3, P2')
(P2, pl) of two mappings of Lp is defined if and only if P2' = P2 and is in this
case the mapping (P3, pi). The axioms Cl to C5 for a category are readily

(20) A quasi-ordered set P is a set of elements pi, P2, * * -with a reflexive and transitive
binary relation pl <P2 between the elements. If, in addition, the antisymmetric law (pl<p2
and P2 < Pl imply Pl = P2) holds, P is a partially ordered set.

(21) A quasi-ordered set P is directed if for each pair of elements pi, p2EP there exists a
p3E pwith pl < P3, P2 < P3

(22) Garrett Birkhoff, Generalized arithmetic, Duke Math. J. vol. 9 (1942) pp. 283-302.
(23) Note, however, that the ordinary cardinal sum of two sets A and B does not give rise

to a functor, because the definition applies only when the sets A and B are disjoint.
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verified, and it develops that the only identities are the pairs (p, p), that the
equivalence mappings of (Sp are the pairs (P2, P0) with Pi <P2 and P2 <pi and
that any pair (P2, Pi) with pi <P2 is a mapping (P2, Pl) :P1-P2. It further fol-
lows that any two mappings r,:P-p2 and r2:Pl- 'P2 of this category which
have the same range and the same domain are necessarily equal. Conversely
any given category (E which has the property that any two mappings 7r, and
72 of (E with the same range and the same domain are equal is isomorphic to
the category (p for a suitable quasi-ordered set P. In fact, P can be defined
to be the set of all objects C of the category E with Ci < C2 if and only if there
is in (E a mapping y: C1-*C2.

Consider now two quasi-ordered sets P and Q, with their corresponding
categories (Sp and (SQ. A covariant (contravariant) functor T on (Sp with
values in (EQ is det6rmined uniquely by an order preserving (reversing) map-
ping t of P into Q. Specifically, each such -correspondence t is the object func-
tion t(p) = q of a functor T, for which the corresponding mapping function is
defined as T(p2, P) = (tp2, tp1) (or, in case t is order-reversing, as (tp1, tp2)).
Each functor T of one variable can be obtained in this way.

21. Direct systems as functors. Let D be a directed set. If for every
d ED a discrete group Gd is defined and for every pair di <d2 in D a homomor-
phism

(21.1) 4d2,dl:Gdl Gd2
is given such that ?d,d is the identity and that

(21.2) 4d3,di = 4Pd3,d24Od2,di for di < d2 < d3

then we say that the groups { Gd} and the homomorphisms {kd2,di } consti-
tute a direct system-of groups indexed by D.

Let us now regard the directed set D as a category. For every object
d ED define

T(d) = Gd.

For every mapping 3= (P2, Pi) in D define

T(6) = T(d2, d1) = 4d2,d1.

Conditions (21.1) and (21.2) imply that T is a covariant functor on D with
values in the category (o of discrete groups. Conversely any such functor
giv'es rise to a unique direct system. Consequently the terms "direct system
of groups indexed by the directed set D" and "covariant functor on D to O5"
may be regarded as synonyms.

With each direct system of groups T there is associated a discrete limit
group G =Lim, T defined as follows. The elements of the limit group G are
pairs (g, d) for gCT(d); two elements (gi, di) and (g2, d2) are considered equal
if and only if there is an index d3 with dl<d3, d2<d3 and with T(d3, dl)g1
= T(d3, d2)g2. The sum is defined by setting (g, d)+(g', d) = (g+g', d); since
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the set D is directed, this provides for the addition of any two pairs in G.
For a fixed dED one may also consider the homomorphisms, called projec-
tions, X(d): T(d)-*G defined by setting

(21.3) X(d)g = (g, d)
for gGT(d). Clearly

(21.4) X(d1) = X(d2)T(d2, di) for d1 < d2.
To treat this limit group, we enlarge the given directed set D by adjoining

one new element oo, ordered by the specification that d < oo for each d CD.
This enlarged directed set DX. also determines a category containing D as
a subcategory, with new mappings (co, d) for each dED. Let now T be any
covariant functor on D to (o (that is, any direct system of groups indexed
by D). We define an extension Too of the object function of T by setting

(21.5) T.,(?o) = Lim T =G
the limit group of the given directed system T, and we similarly extend the
mapping function of T by letting Too, for a new mapping ( oo , d), be the corre-
sponding projection of T(d) into the limit group

(21.6) T.,( o, d) = X(d).
Condition (21.5) implies that T. is indeed a covariant function on D. with
values in 65. The properties of the limit group may be described in terms of
this extended functor Tx.

THEOREM 21.1. Let D be a directed set and T a covariant functor on D (re-
garded as a category) to 60. Then the limit group G of the direct system T
and the projections of each group T(d) into this limit determine as in (21.5) and
(21.6) an extension of T to a covariantfunctor T. on D. to Oo. If S. is any other
extension of T to a covariantfunctor on D. to Oo, there is a unique natural trans-
formation a: T.-6 such that each a(d) with d $ oo is the identity.

Proof. We have already seen that T. is a covariant functor on D. to i0,
extending T. Let now S. be any other functor extending T. Since S(d2, di)
- T(d2, di) for d2 <dl in D, it follows from the functor condition on S. that

(21.7) Sx(oo , d2)T(d2, di) = S(oo, di).
We define a homomorphism

a(oo): Tx(oo) -- Sx(??)

by setting a( oc )(g, d) =S( oo, d)g for every element (g, d) GT.( oo) =Lim_ T.
Condition (21.7) implies that o( oo) is single-valued. If we now set a(d) to be
the identity mapping T.(d)->S.(d) for d: oo, we have the desired transfor-
mation a: T.-+S6.
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The extension T. and hence the limit group G = T.( oo ) of the given direct
system is completely determined by the property given in the last sentence of
the theorem. In fact if T , is any other extension of T with the same property
as T., there will exist transformations o: T,--+T , and o': T! -*T,. Then
pFa'a: T >T. with p(d) the identity whenever d $ oo . It follows that

p(oo))X(d) = p(oo) T(oo, d) = T(oo, d)p(d)- T(oo, d) = X(d)

and therefore for every (g, d) in G we get

p(ooc)(g, d) = p(oo)X(d)g = X(d)g (g, d).

Hence p( oo) is the identity and a is a natural equivalence o: T-*TX ', In this
way the limit group of a direct system of groups can be defined up to an iso-
morphism by means of such extensions of functors. This indicates that the
concept (but not necessarily the existence) of direct "limits" could be set up
not only for groups, but also for objects of any category.

THEOREM 21.2. If T1 and T2 are two covariant functors on the directed cate-
gory D with values in 60, and r is a natural transformation r: T1i-T2, there is
only one extension rT of r which is a natural transformation rw: Tl,--+T2. be-
tween the extended functors on D.. When r is a natural equivalence so is rT.

Proof. The naturality condition for r, when applied to any mapping (d2, d1)
with di <d2 in the directed set D reads

(21.8) r(d2) Ti(d2, d1) = T2(d2, di)T(di).

Given any element (gi, d) of the limit group T,. ( oo) = Lim-. T, we define

(21.9) w(gi, d) = (r(d)gl, d) E Lim, T2= T2o( X )-

Condition (21.8) implies that this definition of w gives a result independent
of the special representation (g1, d) chosen for the limit element. Hence we
get a homomorphism

w: Ti,(oo) -+T2w( o).

In virtue of (21.6) and (21.3), the definition (21.9) becomes

(21.10) wTi,(oo%,d)= T2=(o ,d)r(d)
This means simply that by setting r,(d) =r(d), r,(oo) =w we get an exten-
sion of r which is still natural and which gives a transformation r,: TlXT2w.
Since the naturality condition (21.10) is equivalent with (21.9) which com-
pletely determines the value of r,(oo), the requisite uniqueness follows. In
particular, if r is an equivalence, each r(d) is an isomorphism "onto," hence
it follows that wX=-r( oo) is also an isomorphism onto, and is an equivalence.
This is just a restatement of the known theorem that "isomorphic" direct
systems determine isomorphic limit groups.
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THEOREM 21.3. If T is a direct system of groups indexed by a directed set D,
while H is a fixed discrete group, regarded as a (constant) covariant functor on
D to Oo, then for each natural transformation r: T-[H there is a unique homo-
morphism ro of the limit group Lim. T into H with the property that r(d) =iroX(d)
for each d ED, where M(d) is the projection of T(d) into Lim. T.

Proof. This follows from the preceding theorem and from the remark that
H0. is also a constant functor on Da. to Oo.

22. Inverse limits as functors. Let D be a directed set. If for every d ED
a topological group Gd is defined and for every pair di <d2 in D a homomor-
phism

(22 .1) d2, di G d2 G di
is given such that 4d,d is the identity and that

(22.2) 40d3,di = 40d2,d140dg,d2 for d1 < d2 < d3

then we say that the groups {Gd} and the homomorphisms {4d2,d1} consti-
tute an inverse system of groups indexed by D.

If we now regard D as a category, and define as before

(22.3) T(d) = Gd
for every object d in D, and

(22.4) T(b) = T(d2, di) = Od2,d,
for every mapping a = (d2, d1) in D, it is clear that T is a contravariant functor
on D with values in the category 5 of topological groups. Conversely any such
functor may be regarded as an inverse system of groups.

With each inverse system of groups T there is associated a limit group
G=Lim.. T defined as follows. An element of G is a function g(d) which as-
signs to each element dED an element g(d)ET(d), in such wise that these
elements "match" under the mappings; that is, such that T(d2, d1)g(d2) =g(d1)
whenever d1<d2. The sum of g1+g2 is defined as (g1+g2)(d)=gi(d)+g2(d).
This limit group G is assigned a topology, in known fashion, by treating G
as a subgroup of the direct product of the groups T(d), with the usual direct
product topology. For fixed d, the (continuous) projection ,u(d) of the limit
group G into T(d) is defined by setting [,u(d) ]g =g(d), for gGG.

Again we may consider the extended category Do. and define the extension
To. of T by setting

(22.5) T0.(oo) = G, T0(coo, d) (d).
As before the following theorem can be established:

THEOREM 22.1. Let D be a directed set and T a contravariant functor on D
(regarded as a category) to 5. Then the limit group G of the inverse system T
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and the projections of this limit group into each group T(d) determine as in
(22.5) an extension of T to a contravariant functor T. on D. to 5. If S. is any
other extension of T to a contravariant functor on D. to 5, there is a unique
natural transformation a: S. -T. such that each a(d) with d $ oo is the identity.

As before we can also verify that the second half of the theorem deter-
mines the extended functor T. to within a natural equivalence, and therefore
it determines the limit group to within an isomorphism.

The following two theorems may also be proved as in the preceding sec-
tion.

THEOREM 22.2. If T1 and T2 are two contravariant functors on the directed
category D with values in 5, and r is a natural transformation x: T1- >T2, there
is only one extension r. of r which is a natural transformation r.: T1.-*T2i be-
tween the extended functors on D.. When T is a natural equivalence so is r.x

THEOREM 22.3. If T is an inverse system of groups indexed by the directed
set D, while K is a fixed topological group regarded as a (constant) contravariant
functor on D to 0, then for each natural transformation r: T-*K there is a unique
homomorphism ro: Lim,. T-*K such that ro=r(d)X(d) for each dciD.

The preceding discussion carries over to inverse systems of spaces, by a
mere replacement of the category of topological groups 6 by the category of
topological spaces I.

23. The categories "Zir" and "`nb." The process of forming a direct or
inverse limit of a system of groups can be treated as a functor "Lim_" or
"Lim,'" which operates on an appropriately defined category. Thus the func-
tor "Lim_" will operate on any direct system T defined on any directed set D.
Consequently we define a category "Zit" of directed systems whose objects
are such pairs (D, T). Here we may regard D itself as a category and T as a
coyariant functor on D to 65. To introduce the mappings of this category,
observe first that each order preserving transformation R of a directed set D,
into another such set D2 will give for each direct system T2 of groups indexed
by D2 an induced direct system indexed by D1. Specifically, the induced direct
system is just the composite T2 0R of the (covariant) functor R on D1 to D2
and the (covariant) functor T2 on D2 to (5o. Given two objects (D1, T1) and
(D2, T2) of Zit, a mapping

(R, p):(D,, T1) -* (D2, T2)

of the category Zit is a pair (R, p) composed of a covariant functor R on D,
to D2 and a natural transformation

p:T1-* T2 X R

of T1 into the composite functor T2 0R.
To form the product of two such mappings
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(23.1) (Ri, pi)' (D1, T1) -- (D2, T2), (R2, P2) .(D2, T2) -* (D3, T3)

observe first that the functors T2 and T3?R2 on D2 to 6o can be compounded
with the functor R1 on D1 to D2, and hence that the given transformation
P2: T2- T3OR2 can be compounded with the identity transformation of R1 into
itself, just as in ?9.

The result is a composite transformation

(23.2) p2 X R1:T20 R1- T3? R20 RI
which assigns to each object d1CDL the mapping [p2 OR1] (di)= p2(R1di) of
T2(R1d1) into T30R2(Rldi). The transformations (23.2) and pl:T1-*T2 OR1
yield as in ?9 a composite transformation P20 R1 0 pi: T1->T3 OR2OR1. We
may now define the product of two given mappings (23.1) to be

(R2, p2)(Ri, Pi) = (R2 0 R1, P2 0 R1 0 pi).

With these conventions, we verify that Ztr is a category. Its identities are
the pairs (R, p) in which both R and p are identities; its equivalences are the
pairs (R, p) in which R is an isomorphism and p a natural equivalence.

The effect of fixing the directed set D in the objects, (D, T) of the cate-
gory ltr is to restrict Str to the subcategory which consists of all direct sys-
tems of groups indexed by D (that is, the category of all covariant functors
on D to Oo, as defined in ?8).

We shall now define Lim. as a covariant functor on Sit with values in 5o.
For each object (D, T) of Ztr we define Lim-. (D, T) to be the group obtained
as the direct limit of the direct system of groups T indexed by the directed
set D. Given a mapping

(23.3) (R, p):(Di, T1) -* (D2, T2) in Zir
we define the mapping function of Lim_,

(23.4) Limn (R, p) :Lim_. (D1, T1) -*Lim. (D2, T2),

as follows. An element in the limit group Lim (D1, T1) is a pair (gl, dl) with
d1CD1, g1GT1(d&). For each such element define 0(gi, di) to be the pair
(p(d1)gi, Rd1). Since p(d1) maps T1(d1) into T2(Rd1) we have p(d1)gi in T2(Rd1),
so that the resulting pair is indeed in the limit group Lim. (D2, T2). The map-
ping 4 carries equal pairs into equal pairs, and yields the reqdisite homomor-
phism (23.4). We verify that Lim,, defined in this manner, is a covariant
functor on Ztr to Oo.

Alternatively, the mapping function of this functor "Lim," can be ob-
tained by extensions of mappings to the directed sets D1,,o D2o (with oo
added), defined as in ?21. Given the mapping (R, p) of (23.3), first extend the
given objects of Zir to obtain new objects (Di., Tl,,,) and (D2,0, T2.). The
given functor R on D1 to D2 can also be extended by setting R,( o) =-o; this
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gives a functor R. on Di,,, to D20. Furthermore, Theorem 21.2 asserts that the
transformation p: Tl-*T2OR has then a unique extension p.: Tloo-T2o0Roo
All told, we have a new mapping

(Root poo): (Dloo Tloo) --+ Aw T2oo)

in itr. In particular, when po. is applied to the new element oo of Di,., it
yields a homomorphism of the limit group of T1 into the limit group of T2?(R.
On the other hand, R determines a homomorphism R# of the limit group of
T2 OR into the limit group of T2; explicitly, for (gl, di) in the first limit group,
the image R#(gi, d1) is the element (gl, Rd,) in the second limit group. The
requisite mapping function of the functor "Lim_" is now defined by setting

Lim, (R, p) = R#(p0.(oo)).

In a similar way we define the category ant. The objects of $nb are pairs
(D, T) where D is a directed set and T is an inverse system of topological
groups indexed by D (that is, T is a contravariant functor on D to (i). Thw
mappings in ant are pairs (R, p)

(R, p): (Di, Ti) -+(D2, T2)

where R is a covariant functor on D2 to D1 (that is, an order preserving trans-
formation of D2 into D1) and p is a natural transformation of the functors

p: T, 0 R- T2

both contravariant on D2 to (M. The product of two mappings

(R1, p): (Di, T1) -* (D2, T2), (R2, P2) = (D2, T2) -+ (D3, T3)

is defined as

(R2, P2)(Ri, P1) = (R1 0 R2, P2 0 pi 0 R2)

where P10R2 is the transformation

Pi 0 R2: T1 0 R1 0 R2 - T2 0 R2

induced (as in ?9) by

p1: T, 0 R1--+ T2.

With these conventions, we verify that anb is a category.
We shall now define Lim? as a covariant functor on anb with values in (i.

For each object (D, T) in anb we define Lime. (D, T) to be the inverse limit
of the inverse system of groups T indexed by the directed set D. Given a
mapping

(23.5) (R, p):(Di, T1) -* (D2, T2) in ant
we define the mapping function of Lim,
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,(23 .6) Lim. (R, p) :Lim,. (Di, TO - Lim. (D2, T2)

as follows. Each element of Lim, (Di, T1) is a function g(d1) with values
g(d1)C7T7(d1), for dCEDi, which match properly under the projections in T1.
Now define a new function h, with

h(d2) = p(d2)g(Rd2), d2 C Da;
it is easy to verify that h is an element of the limit group Lim (D2, T2). The
,correspondence g->h is the homomorphism (23.6) required for the definition
of the mapping function of Lim,. One may verify that this definition does
yield a covariant functor Lim, on the category anb to O.

The mapping function of Lim may again be obtained by first extending
the given mapping (23.5) to

(R2, poo): (Dl, Too) -* (D2w, T2,,) in anb.

In particular, when the extended transformation p.O is applied to the element
X of Dl, we obtain a homomorphism of the limit group of T1GR into the
limit group of T2. On the other hand, the covariant functor R on D2 to Di de-
termines a homomorphism R* of the limit group of (DA, T1) into the limit
group of (D2, T? OR); explicitly, for each function g(di) in the first limit group,
the image h=R*g in the second limit group is defined by setting h(d2) =g(Rd2)
for each d2ED2. The mapping function of the functor "Lim," is now
Lim. (R, p) = p.(oo)R*.

24. The lifting principle. Let Q be a functor wh )se arguments and values
are groups, while T is any direct or inverse system of groups. If the object
function of Q is applied to each group T(d) of the given system, while the
mapping function of Q is applied to each projection T(d1, d2) of the given
system, we obtain a new system of groups, which may be called QO T. If Q
is covariant, T and Q ? T are both direct or both inverse, while if Q is contra-
variant, Q 0 F is inverse when T is direct, and vice versa.

Actually this new system Q 0 T is simply the composite of the functor T
with the functor Q (see ?9). We may regard this composition as a process
which "lifts" a functor Q whose arguments and values are groups to a functor
QL whose arguments and values are direct (or inverse) systems of groups. We
may then regard the lifted functor as one acting on the categories itr and
3nb, as the case may be. In every case, the lifted functor has its object and
mapping functions given formally by the equations (in the "cross" notation
for composites)

(24.1) QL(D, T) = (D, Q 0 T), QL(R, p) = (R, Q 0 p).

This formula includes the following four cases:
(I) Q covariant on (5o to 0o; QL covariant on Zir to ZMt.
(II) Q contravavriant on 60 to @'; QL contravariant on Ztr to ani.
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(III) Q covariant on (5 to 0; QL covariant on anb to anb.
(IV) Q contravariant on (5 to (50; QL contravariant on anb to Ztr.
For illustration, we discuss case (II), in which Q is given contravariant

on (o to (M. The object function of QL, as defined in the first equation of
(24.1), assigns to each object (D, T) of the category itr a pair (D, QQ T).
Since T is covariant on D to (o and Q contravariant on (o to (M, the com-
posite Q 0 T is contravariant on D to (M, so that Q 0 T is an inverse system of
groups, and the pair (D, Q 0 T) is an object of anb. On the other hand, given
a mapping

(R, p): (D1, T1) -- (D2, T2) in Zir,

with p: T1-+T2 O R, the composite transformation Q X p is obtained by apply-
ing the mapping function of Q to each homomorphism p(d1): T1(d1)-+T2 OR(d1),
and this gives a transformation Q p: Q 0 T2 0 R->Q 0 T1. Thus the mapping
function of QL, as defined in (24.1), does give a mapping (R, Q 0 p): (D2, Q 0 T2)
--(D1, Q 0 T1) in the category anb. We verify that QL is a contravariant func-
tor on TAr to anb.

Any natural transformation Ki Q--P induces a transformation on the
lifted functors, KL: QL-*PL, obtained by composition of the transformation K
with the identity transformnation of each T, as

KL(D, T) = (D, K ( T7).

If K is an equivalence, so is this "lifted" transformation.
Just as in the case of composition, the operation of "lifting" can itself be

regarded as a functor "Lift," defined oti a suitable category of functors Q.
In all four cases (I)-(IV), this functor "Lift" is covariant.

In all these cases the functor Q may originally contain an-y number of
additional variables. The lifted functor QL will then involve the same extra
variables with the same variance. With proper caution the lifting process
may also be applied simultaneously to a functor Q with two variables, both
of which are groups.

25. Functors which commute with limits. Certain operations, such as the
formation of the character groups of discrete or compact groups, are known to
"commute" with the passage to a limit. Using the lifting operation, this can
be formulated exactly.

To illustrate, let Q be a covariant functor on -S5o to Oo, and QL the corre-
sponding covariant lifted functor on Z)tr to Ztr, as in case (I) of ?24. Since
Lim. is a covariant functor on Ztr to Oo, we have two composite functors

Lim_.(OQL and Q C) Lim_,

both covariant on Zir to (o. There is also an explicit natural transformation

(25.1) wl:Lim-. 0QL Q-Q 0 Lim-,
defined as follows. Let the pair (D, T) be a direct system of groups in the
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category Zit, and let X(d) be the projection

X(d): T(d) Lim- T, d E D.

Then, on applying the mapping function of Q to X, we obtain the natural
transformation

QX(d): QT(d) -Q [Lim. T].

Theorem 21.3 now gives a homomorphism

w1(T):Lim. [Q (D T] Q [Limx Tj,

or, exhibiting D explicitly, a homomorphism

co,I(Dj T): Lim QL(D, T) -+Q [Limn (D, T)]

We verify that wi, so defined, satisfies the naturality condition.
Similarly, to treat case (II), consider a contravariant functor Q on (o to (D

and the lifted functor QL on Zir to 3nb. We then construct an explicit natural
transformation

(25.2) ZII Q 0 Lirn_ Lim,,. 0 QL
(note the order !), defined as follows. Let the pair (D, T) be in Ztr, and let
X(d) be the projection

X(d): T(d) ->Lim- T, d E D.

On applying Q, we get

QX(d): :Q[Lim T] QT(d).

The Theorem 22.3 for inverse systems now gives a homomorphism

wII(D, T7) :Q[Lim.. (D, T) ] -*Limr QL(D, T7).

In the remaining cases (III) and (IV) similar arguments give natural
transformations

(25.3) coxii:Q (D Lim,-*Lim4 0 QL,
(25.4) w1vr:Lim. 0 QL -Q 0 Limn.

DEFINITION. The functor Q defined on groups to groups is said to com-
mute (more precisely to w-commute) with Lim if the appropriate one of the
four natural transformations co above is an equivalence.

In other words, the proof that a functor Q commutes with Lim requires
only the verification that the homomorphisms defined above are isomor-
phisms. The naturality condition holds in general!

To illustrate these concepts, consider the functor C which assigns to each

discrete group G its commutator subgroup C(G), and consider a direct system
T of groups, indexed by D. Then the lifted functor Q (case (I) of ?24) applied
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to the pair (D, T) in tir gives a new direct system of groups, still indexed
by D, with the groups T(d) of the original system repiaced by their commuta-
tor subgroups CT(d), and with the projections correspondingly cut down. It
may be readily verified that this functor does commute with Lim.

Another functor Q is the subfunctor of the identity which assigns to each
discrete abelian group G the subgroup Q(G) consisting of those elements geG
such that there is for each integer m an xEG with mx =g (that is, of those ele-
ments of G which are divisible by every integer), Q is a covariant functor with
arguments and values ill the subcategory Goa of discrete abelian groups. The
lifted functor QL will be covariant, with arguments and values in the sub-
category Zrt,a of Zir, obtained by restricting attention to abelian groups. This
functor Q clearly does not commute with Lim, since one may represent the
additive group of rational numbers as a direct limit of cyclic groups Z for
which each subgroup Q(Z) is the group consisting of zero alone.

The formation of character groups gives further examples. If we consider
the functor Char as a contravariant functor on the category (5Oa of discrete
abelian groups to the category (5ca of compact abelian groups, the lifted func-
tor CharL will be covariant on the appropriate subcategory of Zir to 3nt as
in case (II) of ?24. This lifted functor CharL applied to any direct system
(D, T) of discrete abelian groups will yield an inverse system of compact
abelian groups, indexed by the same set D. Each group of the inverse system
is the character group of the corresponding group of the direct system, and
the projections of the inverse system are the induced mappings.

On the other hand, there is a contravariant functor Char on (ca to (Oa.
In this case the lifted functor CharL will be contravariant on a suitable sub-
category of anb with values in tir, just as in case (III) of ?24. Both these
functors Char commute with Lim.

CHAPTER V. APPLICATIONS TO TOPOLOGY(24)

26. Complexes. An abstract complex K (in the sense of W. Mayer) is a
collection

C-z(K)} q = 0, ? 1, ? 2, .,
of free abelian discrete groups, together with a collection of homomorphisms

a :Cz(K) - C-zl(K)

called boundary homomorphisms, such that

a a q+ = 0.

By selecting for each of the free groups Cz a fixed basis {a O } we obtain a
complex which is substantially an abstract complex in the sense of A. W.

(24) General reference: S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloquium
Publications, vol. 27, New York, 1942.
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Tucker. The oa will be called q-dimensional cells. The boundary operator a
can be written as a finite sum

901 = E [a3 : aq2l ]aqZl.
Obg-

The integers [oq:ao91] are called incidence numbers, and satisfy the following
conditions:

(26.1) Given oa, [oa; oa $- 0 only fo& a finite number of (q- 1)-cells aq-1.

(26.2) Given oq+l and oq-1, E,Y[oaq+1; oaz] [oa; oaz1] =0.

Condition (26.1) indicates that we are confronted with an abstract com-
plex of the closure finite type. Consequently we shall define (?27) homologies
based on finite chains and cohomologies based on infinite cochains.

Our preference for complexes a la W. Mayer is due to the fact that they
seem to be best adapted for the exposition of the homology theory in terms
of functors.

Given two abstract complexes K1 and K2, a chain transformation

K: Kl -> K2

will mean a collection K= { KI} of homomorphisms,

K':Cz(Kl) C-(K2),

such that

In this way we are led to the category S whose objects are the abstract
complexes (in the sense of W. Mayer) and whose mappings are the chain
transformations with obvious definition of the composition of chain trans-
formations.

The consideration of simplicial complexes and of simplicial transforma-
tions leads to a category R.. As is well known, every simplicial complex
uniquely determines an abstract complex, and every simplicial transforma-
tion a chain transformation. This leads to a covariant functor on Rs to R.

27. Homology and cohomology groups. For every complex K in the cate-
gory R and every group G in the category (,Oa of discrete abelian groups we
define the groups Cz(K, G) of the q-dimensional chains of K over G as the
tensor product

Cz(K, G) = G o Cg(K),

that is, Cz(K, G) is the group with the symbols

gca, gnG, r Eto Cs(K)
as generators, and
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(gi + 2) = + g2Cg, g(C + C2) = gCg + gc9
as relations.

For every chain transformation i:KK1->K2 and for every homomorphism
ay: G1-*G2 we define a homomorphism

Cq(K, y) :Cq(K1, G1) -+ Cq(K2, G2)

by setting

C (K, 'y)(giCb) = 7(gl)Kq(C1)

for each generator g1c" of Cq(K1, G1).
These definitions of Cq(K, G) and of Cq(,, y) yield a functor Cz covariant

in ft and in (5Oa with values in (5Oa. This functor will be called the q-chain
functor.

We define a homomorphism

aq(K, G) :Cq(K, G) Cq- 1C(K, G)

by setting
aq(K, G)(gcq) = gOcq

for each generator gcq of Cq(K, G). Thus the boundary operator becomes a
natural transformation of the functor Cq into the functor Cq-

Cq Cq_Cq-.

The kernel of this transformation will be denoted by Zq and will be called the
q-cycle functor. Its object function is the group Zq(K, G) of the q-dimensional
cycles of the complex K over G.

The image of Cq under the transformation q is a subfunctor Bq-1 =q (Cq)
of Cq-1. Its object function is the group Bq-l(K, G) of the (q-.1)-dimensional
boundaries in K over G.

The fact that aq4q+1 = 0implies that Bq(K, G) is a subgroup of Zq(K, G).
Consequently Bq is a subfunctor of Zq. The quotient functor

Hq = ZqlBq

is called the qth homology functor. Its object function associates with each
complex K and with each discrete abelian coefficient group G the qth homol-
ogy group Hq(K, G) of K over G. The functor Hq is covariant in ft and (5Oa and
has values in (5Oa.

In order to define the cohomology groups as functors we consider the cate-
gory St as before and the category a of topological abelian groups. Given a
complex K in S and a group G in (5a we define the group Cq(K, G) of the q-di-
mensional cochains of K over G as

Cq(K, G) = Hom (Cq(K), G).
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Given a chain transformation K:KK1-*K2 and a homomorphism 'y:G1-*G2, we
define a homomorphism

Cg2(K, 7):C,(K2, Gi) _> Cg(Kil G21)

by associating with each homomorphism f CCq(K2, G1) the homomorphism
f = CQ(K, y)f, defined as follows:

f(Cl) = 7f(K Ci)], Cl E C (K1).

By comparing this definition with the definition of the functor Hom, we ob-
serve that Cq(K, 'y) is in fact just Hom (K0, -y).

The definitions of Cq(K, G) and Cq(K, 'Y) yield a functor Cq contravariant
in 9, covariant in (Ma and with values in 65a. This functor will be called the
qth cochain functor.

The coboundary homomorphism

aq(K, G) :Cq(K, G) - Cq+l(K, G)

is defined by setting, for each cochain f Cq(K, G),

(bqf)(Cq+l) = f(aq+lcq+l).

This leads to a natural transformation of functors

8q:Cq > Cq+li

We may observe that in terms of the functor "Hom" we have 8q(K, G)
=Hom ( q+1, eG).

The kernel of the transformation bq is denoted by Zq and is called the
q-cocycle functor. The image functor of 6, is denoted by Bq+1 and is called
the (q +1 )-coboundary functor. Since &4 q+1 = 0, we may easily deduce that
Bq is a subfunctor of Zq. The quotient-functor

Hq = Zq/Bq

is, by definition, the qth cohomology functor. Hq is contravariant in ft, co-
variant in (S5a, and has values in (Ma. Its object function associates with each
complex K and each topological abelian group G the (topological abelian)
qth cohomology group Hq(K, G).

The fact that the homology groups are discrete and have discrete coeffi-
cient groups, while the cohomology groups are topologized and have topologi-
cal coefficient groups, is due to the circumstance that the complexes
considered are closure finite. In a star finite complex the relation would
be reversed.

For "finite" complexes both homology and cohomology groups may be
topological. Let Rf denote the subcategory of S determined by all those
complexes K such that all the groups Cq(K) have finite rank. If KCRf and
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G is a topological group, then the group Cq(K, G) = G o Cq(K) can be topolo-
gized in a natural fashion and consequently Hs(K, G) will be topological.
Hence both Hg and Hq may be regarded as functors on ff and 05a with values
in (5a. The first one is covariant in both Rf and 05a, while the second one is
contravariant in Sf and covariant in a.

28. Duality. Let G be a discrete abelian group and Char G be its (com-
pact) character group (see ?19).

Given a chain
Cq Cq(K, G)

where

c = giCq gi EG, c' Cq(K),
and given a cochain

f E Cq(K, Char G),

we may define the Kronecker index

KI(f, c =-E (f(c6), gi).
i

Since f (c") is an element of Char G, its application to gi gives an element of the
group P of reals reduced mod 1. The continuity of KI(f, cq) as a function of f
follows from the definition of the topology in Char G and 'in Cq(K, Char G).

As a preliminary to the duality theorem, we define an isomorphism

(28. 1) rq(K, G):Cq(K, Char G) >? Char Cq(K, G),

by defining for each cochain fC Cq(K, Char G) a character

rq(K, G)f:Cq(K, G) -P,

as follows:
(rqf, Cq) = KI(f, Cq).

The fact that 7q(K, G) is an isomorphism is a direct consequence of the
character theory. In (28.1) both sides should be interpreted as object func-
tions of functors (contravariant in both K and G), suitably compounded from
the functors Cq, Cq, and Char. In order to prove that (28.1) is natural, con-
sider

K:K1- K2 in :, 'y:G1- G2 in (MOa.

We must prove that

(28.2) Tq(K1, Gl)Cq(K, Char y) = [Char Cq(K, y) ]rq(K2, G2).

If now
f E Cq(K2, G2), cq C Cq(Kl, Gi),

then the definition of ,q shows that (28.2) is equivalent to the identity
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(28.3) KI(Cq(K, Char y)f, cq) = KI(f, Cq(K, y)cq).

It will be sufficient to establish (28.3) in the case when cq is a generator of
Cq (Ki, Gi), q= gicl, gi C G1, cl C (K2)
Using the definition of the terms involved in (28.3) we have on the one hand

KI(Cq(K, Char y)f, glcq) = ([Cq(K, Char y)f]cq, gi)

= (Char 'y[f(Kc1) ]g) = (f(KCq), 'ygl),

and on the other hand

KI(f, C(K, y)gjcq) = KI(f, ('ygj)(KCq)) = (f(KC1), 'ygl).

This completes the proof of the naturality of (28.1).
Using the well known property of the Kronecker index

KI(f, aO+lcq+l) = KI(qj, cq+l),

one shows easily that under the isomorphism Tq of (28.1)

s [Zq(K, Char G)] = Annih Bq(K, G), r [Bq(K, Char G)] = Annih Zq(K, G),

with "Annih" defined as in ?19. Both Annih (Be; Cq) and Annih (Zq; Cq) are
functors covariant in K and G; the latter is a subfunctor of the former, so
that 7q induces a natural isomorphism

oq:Zq(K, Char G)/Bq(K, Char G) T? Annih Bq(K, G)/Annih Zq(K, G).

The group on the left is Hq(K, Char G). The group on the right is, according
to (19.7), naturally isomorphic to Char Z2(K, G)/Bq(K, G). All told we have
a natural isomorphism:

pq: Hq(K, Char G) T? Char HI(K, G).

This is the customary Pontrjagin-type duality between homology and co-
homology. Thus we have established the naturality of this duality.

29. Universal coefficient theorems. The theorems of this name express the
cohomology groups of a complex, for an arbitrary coefficient group, in terms
of the integral homology groups and the coefficient group itself. A quite gen-
eral form of such theorems can be stated in terms of certain groups of group
extensions(2"); hence we first show that the basic constructions of group ex-
tensions may be regarded as functors.

Let G be a topological abelian group and H a discrete abelian group. A
factor set of H in G is a function f (h, k) which assigns to each pair h, k of ele-
ments in H an element f(h, k) CG in such wise that

(25) S. Eilenberg and S. MacLane, Group extensions and homology, Ann. of Math. vol. 43
(1943) pp. 757-831.
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f(h, k) = f(k, h), f(h, k) + f(h + k, 1) = f(h, k + 1) + f(k, 1),

for all h, k, and I in H. With the natural addition and topology, the set of all
factor sets f of H in G constitute a topological abelian group Fact (G, H). If
'y: G1-*G2 and : H1->H2 are homomorphisms, we can define a corresponding
mapping

Fact (7y, qj) Fact (G1, H2) -* Fact (G2, H1)

by setting

[Fact ('y, q)f ](hi, ki) = yf(,qhi, qki)

for each factor set f in Fact (G1, H2). Thus it appears that Fact is a functor,
covariant on the category 05a of topological abelian groups and contravariant
in the category (5Oa of discrete abelian groups.

Given any function g(h) with values in G, the combination

f(h, k) = g(h) + g(k) - g(h + k)

is always a factor set; the factor sets of this special form are said to be trans-
formation sets, and the set of all transformation sets is a subgroup Trans (G, H)
of the group Fact (G, H). Furthermore, this subgroup is the object function of
a subfunctor. The corresponding quotient functor

Ext = Fact/Trans

is thus covariant in 6,aS contravariant in (&, and has values in ($a. Its object
function assigns to the groups G and H the group Ext (G, H) of the so-called
abelian group extensions of G by II.

Since Cq(K, G) = Hom (Cq (K), G) and since C (K, I) = I o Cq(K) = Cq(K)
where I is the additive group of integers, we have

Cq(K, G) = Hom (Cq(K, 1), G).

We, therefore, may define a subgroup

Aq(K, G) = Annih Zq(K, I)

of Cq(K, G) consisting of all homomorphisms f such that f(zq)=O for
zqCZq(K, I). Thus we get a subfunctor Aq of C, and one may show that
the coboundary functor B q is a subfunctor of A q which, in turn, is a subfunctor
of the cocycle functor Zq. Consequently, the quotient functor

Qq = Aq/Bq

is a subfunctor of the cohomology functor Hq, and we may consider the quo-
tient functor Hq/Qq. The functors Qq and Hq/Qq have the following object
functions

Qq(K, G) = Aq(K, G)/Bq(K, G),

(H q/Qq) (K, G) = Hq(K, G)/Qq(K, G) -Zq(K, G)/A (K, G).

This content downloaded from 200.145.112.217 on Thu, 14 Nov 2024 12:30:00 UTC
All use subject to https://about.jstor.org/terms



290 SAMUEL EILENBERG AND SAUNDERS MAcLANE [September

The universal coefficient theorem now consists of these three assertions(26):

(29.1) Qq(K, G) is a direct factor of Hq(K, G).
(29.2) Qq(K, G) _ Ext (G, flq+l(K, I)).
(29.3) Hq(K, G)/Qq(K, G) - Hom (flq(K, I), G).

Both the isomorphisms (29.2) and (29.3) can be interpreted as equiva-
lences of functors. The naturality of these equivalences with respect to K has
been explicitly verified(27), while the naturality with respect to G can be veri-
fied without difficulty. We have not been able to prove and we doubt that
the functor Qq is a direct factor of the functor Hq (see ?18).

30. Cech homology groups. We shall present now a treatment of the
Cech homology theory in terms of functors.

By a covering U of a topological space X we shall understand a finite
collection:

U = {A1, *** An}

of open sets whose union is X. The sets Ai may appear with repetitions, and
some of them may be empty. If U1 and U2 are two such coverings, we write
Ui< U2 whenever U2 is a refinement of Ul, that is, whenever each set of the
covering U2 is contained in some set of the covering Ul. With this definition
the coverings U of X form a directed set which we denote by C(X).

Let t: Xl- X2 be a continuous mapping of the space X, into the space X2.
Given a covering

U A {1, * A*,, An QX2)^

we define

C(t)U = {U-1(A1), * * *, t-'(A,)} C C(X1)

and we obtain an order preserving mapping

C(t):C(X2)- C(X,).

We verify that the functions C(X), C(t) define a contravariant functor C on
the category X of topological spaces to the category Z of directed sets.

Given a covering U of X we define, in the usual fashion, the nerve N(U)
of U. N(U) is a finite simplicial complex; it will be treated, however, as an
object of the category Kf of ?27.

If two coverings U,< U2 of X are given, then we select for each set of the
covering U2 a set of the covering U, containing it. This leads to a simplicial
mapping of the complex N(U2) into the complex N(U1) and therefore gives
a chain transformation

(26) Loc. cit. p. 808.
(27) Loc. cit. p. 815.

This content downloaded from 200.145.112.217 on Thu, 14 Nov 2024 12:30:00 UTC
All use subject to https://about.jstor.org/terms



1945] GENERAL THEORY OF NATURAL EQUIVALENCES 291

K:N(U2) -* N(Ul).

This transformation K will be called a projection. The projection K is not de-
fined uniquely by Ui and U2, but it is known that any two projections K, and
K2 are chain homotopic and consequently the induced homomorphisms

(30.1) Hq(K, eG) :Jq(N(U2), G) > Hq(N(Ul), G),
(30.2) Hq(K, eG) Hq(N(Ul), G) Hq(N( U2), G)

of the homology and cohomology groups do not depend upon the particular
choice of the projection K.

Given a topological group G we consider the collection of the homology
groups Hq(N(U), G) for UCC(X). These groups together with the mappings
(30.1) form an inverse system of groups defined on the directed set C(X).
We denote this inverse system by Cq(X, G) and treat it as an object of the
category 2nb (?23).

Similarly, for a discrete G the cohomology groups Hq(N(U), G) together
with the mappings (30.2) form a direct system of groups Cq(X, G) likewise
defined on the directed set C(X). The system Cq(X, G) will be treated as an
object of the category ?)tr.

The functions Cq(X, G) and Cq(X, G) will be object functions of functors
Cq and Cq In order to complete the definition we shall define the mapping
functions 7qQ, 7y) and %(, -y) for given mappings

t:X1 -X2, 7:G1 -G2.
We have the order preserving mapping

(30.3) C(): C(X2) -- C(X1)
which with each covering

U = {A1, * * A,,} E QX2)

associates the covering

V = C()= {u A1, *w t-,A4 C C(X1).

Thus to each set of the covering V corresponds uniquely a set of the cover-
ing U; this yields a simplicial mapping

K: N(V) -N(U)f

which leads to the homomorphisms

(30.4) Hq(K, y) Hq(N(V), G1) Hq(N(U), G2),
(30.5) Hq(K, y) Hq(N(U)e Gt ) sq(N(V)s, G2)n

The mappings (30.3)-(30.5) define the transformations
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Z7q(, ) :ZC(X1, G1) Z-Cq(X2, G2) in anD,

Cq % 7) Cq(X2, G1) ZCq(Xi, G2) in Zir.

Hence we see that Zq is a functor covariant in X and in R$a with values in
anb while Zq is contravariant in X covariant in 5Oa and has values in Zir.

The Cech homology and cohomology functors are now defined as

Hq = Lim.. Cq Hq = Lim-. Cq.

77q is covariant in X and R,a and has values in R,a, while ftq is contravariant
in X, covariant in (5Oa, and has values in 5Oa. The object functions Hft(X, G)
and iiq(X, G) are the Cech homology and cohomology groups of the space X
with the group G as coefficients.

31. Miscellaneous remarks. The process of setting up the various topo-
logical invariants as functors will require the construction of many categories.
For instance, if we wish to discuss the so-called relative homology theory, we
shall need the category Xs whose objects are the pairs (X, A), where X is a
topological space and A is a subset of X. A mapping

t:(X, A) -* (Y, B) in Xs

is a continuous mapping t: X-- Y such that t(A) CB. The category X may be
regarded as the subcategory of Xs, determined by the pairs (X, A) with A = 0.

Another subcategory of Xs is the category Xb defined by the pairs (X, A)
in which the set A consists of a single point, called the base point. This cate-
gory Xb would be used in a functorial treatment of the fundamental group and
of the homotopy groups.

APPENDIX. REPRESENTATIONS OF CATEGORIES

The purpose of this appendix is to show that every category is isomorphic
with a suitable subcategory of the category of sets S.

Let 2I be any category. A covariant functor T on 2I with values in e will
be called a representation of 21 in S. A representation T will be called faithful
if for every two mappings, a1, a2E:f, we have T(ai) = T(a2) only if a,1= a2.
This implies a similar proposition for the objects of WI. It is clear that a faith-
ful representation is nothing but an isomorphic mapping of 2 onto some sub-
category of S.

If the functor T on 2I to e is contravariant, we shall say that T is a dual
representation. T is then obviously a representation of the dual category 2*,
as defined in ?13.

Given a mapping a:A -*A2 in f, we shall denote the domain A1 of a by
d(a) and the range A2 of a by r(a). In this fashion we have

a: d (a - r (a).
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Given an object A in 2I we shall denote by R(A) the set of all aCoX, such
that A = r(c(). In symbols

(I) R(A) = aI a | tE , r(a) = A}
For every mapping a in a we define a mapping

(II) R (ae): R (d (at)) R (r (a))
in the category e by setting

(III) [R(at)]t= aet
for every (ER(d(a)). This mapping is well defined because if tCR(d(a)),
then r(Q) =d(a), so that ao is defined and r(ao) =r(a) which implies
a tER(r(at)).

THEOREM. For every category 2t the pair of functions R(A), R(a), defined
above, establishes a faithful representation R of a in S.

Proof. We first verify that R is a functor. If a = eA is an identity, then defi-
nition (III) implies that [R(a)] = t, so that R(a) is the identity mapping of
R(A) into itself. Thus R satisfies condition (3.1). Condition (3.2) has already
been verified. In order to verify (3.3) let us consider the mappings

a1:A1- A2, a2:A2 A3.
We have for every tGR(Al),

[R(a2al)]t = a2a1l = [R(a2)]al= [R(a2)R(a=)%

so that R (a.a2) =R(aO2)R(al). This concludes the proof that R is a representa-
tion.

In order to show that R is faithful, let us consider two mappings.al, a2CW
and let us assume that R(ai) =R(a2). It follows from (II) that R(d(al))
=R(d(a2)), and, therefore, according to (I), d(a,) = d(2). Consider the iden-
tity mapping e=ed(a1)=ed(a2). Following (III), we have

a,= ale= [R(al)]e = [R(a2)]e = a2e = a2,

so that al = a2. This concludes the proof of the theorem.
In a similar fashion we could define a faithful dual representation D of W

by setting

D(A) = a I a E f, d(a) =A}
and

[D(a)]t ta
for every D (r (a)).

The representations R and D are the analogues of the left and right regu-
lar representations in group theory.
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We shall conclude with some remarks concerning partial order in cate-
gories. Most of the categories which we have considered have an intrinsic
partial order. For instance, in the categories 5, X, and 65 the concepts of
subset, subspace, and subgroup furnish a partial order. In view of (I), A1jA2
implies that R(A1) and R(A2) are disjoint, so that the representation R de-
stroys this order completely. The problem of getting "order preserving repre-
sentations" would require probably a suitable formalization of the concept of
a partially ordered category.

As an illustration of the type of arguments which may be involved, let us
consider the category 65 of discrete groups. With each group G we can associ-
ate the set R1(G) which is the set of elements constituting the group G. With
the obvious mapping function, R1 becomes a covariant functor on 6o to 5,
that is, R1 is a representation of 60 in S. This representation is not faithflul,
since the same set may carry two different group structures. The group struc-
ture of G is entirely described by means of a ternary relation glg2=g. This
ternary relation is nothing but a subset R2(G) of R1(G) XR(G) XR,(G). All
of the axioms of group theory can be formulated in terms of the subset R2(G).
Moreover a homomorphism 'y: G1-*G2 induces a mapping R2(y): R2(G1)
-Ri(G2). Consequently R2 is a subfunctor of a suitably defined functor
R, XR1 XRi. The two functors R1 and R2 together give a complete description
of 65O, preserving the partial order.

THE UNIVERSITY OF MICHIGAN,
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HARVARD UNIVERSITY,
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